用户名: 密码: 验证码:
泄流结构耦合动力分析与工作性态识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水利水电工程高水头、大流量泄水建筑物的大量兴建及工程结构趋于轻型化,水流诱发振动问题会更加突出。研究水流诱发结构振动的机理,泄流结构耦合动力分析的模拟、预测分析方法,泄流结构优化设计方法和安全动态检测方法等,是泄流结构设计和安全运行的重要课题。本文主要开展以下三个方面的研究:
     (一)泄流结构耦合动力分析的模拟与预测方法研究。本文成功地实现了从传统的单一水动力效应分析方式到水动力-结构体系多效应耦合分析方式的跨越。(1)在前人研究水流脉动压力频谱相似律符合重力律的基础上,以弧形闸门为例,综合考虑整个闸门体系耦合作用及闸门的水动力特性,首次全面地用物理模型仿真模拟了水力系统-弧形闸门结构(系统)-支撑结构(闸墩、启闭杆)整个体系的耦联振动问题;并采用充分反映闸门薄板空间结构特点板壳单元模拟预测闸门空间体系结构的耦合动力特性。(2)提出了弧形闸门支臂在偏心荷载作用下的动力稳定性理论研究方法,研究了偏心动力荷载对弧形闸门支臂动力稳定性的影响。(3)综合物模、数模、动力稳定性分析的研究成果分析了闸门的动力安全性,提出了避免弧形闸门强烈振动的措施。
     (二)泄流结构耦合动力优化设计方法研究。本文提出基于耦合动力安全的泄流结构动力优化设计方法。(1)首次提出了考虑导墙结构耦合动力安全为控制指标的结构优化设计方法,提出了导墙断面结构优化数学模型;在考虑导墙结构耦合动力安全约束条件的基础上,同时考虑导墙结构的几何条件、静力强度和稳定性的约束,将静力分析、耦合动力分析与支持向量机技术相结合对导墙结构断面形式的优劣进行智能评估;采用遗传算法实数编码,利用随机方式产生初始导墙断面种群群体进行优化计算,在保证导墙结构满足静、动力安全的前提下,实现导墙断面型式的最优化。(2)首次提出了考虑弧形闸门支臂静、动力稳定性的弧形闸门优化设计方法,提出了弧形闸门主框架优化数学模型;在同时考虑闸门的几何约束、静力强度、刚度约束、静动力稳定性约束的基础上对弧形闸门主框架进行动力优化设计,在保证静动力安全的前提下节省了工程投资。
     (三)基于泄流激励的泄流结构动力检测与工作性态识别研究。针对原型动力试验激励难的问题,本文结合水工结构在工作状态下环境激励荷载的特点,直接根据水工结构在工作环境激励荷载作用下的动力响应识别结构的动力特性。(1)首次提出一种利用特征矩阵奇异熵对信号进行降噪、重构、定阶以及模态参数识别ERA方法,解决了定阶和降噪难的问题,揭示了结构在工作状态下的模态阶次及模态特性。(2)针对频域分解法中的奇异值曲线峰值(谱密度函数峰值)选取的主观性及其精度取决于计算功率谱密度函数时傅立叶变换精度的影响,根据泄流激励的特点,提出通过定义模态一致性函数的方法,比较准确地确定了奇异值曲线的峰值,解决所拾取峰值是结构真实模态频率还是噪声引起的虚假模态频率(如水流噪声模态频率)的问题,并同时确定该阶模态起主要作用的优势频域带宽,提高了阻尼比的计算精度。(3)首次对二滩拱坝、三峡溢流坝及其左导墙、李家峡双排机厂房进行了大规模全面的正常运行状态下(如汛期泄洪工作状态)的原型振动测试,并将本文提出的基于泄流激励的模态参数识别理论方法首次应用到上述大型水工结构的原型工作模态参数识别,对其正常运行工作性态进行了评估。
With the large number of high-head and large discharge flood discharge structures construction and the trend of lightweight of flood discharge structures, the problem of flow-induced vibration will become prominent. It is an important subject for flood discharge structures design and safe operation to study on flow-induced vibration mechanism, simulation and prediction methods of coupled dynamic analysis of flood discharge structure, optimum design and safety dynamic detection methods of flood discharge structures. In the paper, the following three main areas are studed:
     Firstly, the study on simulation and prediction methods of coupled dynamics analysis of flood discharge structure. The paper has succeeded in achieving coupled dynamic analysis from traditional analysis mode with single hydrodynamic effect considered to coupled analysis mode with hydrodynamic-structure system coupled effect considered. (1) Based on the study on that the similarity law of fluctuating pressure spectrum agrees with the gravity law, taking radial gate as an example, the paper consider the effect of the system coupling of the whole gate and the hydrodynamic characteristic of gate. This whole coupling system vibration of hydraulic system—structure system of gate—prop system (pier, start and stop lever) is simulated using physical model for the first time, and then a 3D space FEM mathematical model using three-dimensional shell element is set up and its dynamic characteristic is analyzed. (2) The dynamic-stability analysis method of the radial gate arm under eccentric loading is produced, and the influences of the dynamic-stability of radial gate arm under eccentric loading are also studied. (3) Finally, associated with physical, numerical model and dynamic stability analysis, the dynamic safety of the gate was analyzed, and several suggestions and proposal that avoid adverse vibration are presented.
     Secondly, study on coupled dynamic optimization design methods of flood discharge structures. The paper produces the coupled dynamic optimization design methods of flood discharge structures. (1) Considering the coupled dynamic safety index of guide wall, the paper propose the guide wall structure optimization design method and put forward the section optimization mathematic model of guide wall. Based on the consideration of coupled dynamic safety constraint condition, the geometrical condition, static strength, stability constraint are also taken into account, and the static analysis, couple dynamic analysis and Support Vector Machine(SVM) technique are combined to evaluate the quality of guide wall section intelligently. Employing real encode of GA and generating initial population groups of guide wall sections randomly, the guide wall section is optimized on the condition of that the guide wall structure meet the specification of static and dynamic safety. (3) Considering the static restriction and the dynamic stability of the arms of radial gate, the paper propose the optimization design method and optimization mathematic model of main frame of radial gate. The main frame of radial gate is optimized on the basis of considering geometrical constraint condition, static strength, rigidity constraint, static and dynamic stability constraint. The result shows that the weight of the gate is lightened with the guarantee of the static and dynamic stability of the arms and saves the investment of the project.
