用户名: 密码: 验证码:
胶州湾地区海水入侵现状、机理及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶州湾地区存在的各种地质灾害中,以海水入侵灾害规模最大、影响最广、灾害损失最严重,制约着青岛市即将实施的环胶州湾发展战略和经济、社会的可持续发展。论文针对海水入侵这一地质灾害问题,进行了1:2.5万专门现状调查,取得了最新海水入侵数据。并评估了海水入侵的灾害损失,采用数学方法评价和预测了海水入侵的危险性。
     通过分析与海水入侵相关的地层结构、降雨量和地下水位的时空动态变化、水中离子含量变化和化学特征演化、人类开发活动等影响因素,并着重分析海水入侵的Cl-浓度变化和海水入侵体特征,研究得出海水入侵机理及入侵方式、类型等。海水入侵先从深部开始,在向前推进的过程中由下往上发展。胶州湾地区海水入侵类型主要是开采入侵型。
     针对胶州湾地区海水入侵问题,以白沙河下游为例,在含水介质条件、水流动条件及边界条件的基础上,分析水位、水质动态数据,概化含水系统边界、内部结构,建立水文地质概念模型,结合抽水、弥散试验确定水文地质参数,应用FEFLOW模拟系统进行了数值模拟;最后得出胶州湾地区海水入侵预测等值线图。并在此基础上,提出了防治海水入侵危害的优化开发地下水、回灌补源、修建截渗墙、河道管理、合理开发海岸资源、生态改良、动态监测等措施,以及水资源的合理利用、水污染防治、节约用水等建议。
Within all variety of geological hazards which exist in Kiaochow Bay region, seawater intrusion is of the largest scale, the most influential and the most serious hazard losses. According to the study of the seawater intrusion in Kiaochow Bay region,there will be practical significance in the coming implementation of Kiaochow Bay’s development strategy , economy and social sustainable development in Qingdao city, it also provides geological evidences for the urban planning, construction, management and hazard prevention and mitigation, Profiting and avoiding loss and so on, it also conducive to the rational development and protection of regional water resources, geological resources.The achievements ,which include geological survey data, mechanism of seawater intrusion and evolution rules and so on, have academic reference meaning for this region and other ralated areas.
     Since early March 2008 to the end of December 2008 ,according to the study of the status of seawater intrusion in Kiaochow Bay region in the scale 1:25000 ,we get the newest seawater intrusion data which corresponds to a hydrological year’s. With the content of Cl- 200mg/L、250mg/L、300mg/L in groundwater as main index we divide Kiaochow Bay region into four parts:non-seawater intrusion region,the slight one,the more serious one and the severe one.And we can conclude that the most serious seawater intrusion region is the river estuary of Dagu river,Baisha river and Yang river and Xin’an region of Huang island, it will be gradually less serious in backland andtwo banks of rivers. According to the disaster loss assessment of the seawater intrusion region whose Cl- content is more than 250mg/L in groundwater, we estimate that the direct economic loss is about 193050 thousand yuan.
     Combined with expert clustering and fuzzy mathematics comprehensive evaluation method ,we make comprehensive evaluation to the risk of the seawater intrusion which happens in the Kiaochow Bay coastal region , which the four evaluation factors are Cl-,sodium adsorption ratio(SAR),SO42+ and Mg2+,confirm their weight values separately, classify the risk of seawater intrusion with emphasis on risk, medium risk, light risk and risk-free.Based on this,we make use of GM(1,1)grey model theory to predict the risk of seawater intrusion with average rate is 8.7m/a for many years, which conclude that the seawater intrusion area in 2015 in every region will be increased by 9.6km2,5.7km2,3.6km2,2.0km2 separately compared to 2008, the seawater intrusion boundaryies continue to be the trend of moving to freshwater area.