     Thirdly, study on dynamic detection and working state characteristic identification of flood discharge structures under flood discharge excitation. Aimed at the difficult problem of exciting the prototype to test, combined with the ambient loading characteristic, the dynamic characteristic of hydraulic structure is directly identified according to the dynamic response of structure under ambient excitation in the paper. (1) We propose a method in the paper to denoise, reconstruct, determine the order and identify modal parameters based on singular entropy of eigenmatrix. It can be used to solve the problem of system eigenmatrix order determination, and to identify the modal order and the characteristics of structures under the working state. (2) The subjective selection and accuracy of singular value curve peak (spectral density function peak) depend on the accuracy of the calculation of power spectral density function in process of Fourier transform. In order to solve this problem, modal coherence function is put forward in the paper to identify the singular value curve peak accurately. This method solve the problem of modal frequency peaking which is likely to be false modal frequency caused by noise (such as flow frequency) or structural modal frequency, and identify the dominate frequency domain of one mode, improve the accuracy of damping ratio calculation. (3) A large-scale comprehensive prototype vibration tests against Ertan arch dam, Spillway dam and Left guide wall of Three Gorges, Powerhouse with a two-row placed unit of Lijiaxia hydropower station are primarily carried out during the working state (e.g. Flood spillway working state in flood season). And the modal parameter identification theory under flood discharge excitation proposed in the paper is primarily applied to the operational modal parameter identification of these large-scale prototype hydraulic structures, and the normal operational behaviors of these hydraulic structures are evaluated.
引文
[1]潘家铮,何璄.中国大坝五十年[M].北京:中国水利水电出版社,2002.
    [2] Berryhill,B.H.Experience with prototype energy dissipater [J]. ASCE, Hydr, Divi, May, 1963.
    [3] King,D.L. Hydraulic model studies of the modified outlet works stilling basin,Navajo Dam [R].Bureau of Reclamation,HYD,1967.
    [4] H.T.Falvey, Hydraulic Model Studies of the Modified Outlet Works Stilling Basin Navajo Dam Cororado River Storage Project New Mexico [R]. Report NO.hyd-573,Hydraulics Branch Division of Research,office of chief engineering,Denver Colorado,June 15,1967.
    [5]Л.Π.连佳叶夫,等.高坝溢洪道隔墩水流动力作用的计算[C].高速水流译文集,水利水电出版社,1979.
    [6]曹羡平,张云飞,等.大化水电站溢流坝闸墩振动测试报告[R].北京:中国水利水电科学研究院抗震所,1985.
    [7]苑希民.高水头大流量泄流振动仿真研究[D].天津:天津大学,1996.
    [8]徐秉衡,栾力.泄水建筑物的破坏与防治[M].成都:成都科技大学出版社,1996.
    [9]章继光,刘恭忍.轻型弧形钢闸门事故分析研究[J].水力发电学报,1992(3):49-57.
    [10]谢省宗,李世琴,林勤华.泄水建筑物破坏及其防治[J].泄水工程与高速水流,1995(2):1-52.
    [11]王金国.水工建筑物的破坏及防治措施研究[D].四川:四川大学,2002.
    [12] Blevens.流体诱发振动[M].北京:机械工业出版社,1983.
    [13] Weaver D S.论水流引起水工建筑物的振动和减振措施[C].高速水流译文集,北京:水利电力出版社,1979.
    [14] Naudascher E. Flow-induced loading and vibration of gates. In Proc Int Symp On Hydr for High Dams [C].Beijing,Invited lecture,1988,1~18.
    [15]吴中如,顾冲时.重大水工混凝土结构病害检测与健康诊断[M].北京:高等教育出版社,2005.
    [16]冉启芳.无损检测方法的分类及其特征简介[J].无损检测,1999,21(2):75-80.
    [17]刘箴,唐岱新.建筑结构损伤诊断方法研究[J].哈尔滨建筑大学学报,2000,33(1):37-40.
    [18]王山山,任青文.基于振动理论的水工结构无损检测技术研究综述[J].河海大学学报(自然科学版),2004,32(5):550-556.
    [19]王山山.基于振动理论的水工结构无损检测技术研究[D].南京:河海大学,2005.
    [20] Jean Proulx,Patrick Paultre. An experimental investigation of water level effects on the dynamic behaviour of large arch dam [J]. Earthquake Engineering and Structural Dynamics,2001,30:1147~1166.
    [21] James G H,Garne T G,Laufer J P. The natural excitation technique (NExT) for modal parameter extraction from ambient operating structure. Int. J. of Analytical & Experimental Modal Analysis,1995,10(4):260~277.
    [22]苏克忠,郭永刚,常延改,等.大坝原型动力试验.北京:地震出版社,2006.
    [23]刑景棠,周盛,等.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [24]傅作新.水-坝相互作用的若干有效解法[J].华东科技情报,1985(2):1-10.
    [25]傅作新,吴斌元,等.水坝库水与地基动力相互作用分析[J].华东水利学院学报,1985(1):1-10.
    [26]傅作新.结构与水体的动力相互作用问题[J].水利水运科学研究,1982(2):105-119.
    [27] Javier Aviles,Xiangyue Li,Analytical-numerical solution for hydrodynamic pressures on dams with sloping face considering compressibility and viscosity of water [J]. Computer & Structure,1998,56(4):481-488.
    [28] Tsai,C. S,Lee,Hydrodynamic pressure on gravity dams subjected to ground motion [J]. Journal of Engineering Mechanics,ASCE,1989(115):598-617.
    [29] Aviles J.,Sanchez Sesma F.J.,Hydrodynamic pressures on dams with nonvertical upstream face [J]. Journal of Engineering Mechanics,ASCE,1986(112):1054-1061.