     By analyzing the space-time dynamic change, ion content change of stratum structure ,rainfall and groundwater level ,chemical characteristics evolution and human development activities and other factors, and emphasizing on the analysis of the Cl-content change in seawater intrusion and and its physical characteristics ,we conclude that the mechanism,mode and style of seawater intrusion.The well permeable gravel layer provides access for seawater intrusion;Under natural conditions, groundwater discharge to the basin , both sides of the transition zone between seawater and groundwater maintain a dynamic balance, both sides of the state of water are in a gradual change;The economic development, unreasonable intercept water storage, drought and dry, water quality deterioration and so on forced the human exploitation of groundwater has intensified, leading to the emergence and development of groundwater cone of depression and damaged natural water equilibrium and the water and salt movement,thus groundwater movement of funnel around to the center of it appear , and cause seawater to move to the inland and reverse osmosis will happen along the permeable layer, anti-recharge groundwater, resulting in seawater intrusion.Start with deep seawater intrusion began to move forward in the process of development from bottom to top. The main type of seawater intrusion of Kiaochow Bay region is exploitation and intrusion.
     Aimed at the seawater intrusion problems in Kiaochow Bay region ,taking Baisha downstream as the example,based on the the water medium conditions ,water flow conditions and boundary conditions, we analyze water level, water quality dynamic data, generalized aquifer system boundaries, internal structure, then establish the concept models of the hydrogeology, combined with the pumping and dispersion testing Nvgu to determine hydrogeological parameters, the application of FEFLOW simulation system has been simulated.To June 1, 2003 -2008 year May 31 as the basis for long-term observational data to identify a better validation curve fitting.Select from November 2008 to October 2013 in a total of 5 years for seawater intrusion prediction, and generates a Cl-ion content contours.We can see that seawater intrusion in the dry years, heavier, Cl-enrichment was obvious.Baisha downstream Zhao village under the action of seawater intrusion , Cl - content expand the direction to the inland ;Due to much agriculture and a large quantity of groundwater extraction in Ink river in the northeast, Cl– content is much higher.In accordance with the method above, numerical simulation of other seawater intrusion areas are made, and combine Cl-ion content equivalent line into MapGIS to get the seawater intrusion prediction contour map of Kiaochow Bay region.
     For prevention and control seawater intrusion hazard, in addition to the optimization of groundwater cone of depression of groundwater development and management of projects, there are also the construction of cutoff wall, river management, rational development of coastal resources, ecological improvement and other measures, as well as the rational use of water resources, water pollution control, to saving water and so on. Take White Shahe downstream for example,we design three mining programs, 151 days of continuous mining; program one is that mining resource is 50000m3/d, program two is that when mining resource is 42000m3/d the water level drawdown is too large; program three is that when mining resource is 30000m3/d to meet the water level drawdown of no more than allowing the requirements of the funnel center's water level drop as deep as 4.1m,> 4m drawdown area of 0.188km2,> 3m drawdown area of 5.75km2,> 2m the area of water level drawdown To 19.50km2.
     The designed Baisha downstream recharge project, the average recharge volume 52540 m3/d in high-flow period, the total annual recharge is 4.83368 million m3; two consecutive dry (annual rainfall 420mm) 1 abundant year (annual rainfall 880mm ) water levels pridiction shows, in addition to exploitation of the funnel near the center of a 1 ~ 2m deep down, the water level has basically returned to the original level, indicating recharge is feasible. In fianl,we propose the comprehensive management programs of Kiaochow Bay seawater intrusion , including the construction of cutoff wall, recharge, soil improvement and other targeted measures, and the establishment of Kiaochow Bay region groundwater monitoring system.
引文
[1]蔡祖煌,马凤山.海水人侵的基本理论及其在人侵发展预测中的应用[J].中国地质灾害与防治学报, 1996, 7(3): 1-9.
    [2]曹伯勋.地貌学及第四纪地质学[M].武汉:中国地质大学出版社, 1995: 1-4.
    [3]曹建荣.山东省菜州湾地区海水入侵成因分析[J].中山大学研究生学刊(自然科学、医学版), 2002, 23(l): 104-111.
    [4]陈秋锦.地下水模拟计算机软件系统——FEFLOW[J].中国水利, 2003, 9B: 25-26.
    [5]成建梅,黄丹红,胡进武.海水入侵模拟理论与方法研究进展[J].水资源保护, 2004, (2): 3-8.
    [6]丁玲,李碧英,张树深.海岸带海水入侵的研究进展[J].海洋通报, 2004, 23(2): 82-87.
    [7]董志高,黄勇.地下水动态预测模型综述[J].西部探矿工程, 2002(4): 36-38
    [8]杜国云.基岩海岸海水入侵特征及对策[J].海洋科学, 2002, 26(5): 55-59.
    [9]杜中,李占斌,李鹏,等.海水入侵区地下水氯值统计及其规律运用[J].水资源与水工程学报, 2008, 19(4): 83-85.
    [10]段永侯,肖国强.河北平原地下水资源与可持续利用[J].水文地质工程地质, 2003, 30(1): 2-7.
    [11]冯康.基于变分原理的差分格式[J].应用数学与计算数学, 1965, 2(4): 238-262.
    [12]高洪阁,黄伟,武加峰.海水入侵水质变化模拟实验研究[J].中国地质灾害与防治学报, 2006, 17(1): 83-85.
    [13]高卫东,孟磊,张海荣,等. FEFLOW软件在地下水动态预测中的应用[J].上海地质, 2008, 4: 10-13.
    [14]高学平,杨建华,涂向阳,等.水力帷幕防治海水入侵的数值模拟研究[J].环境污染与防治, 2006, 28(11): 872-875.
    [15]韩美.莱州湾地区海水入侵与地貌的关系[J].海洋与湖沼, 1996, 27(4): 414-420.
    [16]郝代海.白沙河下游海水入侵成因浅析[J].中国农村水利水电, 2000, (7): 46-47.
    [17]何彬. Processing Modflow软件在地下水污染防治中的应用[J].水资源保护, 1999, 57(3): 16-18.
    [18]贺国平,邵景力,崔亚丽,等. FEFLOW在地下水流模拟方面的应用[J]. 2003, 30(4): 356-361.
    [19]贺学海,邵景力.包头市水资源-环境-经济综合管理模型的研究[J].河海大学学报, 1998, 26(5): 57-61.
    [20]黄磊,郭占荣.中国沿海地区海水入侵机理及防治措施研究[J].中国地质灾害与防治学报, 2008, l9(2): 118-123.
    [21]姜蓓蕾,吴吉春,杨仪,等.常州市滆湖典型地块浅层地下水数值腄鈁J].水文地质工程地质, 2004, 31(6): 29-32.
    [22]姜嘉礼.葫芦岛市滨海地区海水入侵研究[J].水文, 2002, 22(2): 27-31.
    [23]姜文明,张林泉.胶东半岛西部沿海地区海水入侵机理与对策研究[J].自然灾害学报, 1992, 1(4): 25-32.
    [24]李道真,李呈义,刘培民,等.滨海平原地下建库供水开源防止海水入侵技术研究[J].水利水电技术, 1997, 28(8): 15-17.
    [25]李国敏,陈崇希.海水入侵研究现状与展望[J].地学前缘, 1996, 3(1): 1-5.
    [26]李奎,易南概,姜谙男.基于FEFLOW海水入侵模型的等效海水边界研究[J].山西建筑, 2008, 34(1): 11-13.
    [27]李萍,李培英,徐兴永,等.人类活动对海岸带灾害环境的影响[J].海岸工程, 2004, 23(4): 45-49.
    [28]梁池生,周训,陈明佑,等.雷州半岛防海水入侵最优地下水开采方案探讨[J].现代地质, 2002, 16(4): 429-434.
    [29]廖小青,刘贯群,袁瑞强,等.黄河农场地区地下水入海量FEFLOW软件数值模拟[J].海洋科学进展, 2005, 23(4): 446-451.
    [30]林学钰,侯印伟.地下水水量水质模拟及管理程序集[M].长春:吉林科学技术出版社, 1988: 1-7.