    [30] Chong-Shien Tsal,George C.Lee and Robert L.Ketter,A semi-analytical method for time-domain analysis of dam-reservoir interactions [J]. Inter.Jou.Numer.Meth.Eng.,1990(29):913-933.
    [31] O.C.Zienkiewicz,The finite element method [M]. MCGRAW-WILL,1977.
    [32]杜庆华,吴有生,等.流固耦合振动问题的某些工程处理方法[J] .固体力学学报,1988(9):49-61.
    [33] K.J.Bathe , W.F.Hahn , On transient analysis of fluid-structure systems[J].Computers & Structures,1979(10):383-391.
    [34] N.Akkas,H.U.Akay,C Yilmaz,Applicability of general-purpose finite element programs in solid-fluid interaction problems[J].Computers & Structures,1979(10):773-783.
    [35] E. L. Wilson,M. Khalvati,Finite element for dynamic analysis of fluid-solid systems [J].International Journal for Numerical Methods in Engineering,1983(19):1657-1668.
    [36] W.K.Liu,H.G.Chang,A method for computation for fluid-structure interaction [J].Computers & Structures,1985(20):31-320.
    [37] Harn C. Chen,Robert L. Taylor,Vibration analysis of fluid-solid systems using finite element displacement formulation[J].International Journal for Numerical Methods in Engineering,1990(29):683-698.
    [38] M.R.Maheri,M.R.Khodaer,Dynamic solution of 3-D structure-fluid system using a new lagrangian-based curvilinear fluid element[J].Dam Engineering,1997(8):83-122.
    [39] O.C.Zienkiewicz,P.Bettess,Fluid-structure dynamic interaction and wave forces, An introduction to numerical treatment[J].International Journal for Numerical Methods in Engineering,1978(13):1-16.
    [40] L Olson,K Bathe,Analysis of fluid-structure interactions,A direct symmetric coupled formulation based on the fluid velocity potential[J].Computers & Structures,1985(2)1:21-32.
    [41]吴一红,谢省宗.水工结构流固耦合动力特性分析[J].水利学报,1995(1):27-32.
    [42]吴一红,李世琴,等.拱坝-库水-地基耦合系统坝身泄洪动力分析[J].水利学报,1996(11):6-13.
    [43]戴大农,王瑁成,等.流固耦合系统动力响应的模态分析理论[J].固体力学学报,1990(11):306-312.
    [44] W.J.T.Daniel,Modal method in finite element fluid-structure Eigenvalue problems [J].International Journal for Numerical Methods in Engineering ,1980,15(8):1161-1176.
    [45]牟建耀.流固耦合分析的模态综合法[J].常州工业技术学院学报(自然科学版),1996(9):82-90.
    [46]刑景棠,郑兆昌.基于弹性力学变分原理的模态综合法研究[J].固体力学学报,1983(2):248-257.
    [47]刑景棠.考虑自由线性波的流固耦合动力分析的两个变分公式[J].航空学报,1988(9):A568-A571.
    [48] Hanna Y.G ., Humar J.L . Boundary element analysis of fluid-domain [J].J.Eng.Mech.Div.ASCE 108,1982.
    [49] Saini S.S.,Bettess P.,Zienkiweicz O.C. Coupled Hydrodynamic Response of concrete gravity dams using finite and infinite elements [J].Earthquake Engineering and Structural Dynamics,1978(6):363-374.
    [50] R.K.Singh,T.Kant,A.Kakodkar. Coupled shell-fluid interaction problems with degenerate shell and three-dimensional fluid elements [J].Computers & Structures,1991(38):515-528.
    [51] Antes H.,Estorff O.V. Analysis of absorption effects on the dynamic response of dam reservoir systems by BEM [J].Earthquake Engineering and Structural Dynamics,1987(15):1023-1036.
    [52]宋崇民,张楚汉.水坝抗震分析的动力边界元方法[J].地震工程与工程振动,1988(4):13-26.
    [53] Zhang C.H.,Jin F,Time domain procedure of FE-BE-IBE coupling for seismic interaction of arch dam and canyons [J].Earthquake Engineering and Structural Dynamics,1995(1):651-666.
    [54]徐艳杰,张楚汉,等.非线性拱坝-地基动力相互作用的FE-BE-IBE模型[J].清华大学学报,1998(11):99-103.
    [55]傅作新,王立新,等.拱坝的动水压力和拱坝库水的相互作用分析[C].第三届全国地震工程会议论文集(Ⅲ) ,1990:1271-1276.
    [56] Westergard H M. Water pressures on dams during earthquakes [J].ASCE,1933(98):418-472.
    [57] Zienkiewicz O C,Nath B.Earthquake hydrodynamic pressures on arch-dams and electric analogue solution [C].Proc.Inst.Civ.Eng.,1963(25):165-176.
    [58] A.K.Chopra. Hydrodynamic effects in earthquake response of arch dams [C].Proceedings of China-US Workshop on Earthquake Behavior of Arch Dams,Beijing,China,1987:110-129.
    [59] Ka-Lun Fok,A.K.Chopra. Earthquake analysis of arch dams including dam -water interaction , reservoir boundary absorption and foundation flexibility [J].Earthquake Engineering and Structural Dynamics,1986(14):155- 184.
    [60] Craig S.Porter,A.K.Chopra. Dynamic analysis of simple arch dams including hydrodynamic interaction [J].Earthquake Engineering and Structural Dynamics,1981(9):573-597.
    [61] J.F.Ha ll,A.K.Chopra. Hydrodynamic effects in the dynamic response of concrete gravity dams [J].Earthquake Engineering and Structural Dynamics ,1982(10):333-345.
    [62] B.Nath,et al. Coupled dynamic behavior of realistic arch dams including hydrodynamic and foundation interaction[C].Proc. Inst. of Civ.Eng.,Part2,Vol.73,Sept.,1982.
    [63] K a-Lun Fok,A.K.Chopra. Earthquake analysis and response of concrete arch dams[C].UCB/EERC-85/07.
    [64]阎承大,张楚汉.拱坝地震动水压力分析的配点法[J].地震工程与工程振动,1990(4):73-82.