    [31]刘长吉,娄俊庆.滨海地区海水入侵模式识别模型研究[J].人民黄河, 2009, 31(5): 67-69.
    [32]刘东生.开展“人类世”环境研究,做新时代地学的开拓者——纪念黄汲清先生的地学创新精神[J].第四纪研究, 2004, 24(4): 369-378.
    [33]刘嘉麒,吕厚远,袁宝印,等.人类生存与环境演变[J].第四纪研究, 1998, (1): 80-85.
    [34]刘建立,朱学愚,陈余道.山东淄博市地下水资源评价及其合理开发利用研究[J].高校地质学报, 1999, 5 (2): 211-220.
    [35]刘青勇,马承新,张保祥,等.地下水回灌补源模式研究与示范[J].水利水电技术, 2004, 35(2): 57-79.
    [36]刘青勇,张保祥,张欣,等.山东半岛地下水库建设与研究进展[J].地下水, 2007, 29(5): 33-36.
    [37]刘少玉.冲洪积扇含水层地下水可开采量数值模拟-以文峪河冲洪积扇为例[J].水文地质与工程地质, 1998, (1): 38-41.
    [38]卢继强,陈刚,胡成.滨海地区海水入侵的水化学和同位素证据——以沿海某市典型地段为例[J].勘察科学技术, 2004, (3): 22-26.
    [39]卢京,张钦.数值模拟在银川市地下水资源开采评价中的应用[J].河北师范大学学报(自然科学版), 2000, 24(4): 536-539.
    [40]卢文喜.地下水运动数值模拟过程中边界条件问题探讨[J].水利学报, 2003(3): 33-36.
    [41]罗文艺,靳孟贵,刘延锋,等.深圳南山区海水入侵综合研究[J].海洋地质动态, 2007, 23(9): 8-12.
    [42]马凤山,蔡祖煌,宋维华.海水入侵机理及其防治措施[J].中国地质灾害与防治学报, 1997, 8(4): 16-24.
    [43]马兴旺,李保国,吴春荣,等.民勤绿洲现状土地利用模式影响下地下水位时空变化的预测[J].水科学进展, 2003, 14(1): 85-90.
    [44]毛军,贾绍凤,张克斌. FEFLOW软件在地下水数值模拟中的应用——以柴达木盆地香日德绿洲为例[J].中国水土保持科学, 2007, 5(4): 44-48.
    [45]牟孝松,李宝珠,李吉林,等.青岛市海(咸)水人侵及其防治[J].海岸工程, 1993, 12(3): 43-47.
    [46]聂晶,赵全升,杨天行.海水入侵数学模型研究现状与发展趋势[J].鞍山师范学院学报. 2002, 4(3): 16-18.
    [47]潘国营.地下水数值模拟模型拟合效果的评价[J].焦作矿业学院学报, 1994, 13(2): 22-56.
    [48]任印国,柳华武,李明良,等.石家庄市东部平原FEFLOW在地下水流模拟与研究[J].水文, 2009, 29(5): 59-62.
    [49]盛学斌,戴昭华,杨明华.大渤海区海水入侵态势与防治构想[J].生态学报, 1996, 16(4): 418-426.
    [50]施雅风,孔昭宸.中国全新世大暖期气候与环境[M].北京:海洋出版社, 1992: 1-15.
    [51]苏乔,于洪军,徐兴永,等.莱州湾南岸海水入侵现状评价[J].海岸工程, 2009, 28(1): 9-14.
    [52]孙晋炜,王萍,黄大英,等. FEFLOW模型在区域水资源优化配置中的应用[J].北京水务, 2008, (5): 4-6.
    [53]孙楠思,姜世强,李宝珠.青岛市水资源现状及保护对策[J].海岸工程, 2003, 22(2): 109-114.
    [54]孙晓明.环渤海地区地下水资源可持续利用研究[D].中国地质大学(北京), 2007.
    [55]孙晓明,徐建国,杨齐青,等.环渤海地区海(咸)水入侵特征与防治对策[J].地质调查与研究, 2006, 29(3): 202-210.