    [65]陈厚群,候顺载,杨大伟.地震条件下拱坝库水相互作用的试验研究[J].水利学报,1989(7):29-39.
    [66]崔广涛.高水头大流量泄洪结构脉动荷载及其振动和地基反应,“七.五”国家重点科技攻关,国家自然科学基金资助项目研究成果之一——二滩水电站拱坝泄流振动实验研究[R].天津:天津大学水资源与港湾工程系,1991.
    [67]崔广涛,林继镛,彭新民,等.二滩拱坝泄流振动水弹性模型研究[J].天津大学学报,1991(1):1-10.
    [68]崔广涛.高水头大流量泄流振动及新型水垫塘研究,“八.五”国家重点科技攻关,国家自然科学基金资助项目研究成果之一——高拱坝大流量泄洪诱发振动研究[R].天津:天津大学水资源与港湾工程系,1996.
    [69]崔广涛.高水头大流量泄流振动及新型水垫塘研究,“八.五”国家重点科技攻关,国家自然科学基金资助项目研究成果之二——高拱坝大流量泄洪动态仿真及振动影响评估[R].天津:天津大学水资源与港湾工程系,1996.
    [70]练继建.金沙江溪洛渡水电站拱坝泄洪水弹性模型研究[R].天津:天津大学水利水电工程系,2001.
    [71]练继建.黄河拉西瓦水电站坝身泄洪流激振动水弹性模型试验研究报告[R].天津:天津大学水利水电工程系,2006.
    [72]郭怀志,马启超,薛玺成,等.岩体初始应力场的分析方法[J].岩土工程学报,1983,5(3):64-75.
    [73]林世胜,中尾健儿.反算法的进一步探讨[J].岩土工程学报,1987,9(3):38-46.
    [74]陈国荣,姜弘道.三维粘弹性参数反分析[J].河海大学学报,1996,24(6):25-28.
    [75]沈珠江.堆石坝渗流变形的反馈分析[J].水利学报,1998(6):1-6.
    [76]刘文宝,李术才.大坝位移反分析中测量误差对反演结果的影响[J].大坝观测与土工测试,1995,19(4):24-28.
    [77]吴中如.水工建筑物安全监控理论及其应用[M].南京:河海大学出版社,1990.
    [78]吴中如,陈继愚,范树平,等.用反演分析法推求连拱坝混凝土的力学参数和断裂韧度[J].大坝观测与土工测试,1986(1):3-11.
    [79]练继建,崔广涛,董淑芳.水工结构流激振动响应的反分析[J].水利水电技术,1998(8):51-54.
    [80]练继建,崔广涛,林继镛.高拱坝泄流振动的计算分析与验证[J].水利学报,1999,12:23-32.
    [81]崔广涛,彭新民.高拱坝泄流振动水弹性模型[J].水利学报,1996,4:1-9.
    [82]姚志远.大型工程结构模态识别的理论和方法研究[D].江苏:东南大学,2004.
    [83]崔广涛,练继建,彭新民,等.水流动力荷载与流固相互作用[M].北京:中国水利水电出版社,1999.
    [84]练继建,崔广涛,等.高坝泄流振动研究及应用[R] .天津:天津大学水利水电工程系,2007.
    [85]崔广涛.高拱坝泄流振动动态模拟及反馈分析[R].天津:天津大学水资源与港湾工程系,1996.
    [86]崔广涛,彭新民,苑希民.小湾拱坝泄洪振动仿真研究[J].水利学报,1996(4):1-9.
    [87]王春涛.高拱坝及其附属结构体系静动力分析与模拟[D].天津:天津大学,2004.
    [88]林继镛,胡志刚,等.普渡河倒虹吸管桥组合结构模态分析[J].水利水电技术,2002(4),8-11
    [89]崔广涛,安刚,李军.低水头大流量溢流坝系统水激振动[J].水利学报,1994(1):10-18.
    [90]彭新民,崔广涛,贾树宝.迷宫堰泄流能力及泄流振动水弹性模型研究[J].水力发电学报,2004,23(2):22-26.
    [91]崔广涛,安刚,等.低水头大流量溢流坝系统流激振动[J].水利学报,1994,1(1),10-18.
    [92]崔广涛,练继建.三峡水利枢纽厂坝隔(导)墙泄洪振动的水弹性模型实验研究[R].天津:天津大学水利水电工程系,1998.
    [93]苏克忠,郭永刚,常延改,等.大坝原型动力试验.北京:地震出版社,2006.
    [94]路观平,王雨苗.上桥节制闸闸墩原型动力试验与分析[J].水利水运工程学报,2004,2:34-38.
    [95]林俊高,许岳城,杨文元.新丰江大坝动力特性研究与安全评估[J].大坝与安全,1998,1:25-32.
    [96]张翠然,胡晓.佛子岭连拱坝动力试验及模态参数识别[J].水利水电技术,2002,33(12):58-62.
    [97]汪海平.三峡泄水建筑物动力特性研究分析[D].湖北:武汉大学,2005.
    [98]刘前隆,徐惠芬,钱胜国,等.丹江口溢流坝闸墩动力特性及抗震安全评价[J].湖北水力发电,1997,3:13-16.
    [99] Cantieni, R. Assessing a dam’s structural properties using forced vibration testing[C]. International conference on safety, risk and reliability– trends in engineering, Malta, Marz,21-23,2001, pp.351-352.
    [100]候立群.环境激励与噪声干扰下斜拉桥模态识别与损伤定位[D].黑龙江:哈尔滨工业大学,2004.
    [101] Alvaro Cunha, From Input-Output to Input-Only Modal Identification of Civil Engineering Structures [A]. Proc. Of 1st IOMAC April 26-27[C], Copenhagen, Denmark, 2005.
    [102] Francesco Marulo, Francesco Franco, Antonio Ficca, Alberto Pitera. Experiences in using Operational Modal Analysis [A]. Proc. Of 1st IOMAC April 26-27[C], Copenhagen, Denmark, 2005.
    [103] Nis Bj?rn M?ller, Svend Gade, Henrik Herlufsen. Stochastic Subspace Identification Technique in Operational Modal Analysis [A]. Proc. Of 1st IOMAC April 26-27[C], Copenhagen, Denmark, 2005.
    [104] P. Reynolds, P. Mohanty, A. Pavic. Use of Operational Modal Analysis on Empty and Occupied Stadia Structures [A]. Proc. Of 1st IOMAC April 26-27[C], Copenhagen, Denmark, 2005.
    [105] Guido de Roeck. Damage Identification of Civil Engineering Structures Based on Operational Modal Data [A]. Proc. Of 1st IOMAC April 26-27[C], Copenhagen, Denmark, 2005.
    [106] Lingmi Zhang, Rune Brincker, Palle Andersen. An Overview of Operational Modal Analysis: Major Development and Issues [A]. Proc. Of 1st IOMAC April 26-27[C], Copenhagen, Denmark, 2005.
    [107] Palle Andersen, Rune Brincker, Laurent Mevel. Automated modal parameterestimation for operational modal analysis [A]. Proc. Of 3rd IOMAC April[C], Aalborg, DK, 2007.
    [108] Fabien Campillo, Gilles Canales, Laurent Mevel, Particle based confidence intervals [A]. Proc. Of 3rd IOMAC April[C], Aalborg, DK, 2007.
    [109] Gilles Canales, Laurent Mevel. A quasi Newton based model validation procedure for improving parameter estimation [A]. Proc. Of 3rd IOMAC April[C], Aalborg, DK, 2007.
    [110] Crawford R. Ward H S. Determination of the natural periods of building [J]. Bulletin of the Seismological Society of America, 1964, 54(6):1743-1756.
    [111] Ward H S, Crawford R. Wind induced vibration and building modes [J]. Bulletin of the Seismological Society of America, 1964, 54(4):793-813.
    [112] Trifunac MD. Wind and microtremor induced vibrations of a 22-story steel frame building[C]. Earthquake Engineering Research Laboratory Report EERL 70-011, Calif. Institute of Tech. Pasadena, California, 1970.
    [113] Trifunac MD. Ambient vibration test of a 39 story steel frame building[C]. Earthquake Engineering Research Laboratory, Report EERL 70-02, Calif. Institute of Tech. Pasadena, California, 1970.
    [114] M.D. Trifunac, Comparison between ambient and forced vibration experiments [J]. Earthquake Engng Struct Dynam, 1972, 1:133-150.
    [115] Udwadia FE, Trifunac MD. Ambient vibration test of full-scale structure[A]. 5th World Conference on Earthquake Engineering, Rome, Italy, 1973.
    [116] F.E. Udwadia and M.D. Trifunac, Time and amplitude dependent response of structures [J]. Earthquake Engng Struct Dynam, 1974, 2:359-378.
    [117] Foutch DA, Luco JE, Trifunac MD, Udwadia FE. Full scale, three-dimensional tests of structural deformation during forced excitation of a nine-story reinforced concrete building [A]. Proceedings, US National Conference on Earthquake Engineering, Ann Arbor, Michigan, 1975: 206-215.
    [118] J.E. Luco, H.L. Wong and M.D. Trifunac, Contact stresses and ground motion generated by soil–structure interaction [J]. Earthquake Engng Struct Dynam, 1977, 5:67–79.
    [119] H.L. Wong, M.D. Trifunac and J.E. Luco, A comparison of soil structure interaction calculations with results of full-scale forced vibration tests [J]. Soil Dynam Earthquake Engng, 1988, 7:22-31.
    [120]李中付,华宏星.用时域峰值法计算频率和阻尼[J].振动与冲击,2001,20(3):5-6,31.
    [121] Kevin Womack and Jeff Hodson. System identification of the Z24 SWISS Bridge[A]. Proc. Of 19th IMAC [C], Florida, USA, 2001:842-845.
    [122] Hermans L. and Vander Suweraer H. Modal Testing and Analysis of Structures under Operational Conditions: Industrial Applications [J]. Mechanical Systems and signal Processing, 1999,13(2):193-216.
    [123] P. Andersen. Comparison of system identification methods using ambient bridge test data [A]. Proc. Of 17th IMAC [C], Kissimmee, FL, USA, 1999, 1035-1041.
    [124] Wei-xin Ren and I.E.Harik, Modal analysis of the Cumberland river bridge on I-24 highway in West Kentucky [A]. Proc. Of 19th IMAC [C], Kissimmee Florida, USA, 2001, 21-27.
    [125] Guid De Roeck. Benchmark Study on System Identification through Ambient Vibration Measurements [A]. Proc. Of 18th IMAC[C]. San Antonio, Tx, USA, 2000, 1106-1112.
    [126]刘雨青.桥梁结构模态参数识别与应用研究[D].湖北:武汉理工大学,2005.
    [127] C. Y. Shih, Y. G. Tsuei, R. J. Sllematng. Complex mode indication function and its application to spatial domain parameter estimation [J]. Mechanical Systems and Signal Processing, 1988, 4(2):367-337.
    [128]樊可清,倪一清,高赞明.基于频域系统辨识和支持向量基的桥梁状态监测方法[J].工程力学,2004,21(5):25-30.
    [129]王兆辉,樊可清.用频域法识别桥梁的模态参数[J].五邑大学学报(自然科学版),2005,19(3):24-28.
    [130]王兆辉,樊可清,李霆.系统辨识在桥梁状态监测中的应用[J].中南公路工程,2006,31(3):159-163.
    [131] Brincker R, Zhang L M, Anderson P. Modal identification from ambient response using frequency domain decomposition [A]. Proc. Of 18th IMAC[C], USA, Society for Experiental Mechanics,2000.
    [132] R.Brincker, Linmi Zhang, Palle Andersen. Modal identification of output-only system using frequency domain decomposition [J]. Smart Mater. Struct., 2001, 10:441-445.
    [133] R. Brincker, P. Andersen,N. Moller. An Indicator for Separation Of Structure and Harmonic Modes In Output-Only Modal Testing [A]. Proc. Of 18th IMAC[C], San Antonio, Texas, 2000, 1649-1645.