    [56]王秉忱.地下水开发利用与管理[M].成都:电子科技大学出版社, 1995: 30-32.
    [57]王金生,王澎,刘文臣,等.划分地下水源地保护区的数值模拟方法[J].水文地质工程地质, 2004, (4): 83-86.
    [58]王开章,孔凡亮,王令文.山东省地下水资源开发与环境问题[M].郑州:黄河水利出版社, 2002: 36-41.
    [59]王潘平,李天科,王兵,等.菜州湾海水入侵原因分析与防治措施[J].山东农业大学学报(自然科学版), 2008, 40(1): 93-97.
    [60]王青,朱继平,史本恒.山东北部全新世的人地关系演变:以海岸变迁和海盐生产为例[J].第四纪研究, 2006, 26(4): 589-596.
    [61]王秋贤,任志远,孙跟年.莱州湾东南沿岸地区海水入侵灾害研究[J].海洋环境科学, 2002, 21(3): 10-13.
    [62]王涛,周旭东,李晶.大连地区海水入侵成因分析及防治对策研究[J].东北水利水电, 2008, 26(291): 59-42.
    [63]王宥智,陈雨孙.非稳定弥散对流方程的有限分析解[J].工程勘察, 1992, (2): 25-30.
    [64]王锡魁,王德.现代地貌学[M].长春:吉林大学出版社, 2009: 200-212、232-233.
    [65]魏国孝,王德军,王刚,等. GIS技术和FEFLOW在酒泉东盆地地下水系统数值模拟中的应用[J].兰州大学学报(自然科学版), 2007, 43(6): 1-6.
    [66]魏林宏,束龙仓,郝振纯.地下水流数值模拟的研究现状和发展趋势[J].重庆大学学报, 2000, 23(增刊): 50-52.
    [67]吴吉春,薛禹群.山西柳林泉域地下水流数值模拟[J].水文地质工程地质, 2001(2): 18-20.
    [68]吴剑峰,朱学愚.由Modflow浅谈地下水流数值模拟软件的发展趋势[J].工程勘察, 2002, (2): 12-15.
    [69]武强,董东林.水资源评价的可视化专业软件(Visual Modflow)与应用潜力[J].水文地质工程地质, 1999, (5): 21-23.
    [70]徐军祥,康凤新.山东省地下水资源可持续开发利用研究[M].北京:海洋出版社, 2001: 72-81.
    [71]徐艳杰,常利武,黄会平. FEFLOW在地下水数值模拟中的应用[J].华东水利水电学院学报, 2009, 30(2): 86-87.
    [72]薛禹群,吴吉春.地下水数值模拟在我国-回顾与展望[J].水文地质工程地质, 1997, 24(4): 21-24.
    [73]薛禹群,吴吉春.面临21世纪的中国地下水模拟问题[J].水文地质工程地质, 1999, 26(5): 1-3.
    [74]薛禹群,吴吉春,谢春红,等.莱州湾沿岸海水人侵与咸水人侵研究[J].科学通报, 1997, 42(22): 2360-2367.
    [75]薛禹群,谢春红,吴吉春.海水入侵研究[J].水文地质工程地质, 1992, 19(6): 29-33.
    [76]薛禹群,谢春红,吴吉春,等.海水入侵、咸淡水界面运移规律研究[M].南京:南京大学出版社, 1991: 43-48.
    [77]雅·贝尔.地下水水力学[M].北京:地质出版社, 1986: 290-332.
    [78]杨桂山.中国沿海海水人侵机制和变化规律的初步研究[J].自然灾害学报, 1993, 2(2): 75-82.
    [79]杨青春,卢文喜,马洪云,等. Visual Modflow在吉林省西部地下水数值模拟中的应用[J].水文地质工程地质, 2005, 32(3): 67-69.
    [80]姚春梅,颜景生,范庆祥.龙口市海水入侵灾害及防治对策[J].山东地质, 2000, 16(4): 45-49.
    [81]姚普,姜振泉,田梅青.烟台市海水入侵程度及影响因素探讨[J].江苏地质, 2006, 30(2): 120-125.
    [82]冶雪艳,杜新强,曹剑锋. FEFLOW在地下水流模拟方面的应用[J].黑龙江水专学报, 2008, 35(3): 92-95.
    [83]尹泽生,林文盘,杨小军.海水入侵的现状与问题[J].地理研究, 1991, 10(3): 78-85.
    [84]于学峰,周卫健.红原泥炭6000a以来元素异常及其可能反映甘青地区人类活动信息的初步研究[J].第四纪研究, 2006, 26(4): 597-603.
    [85]袁益让,梁栋.海水入侵及防治工程的后效预测[J].应用数学和力学, 2001, 22(11): 163-171.
    [86]张保祥,李福林.海水入侵的动态监测指标研究[J].水文地质工程地质, 1997, (1): 33-35.
    [87]张斌,杨文,祁敏,等.三维数值模型在三江平原地下水资源计算中的应用[J].黑龙江水专学报, 2004, 31(3): 21-22.
    [88]张宏仁.解地下水渗流问题的有限差分法[J].水文地质工程地质, 1980, (1): 55-59.
    [89]张宏仁,李俊亭.有限差分与有限单元法在渗流问题中的对比[J].水文地质工程地质, 1979, 2: 24-32.
    [90]张蕾,杨联安,李月臣,等.基于GIS的山东沿海地区海水入侵灾害评价[J].西北大学学报(自然科学版), 2003, 33(6): 733-736.
    [91]张奇.数值模型在地下水管理中的应用[J].水文地质工程地质, 2003, (6): 72-88.
    [92]张人权.地下水资源特性及其合理开发利用[J].水文地质工程地质, 2003, 30(6): 1-5.
    [93]张永波.水工环研究的现状与趋势[M].北京:地质出版社, 2001: 39-41.
    [94]张宗祜,沈照理,薛禹群,等.华北平原地下水环境演化[M].北京:地质出版社, 2000: 191.
    [95]张宗祜,张光辉,任福弘,等.区域地下水演化过程及其与相邻层圈的相互作用[M].北京:地质出版社, 2006: 155、211.
    [96]张祖陆.山东省莱州湾地区海水入侵灾害及其防治[J].环境保护, 1989, 2(1): 60-64.
    [97]赵建.海水入侵化学指标及浸染程度评价研究[J].地球科学, 1998, 18(1): 16-24.
    [98]赵天石,王卫东.地下水资源开发模式和降落漏斗问题[J].地质调查与研究, 2004, 27(3): 139-143.
    [99]周训,鞠秀敏,宁雪生,等.广西北海市海水入侵状况分析[J].地质灾害与环境保护, 1997,8(2): 9-15.
    [100]庄振业,刘冬雁,杨鸣,等.莱州湾沿海平原海水入侵灾害的发展进程[J].青岛海洋大学学报, 1999, 29(1): 141-147.
    [101] Arad A, Kafri U, Fleisher E. The Na’Aman springs, Northern Israel: Stalinization Mechanism of an irregular freshwater-seawater interface[J]. Journal of Hydrology. 1975, (25): 81-104.
    [102] Bear J, Dagan G. Some exact solution of interface problems by means of hodogram method[J]. J Geophy Res, 1964, (69): 1563-1572.
    [103] Cai Zuhuang, Chen Mengxiong, Ma Fengshan. A contribution to the theory of saline intrusion. Future Groundwater Resources at Risk. Publications of the Academy of Finland[M]. Painatuskeskus, 1994: 21-32.
    [104] Cheng J R, Strobl R O, Yeh G T. Modelling of 2D density-dependent flow and transport in the subsurface[J]. Journal of Hydrology Engineering, 1998, 3(4): 248-257.
    [105] Custodio E. Groundwater Problems in Coastal Areas[M]. Belgium:UNESCO, 1987.