    [134] N-J. Jacobsen,P. Andersen, R.Brincker. Eliminating the Influence of Harmonic Components in Operational Modal Analysis [A]. Proc. Of 25th IMAC[C], Orlando, Florida, 2007.
    [135] Andersen, P., R. Brincker, B. Peeters, G. et,. Comparison of system Identification Methods Using Ambient Bridge Test Data [A]. Proc, Of 17th IMAC[C], Kissimee, Florida,1999.
    [136] Brincker, R, P. Andersen. Ambient Response Analysis of the Heritage Court Tower Building Structure [A]. Proc, Of 18th IMAC[C], San Antonio, Texas,2000.
    [137] Brincker, R., J. Frandsen, P. Andersen. Ambient Response Anslysis of the Great Belt Bridge [A]. Proc, Of 18th IMAC[C], San Antonio, Texas,2000.
    [138] Brincker, R., P. Andersen, N.Moller. Output-Only Modal Testing of a Car Body Subject to Engine Excitation [A]. Proc, Of 18th IMAC[C], San Antonio, Texas,2000.
    [139] Moller, N., R. Brincker, P. Andersen. Modal Extraction on a Diesel Engine in Operation [A]. Proc, Of 18th IMAC[C], San Antonio, Texas,2000.
    [140] Niels-J?rgen Jacobsen, Palle Andersen, Rune Brincker. Using Enhanced Frequency Domain Decomposition as a Robust Technique to Harmonic Excitation in Operational Modal Analysis [A]. Proc. Of ISMA[C], International Conference on Noise & Vibration Engineering, Lueven, Belgien, 2006.
    [141]马维金,熊诗波.自动化仓库巷道堆垛机的振动测试与工作模态分析[J].中国机械工程,2004,15(4):287-290.
    [142]马维金,熊诗波.基于LSCE算法和FDD算法的振动筛动态特性研究[J].振动、测试与诊断,2003,23(3):195-198,230.
    [143]王彤,张令弥.运行模态分析的频域空间域分解法及其应用[J].航空学报,2006,27(1):62-66.
    [144] Linmi Zhang, Tong Wang, Yukio Tamura. A Frequency-Spatial Decomposition (FSDD) Technique for Operational Modal analysis [A]. Proc. Of IOMAC[C], April 26-27, Copenhagen, Denmarm, 2005.
    [145]申凡,郑敏,陈怀海,鲍明.采用频域多参考点模态识别法进行工作状态下的模态识别[J].航空学报,2002,23(4):294-297.
    [146] Akaike, H. Power Specrum Estimation through Autoregressive Model Fitting [J]. Annals fo the Institute of Statistical Mathematics,1969, 21:407-419.
    [147] Li C. S, Ko W. J. & Lin H. T. Vector Autoregressive Modal Analysis with Application to Ship Structures [J]. Journal of Sound and Vibration, 1993, 167(1):1-15.
    [148]夏禾,陈英俊. AR模型在桥梁模态参数识别中的应用[A].全国第六届振动理论应用会议论文集,1991,345-352.
    [149]常坚刚,路鑫森.振动系统参数识别的ARMA模型与Ibrahim Randec模型的关系[J].振动工程学报,1988,1(11):23-30.
    [150]赵永辉,邹经湘.利用ARMAX模型识别结构模态参数[J].振动与冲击,2000,19(1):34-36.
    [151]赵永辉,于开平,邹经湘.利用ARV模型识别水轮机轴系模态参数[J].机械强度,2000,22(3):170-173.
    [152]张辉东.水电站厂房结构的非线性和耦联振动分析与模态参数识别[D].天津:天津大学,2006.
    [153] Alessadro Fasana. Z24 bridge dynamic data analysis by time domain methods [A]. Proc. Of IMAC19[C], Kissimmee, Florida, USA, 2001, 852-856.
    [154] L,Xu. Time-frequency analysis of a suspension bridge based on GPS [J]. Journal of Sound and Vibration, 2002, 254(1):105-116.
    [155] P. Andersen, R. Brincker, et al. Theory of Covariance Equivalent ARMAV Models of Civil Engineering Structures [A]. Proc. of IMAC[C], Dearborn, MI, 1996, 518-524.
    [156] P. Andersen, R. Brincker, et al. On the Uncertainty of Identification of Civil Engineering Structures Using ARMA Models [A]. Proc. Of 13th IMAC[C], 1995, 1115-1121.
    [157] Kirkegaard, P. H., Andersen, P., Brincker, R. Identification of the Skirt Piled Gullfaks C Gravity Platform Using ARMAV Models [A]. Proc. Of 14th IMAC[C], 1996, 1204-1211.
    [158] S.D. Fassois. MIMO LMS-ARMAX IDENTIFICATION OF VIBRATING STRUCTURES-PARTⅠ: THE METHOD [J]. Mechnaical System and Signal Processing, 2001, 15(4):723-735.
    [159] A. Florakis, S.D.Fassois. MIMO LMS-ARMAX IDENTIFICATION OF VIBRATING STRUCTURES-PARTⅡ: A CRITICAL ASSESSMENT [J]. Mechnaical System and Signal Processing, 2001, 15(4):737-758.
    [160]林循泓.振动模态参数识别及其应用[M].南京:东南大学出版社,1990.
    [161]曹树谦,张文德,萧龙翔.振动结构模分析-理论、实验与应用[M].天津:天津大学出版社,2001.
    [162]郑敏,申凡,陈同纲.采用相关复指数法进行工作模态参数识别[J].南京理工大学学报,2002,26(2):113-116.
    [163]郑敏,申凡,陈同纲.采用相关复指数法进行未知激励下的模态识别[C].2000年中国博士后学术大会论文集.
    [164]刘征宇,陈心昭.关于最小二乘复指数法的频域:时域模态参数识别技术[J].合肥工业大学学报:自然科学版,1989,12(3):10-16.
    [165] P. Mohanty, D. J.Rixen. Operational modal analysis in the presence of harmonic excitation [J]. Journal of Sound and Vibration, 2004,270:93-109.