    [106] Dagan G, Zeitoun D G. Seawater-freshwater interface in a sreatified aquifei of random permeability distribution[J]. Journal of Contaminant Hydrology, 1998, (3): 185-203.
    [107] Deng Julong. Significance of Difference information in grey theory[J]. The Journal of Grey System, 1999, 04(3): 256.
    [108] Diersch H J. Finite element modeling of recieculating density driven saltwater instrusion processes in groudwater[J]. Adv. Water Resources, 1988, 11(1): 25-43.
    [109] Diersch H J. Interactive, graphics-based finite element simulation of groundwater contamination processes[J]. Adv Engineering Software, 1992, (15): 1-13.
    [110] Diersch H J. Finite element modelling of recirculating density-driven saltwater intrusion processes in groundwater[J]. Advances in Water Resources, 1998, 11(1): 25-43.
    [111] Diersch H J, Kolditz O, Jesse J. Finite element analysis of geothermal circulation processes in hot dry rock fractures[J]. Zeitschr Angew Math Mech, 1989, 69(3): 139-153.
    [112] Diersch H J, Prochnow D and Thiele M. Finite element analysis of dispersion-affected saltwater upcoming below a pumping well[J]. Appl Math Model, 1984, (8): 305-312.
    [113] Dillehay T D. Climate and human migrations[J]. Science, 2002, 298: 764-765.
    [114] Freedman V, Ibaraki M. Effects of chemical reactions on density-dependent fluid flow: on the numerical formulation and the development of instabilities[J]. Adv. Water Resour, 2002, 25: 439-453
    [115] Frind E O. Seawater intrusion in contuniuous coastal aquifer-aquitard systems[J]. Adv. Water Resources. 1982a, (5): 89-96.
    [116] Frind E O. Simulation of long-time trasient density-dependent tranport in groundwater[J]. Adv. Water Resources.1982b, (5): 73-88.
    [117] Galeati G, Gambolati G, Neuman S P. Coupled and partially coulped Eulerian-Lagrangian model of freshwater-saltwater mixing[J]. Water Resources Research. 1992, 28(1): 149-165.
    [118] Glover R E. The pattern of fresh water flow in a coastal aquifer[J]. J Geophys Res. 1959, 64: 457-459.
    [119] Gupta A D, Yapa P N. Saltwater Encroachment in aquifer: A case study[J]. Water Resources Research, 1982, 18(3): 546-556.
    [120] Han Mei. Study on sea water intrusion into palaeochannels on south coastal plain of the Laizhou Bay by the Bohai Sea[J]. Acta Oceanologica Sinica, 2003, 22(1): 69-74.
    [121] Herzberg A. The water supply on parts of the North Sea coast[J]. Jour. Fur Gasbeleuchtung and Wasserversougung, Munchen. 1901: 815-819、842-844.
    [122] Huyakorn P S, Anderson P E, Mercer J Wetal. Saltwater intrusion in aquifers:development and testing of a three-dimensional finite element model[J]. Water Resources Research. 1987, 23(2): 293-312.
    [123] Javandel L and Withespoon P. Application of the finite element method to transient folw in porous media[J], Soc. Petrol. Eng. J., 1968, 8(3): 241-252.
    [124] Langevin C D, Oude Essink G H, Panday S et al. MODFLOW-based tools for simulation of variable-density groundwater flow[J]. Cheng AHD, Ouazar D (eds) Coastal aquifer management; monitoring, modeling and case studies. Lewis Publishers, 2004: 49-76.
    [125] Larabi A,Smedt F D.Numerical solution of 3-D groundwater flow involving free boundaries by a fixed finite element method[J].Journal of Hydrology,1997,201:161-182.
    [126] Lee C H, Cheng R T S. On seawater encroachment in coastal aquifers[J]. Water Resources Research. 1979, 10(5): 1039-1043.
    [127] Li Fulin, Ni Benzi, Zhang Baoxiang. Study on the monitoring indexes of seawater intrusion. Proceedings on Forecast and Prevention of Marine Disasters[M]. Beijing: China Ocean Press, 1998: 202-208.