    [166] Ibrahim, S,R.&Milkulcik, E.C. The Experimental Determination of Vibration Test Parameters From Time Responses [J]. The Shock and Vibration Bulletin, 1976, 46(5):187-196.
    [167] Ibrahim,S.R, Mikulcik E.C Amethod for the direct identification of vibration parameters from the free response [J]. The Shock and Vibration Bulletin, 1977, Bull.47, Part4:183-198.
    [168] Ibrahim,S.R. Randon decrement technique for modal identification of structures [J]. AIAA J. of Spacecraft and Rockets,1977,14(11):696-700.
    [169] Ibrahim,S.R.Modal confidence factor in vibration testing [J]. AIAA J. of Spacecraft and Rockets,1978,15(5):313-316.
    [170] P. Mohanty, D. J.Rixen. A modified Ibrahim time domain algorithm for operational modal analysis including harmonic excitation [J]. Journal of Sound and Vibration, 2004,275:375-390.
    [171]陆晓军,梁杰. 492Q发动机油底壳实验振动模态分析[J].中国公路学报,2001,14(1):115-118.
    [172] Juang J N, Pappa R. An eignsystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn.,1985,8(5):620~627.
    [173] Juang J N, H. Suzuki. An Eigensystem Realization Algorithm in Frequency Domain for Modal Parameter Identification [J]. Transactions of the ASME, 1988, 110(1):24-29.
    [174]刘福强,张令弥.一种改进的特征系统实现算法及在智能结构中的应用[J].振动工程学报,1999,12(3):316-322.
    [175]林贵斌,陆秋海,郭铁能.特征系统实现算法的小波去噪方法研究[J].工程力学,2004,21(6):91-96.
    [176]李蕾红,陆秋海,任革学.特征系统实现算法的识别特性研究及算法的推广[J].工程力学,2002,19(1):109-114.
    [177]王卫东,张世基,诸德超.时域模态参数识别的直接特征系统实现算法[J].力学学报,1993,25(5):575-581.
    [178]王丽炜,夏江宁,宋汉文.桥梁颤振气动导数识别的ERA算法及仿真实现[J].振动工程学报,2004,17(增刊):709-712.
    [179]秦仙蓉,王彤,张令弥.模态参数识别的特征系统实现算法:研究与比较[J].航空学报,2001,22(4):340-342.
    [180]杨和振,李华军,黄维平.环境激励下海洋平台结构的模态参数识别[A].第八届全国振动理论及应用学术会议论文集,上海,2003.
    [181]杨和振,李华军,王国兴.海洋平台结构模态参数识别的仿真研究[J].海洋工程,2003,21(4):75-80.
    [182]郭中阳,胡子正.参数辨识的特征系统实现算法(ERA)及实践[J].振动工程学报,1992,5(4):326-334.
    [183]陆秋海,周舟,李德葆,郭铁能.结构应变模态辨识的特征系统实现方法[J].机械强度,2004,26(1):1-5.
    [184] F.S.V. Bazan. Eigensystem realization algorithm(ERA): reformulation and system pole perturbation analysis [J]. Journal of Sound and Vibration, 2004, 274:433-444.
    [185] P. Mohanty., D.J. Rixen. Modified ERA method for operational modal analysis in the presence of harmonic excitations [J]. Mechanical Systems and Signal Processing, 2006, 20:114-130.
    [186] Q.Qin, H.B.Liand, L.Z.Qian. MODAL IDENTIFICATION OF TSING MA BRIDGE BY USING IMPROVED EIGENSYSTEM REALIZATION ALGORITHM [J]. Journal of Sound and Vibration, 2001, 247(2): 325-341.
    [187] Peeters, B.De Roeck G. Stochastic Subspace Techniques Applied to Parameter Identification of Civil Engineering Structures [A]. Proceeding of New Advances in Modal Yunthesis of Large Structures: Nonlinear, Damped and Nondeterministic Cases, Lyon, France, September,1995, 151-162.
    [188] Bart Peeters, Guido De Roeck. Reference-based stochastic subspace identification for output-only modal analysis [J]. Mechanical System and Signal Processing, 1999, 13(6):855-878.
    [189] Huang C F, Ko W J. Identification of modal parameters from measured output data using vector backward autoregressive mode [J]. Journal of Sound and Vibration, 2002, 256(2):249-270.
    [190]史东峰,郑敏,申凡.工程结构工作模态的子空间辨识方法[J].振动工程学报,2000,13(3):406-412.
    [190] Joseph, Lardies. A Stochastic Realization Algorithm with Application to Modal Parameter Estimation [J]. Mechanical Systems and Signal Processing, 2001,15(2):275-285.
    [192]姚志远,汪凤泉,刘艳.工程结构模态的连续型随机子空间分解识别方法[J].东南大学学报(自然科学版),2004,34(3):382-385.
    [193]樊可清,倪一清,高赞明.改进随机子空间系统辨识方法及其在桥梁状态监测中的应用[J].中国公路学报,2004,17(4):70-73.
    [194]常军,张启伟,孙利民.基于随机子空间结合稳定图的拱桥模态参数识别方法[J].建筑科学与工程学报,2007,24(1):21-25.
    [195]常军,张启伟,孙利民.随机子空间方法在桥塔模态参数识别中的应用[J].地震工程与工程振动,2006,26(5):183-187.
    [196] A.S.Abeder,Investigations of the total pulsating hydrodynamic load acting on bottom outlet sliding gates and its scale modeling [C].IAHR 8th Congress,1959.
    [197]赵耀南.重力相似水力模型中紊流微结构的相似率[J].水利学报,1988,8:44-48.
    [198]梁在潮.脉动壁压模型律及其它(续) [J].泄水工程与高速水流,1993,1.
    [199]赵士俊,李桂芬,周胜.水流脉动压力模型律的研究[J].水利学报,1959,2.
    [200]董曾南.坝身双层泄水孔水流脉动压力及其模型律[R].清华大学科技报告,清华大学学报,1979.