    [128] Liu Jiaqi. Quaternary Geology and Past Environment Changes in China[M]. Scientia Geologica Sinica, Supplementary Issue (1). Beijing: Science Press, 1995: 1-6.
    [129] Mercer J W,Larson S P,Faust C R. Simulation of saltwater interface motion[J]. Groudwater, 1980, 18(4): 374-385.
    [130] Moor Y H, Stoessell R K, Easley D H. Fresh-water/sea-water relationship within a groundwater flow system,northeastern coast of the Yuncatan[J]. Peninsula.Ground water, 1992, 30(3):343-350.
    [131] Naji A, Cheng A H-D, Quazar D. BEM solution of stochastic seawater intrusion probblems[J]. Engineering Analysis with Boundary Elements, 1999, (23): 529-537.
    [132] Neuman S R, and Narasimhan T N, Mixed explicit-implicit iterative finite element scheme for diffusion-type problems: Theory[J]. Int. J. for Numerical Methoding Eng., 1977, 11(2): 309-323.
    [133] Nowroozi A A. Saltwater int rusion into the freshwater aquifer in the eastern shore of Virginia : a reconnaissance electrical resistivity survey[J]. Journal of Applied Geophysics,1999, 42: 1-22.
    [134] Prinder G F, Bredehoeft, J D. Application of the digital computer for aquifer evolution [J]. Water Resoures, 1968, 4(5): 1069-1093.
    [135] Prinder G F, Cooper H H. A numerical technique for calulating the transient position of the saltwater front[J]. Water Resources Reseatch, 1970, 6(4): 875-883.
    [136] Reilly Th E, Goodman A S. Quantitative analysis of saltwater-freshwater relationships in groundwater systems-a historical perspective[J]. J of Hydrology, 1985, (80): 125-160.
    [137] Sakr S A. Validity of a sharp-interface model in a confined coastal aquifer[J]. Hydrogeology Journal, 1999, (7): 155-160.
    [138] Sasikumar K, Mujumdar P P. Fuzzy optimization model for water quality management of a river system[J]. Journal of Water Resources Planning and Management, 1998, 14(2): 79-88.
    [139] Scheidleger A, Grath J, Lindinger H. Saltwater intrusion due to groundwater over exploitation—EEA inventory throughout Europe[C]. 18th Salt Water Intrusion Meeting, Cartagena, Spain, 2004: 125.
    [140] Segol G, Pinder G F. Transient simulation of saltwater intrusion in southeastern Florida[J]. Water Resources Research, 1976, 12(1): 65-70.
    [141] Shamir U, Dagan G. Motion of the seawater interface in coastal aquifers: A numerical solution[J]. Water Resources Research, 1971, (2): 251-269.
    [142] Stuyfzand P J, Maas K, Kappelh J et al. Pumping brackish groundwater to prepare drinking water and keep salinized wells fresh[C]. 18th Salt Water Intrusion Meeting, Cartagena, Spain, 2004: 127.
    [143] Volker R E, Zhang Q, Lockington D A. Numerical modelling of contaminant trasport in coastal aquifers[J]. Mathematics and Computer in Simulation, 2002, 59(3): 35-44.
    [144] Voss C I, Souza W R. Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transiton zone[J]. Water Resources Research. 1987, 26: 2097-2106.
    [145] Wu Wei, Yan Zhongmin. Evaluation of three dimensional numerical model for saline intrusionand purging in sewage outfalls[J]. Journal of Hydrodynamics (Ser. B), 2007, 19(1): 48-53.
    [146] Yin Y Y, Huang G H, Hipel K W. Fuzzy relation analysis for multicriteria water resources management [J]. Journal of Water Resources Planning and Management, 1999, 15(1): 41-47.
    [147] Zhu R X, Potts R, Xie F et al. New evidence on the earliest human presence at high northern latitudes in Northeast Asia[J]. Nature, 2004, 431: 559-562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700