    [201]陈鹦,孟继光.厂房顶溢流脉动的相干结构与相似律的研究[J].水利水运科学研究,1984(1):70-76.
    [202]王怀至.关于水工模型试验中近壁层流动雷诺应力缩尺影响的估计[J].水利学报,1981(1):49-54.
    [203]倪汉根.水流脉动压力的相似律[J].大连工学院学报,1982(1):107-112.
    [204]练继建,王继敏,辜晋德.水跃区水流脉动压力频谱相似律研究[J].科学通报,2007,52(15):1832-1839.
    [205]刘昉.水流脉动壁压特性及其相似律研究[D].天津:天津大学,2007.
    [206]伯野无彦(日) .土木工程振动手册[M].北京:中国铁道出版社,1992.
    [207]车宏亚.钢筋混凝土结构原理[M].天津:天津大学出版社, 1990.
    [208]练继建,崔广涛.导墙结构的流激振动研究[J].水利学报,1998(11):33~37.
    [209]章继光.我国闸门振动研究情况综述[J].水力发电,1985(1):36~42.
    [210] Ishii N,Nauduscher E. A design criterion for dynamic stability of Tainter gates [J]. Journal of Fluids and Structures, 1992(6):67~84.
    [211]严根华,阎诗武.水工弧形闸门振动分析及动力安全设计技术研究[J].金属结构,1998(1):21~33.
    [212]李火坤,练继建.偏心荷载作用下弧形闸门支臂的动力稳定性研究[J].南昌大学学报(工科版),2006,28(1):72~78.
    [213]李火坤.弧形闸门流激振动特性及其结构优化研究[D].天津:天津大学,2004.
    [214]练继建.嘉陵江新政航电枢纽工程泄洪弧形闸门水力学及流激振动模型试验研究报告[R].天津:天津大学水利水电工程系,2003.
    [215]练继建.水利枢纽厂坝隔(导)墙流激振动与结构优化研究[R].天津:天津大学水利水电工程系,2005.
    [216]孙小鹏.脉动压力的随机数学模拟[J].水利学报,1991,5:52-56.
    [217]孙小鹏,薛盘珍,吕家才.泄流压力脉动及其概化设计[J].水动力学研究与进展,1997,12(1):102-112.
    [218]马斌.高拱坝及反拱水垫塘结构泄洪安全分析与模拟[D] .天津:天津大学,2006.
    [219]练继建,马斌,李福田.高坝流激振动响应的反分析方法[J].水利学报,2007,38(5):575~581.
    [220]练继建.向家坝水电站消力池底板和导(隔)墙结构水弹性模型试验研究[R].天津:天津大学水利水电工程系,2003.
    [221]张声鸣,陈建.导墙动水压力特性研究[J].长江科学院院报,1996,13(1):14-20.
    [222]张声鸣.消力池导墙脉动压力特性的研究[J].长江科学院院报,1995,12(1):11-18.
    [223]李火坤,练继建.水工弧形闸门流激振动特性物模-数摸联合预测与安全分析[J].水力发电学报,2007,26(3):69~76.
    [224]练继建.黄河积石峡水电站工程中孔泄洪洞进口水力学及闸门振动试验研究[R].天津:天津大学水利水电工程系,2006.
    [225]练继建.内蒙古兴安盟乌兰哈达水利枢纽工程液压翻板启闭力试验研究[R].天津:天津大学水利水电工程系,1996.
    [226]傅志方.振动模态分析与参数辨识[M].北京:机械工业出版社,1990.
    [227]程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1998.
    [228]刘贵忠,邸双亮.小波分析及其应用[M].西安:西安电子科技大学出版社,1995.
    [229]崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995
    [230]张国华,张文娟,薛鹏翔.小波分析与应用基础[M].西安:西北工业大学出版社,2006.
    [231]陈果.一种转子故障信号的小波降噪新方法[J].振动工程学报,2007,20(3):287-290.
    [232]林椹尠,宋国乡,薛文.图像的几种小波去噪方法的比较与改进[J].西安电子科技大学学报,2004,31(4):626-629.
    [233]王济,胡晓. MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [234]李彩霞.数字滤波器的设计技术[D].黑龙江:哈尔滨工程大学,2007.
    [235]刘清坤.超声无损检测信号消噪及图像评估新算法的研究[D].上海:上海交通大学,2006.
    [236]范宇.重构吸引子奇异值分析与时频域分形在往复机振动分析中的应用研究[D].辽宁:大连理工大学,2006.
    [237]王安丽,史志富,张安.基于熵的空中目标识别模型及应用[J].火力与指挥控制,2005,30(2):110~112.
    [238]张贤达.现代信号处理方法[M].北京:清华大学出版社,1995.
    [239] Wen-Xian,Yang, Peter W.Tse. Development of an advanced noise reduction method for vibration analysis based on singular value decomposition [J]. NDT & E International,2003,36:419~432.
    [240]杨文献,任兴民,姜节胜.基于奇异熵的信号降噪技术研究[J].西北工业大学学报,2001,19(3):368~371.
    [241]王秀杰.基于小波消噪的水文系统研究[D].天津:天津大学,2006.
    [242] Juang J N. Applied System Identification [M]. Englewood Cliffs: Prentice-Hall Inc, 1994.
    [243]王树青.海洋平台结构的系统辨识与振动控制技术研究[D].山东:中国海洋大学,2003.
    [244]陈奎孚,焦群英.半功率点法估计阻尼比的误差分析[J].机械强度,2002,24(4): 510-514.
    [245]练继建.二滩拱坝水垫塘泄洪消能安全实时监控系统研究[R].天津:天津大学水利水电工程系,2005.
    [246]练继建.黄河李家峡水电站双排机组真机试验研究报告[R].天津:天津大学水利水电工程系,2004.
    [247]练继建,田会静,秦亮等.停机过程中的水电站厂房支承结构动力特性识别方法[J].中国工程科学,2006,8(4):72-75.
    [248]练继建,秦亮,王日宣等.双排机水电站厂房结构动力特性研究[J].水力发电学报,2004,23(2):55-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700