用户名: 密码: 验证码:
中国汉族人群急性肺损伤/急性呼吸窘迫综合征的遗传易感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     TIRAP基因多态性与脓毒症致ALI/ARDS易感性关联研究
     [目的]TIRAP基因编码的衔接蛋白-Mal是Toll样受体(TLRs)信号传导通路的重要衔接蛋白,在信号传导通路中具有重要的作用。有研究发现TLRs信号传导通路介导的炎症介质过量生成参与了ALI/ARDS的发病。最近研究发现TIRAP基因变异与多种炎症相关性疾病的易感性相关。本研究探讨TIRAP基因变异是否与中国汉族人群脓毒症致ALI/ARDS的发病相关。
     [方法]临床上收集278例脓毒症致ALI/ARDS患者、288例单独脓毒症患者和298例健康对照个体,利用中国汉族人群Hapmap数据库选择TIRAP基因的3个tag SNPs (rs595209, rs3802813和rs8177375)和2个文献报道的与炎症相关性疾病易感性相关的SNPs (rs8177374和rs7932766)进行研究;运用PCR直接测序的方法进行SNPs分型,基因型频率和等位基因频率在各组之间的比较采用χ2检验,运用Bonferroni方法进行校正和Logistic回归分析去除混杂因素的影响。
     [结果]研究发现TIRAP基因的5个SNPs等位基因频率分布在研究样本中均符合Hardy-Weinberg平衡,5个SNPs之间的连锁不平衡程度较弱。位于基因3’端区域的rs8177375和内含子区域的rs595209与中国汉族人群ALI/ARDS的易感性有关。ALI/ARDS患者rs8177375等位基因G的频率明显高于单独脓毒症组(p=0.00079)和正常对照组(p=0.0001),基因型频率相比也具有显著性的统计学差异,携带等位基因G的个体更易患ALI/ARDS; ALI/ARDS患者rs595209A的等位基因频率也显著高于单独脓毒症组(p=0.0041)和正常对照组(p=0.0027),携带等位基因A的个体更易患ALI/ARDS,基因型频率也存在显著性差异。rs8177375(C/A)和rs595209(A/G)组成的单倍型也与ALI/ARDS的易感性有关,与单个SNP相比差异更显著。ALI/ARDS患者组单倍型AG(rs595209A/rs8177375G)频率高于单独脓毒症组(OR=2.24,95%CI 1.52-3.29,p=0.00003)和正常对照个体(OR=2.13,95%CI 1.46-3.09,p=0.00006)。携带单倍型CA的个体不易患ALl/ARDS。运用Bonferroni方法进行校正和Logistic回归分析去除混杂因素后以上差异仍具有统计学意义。
     [结论]TIRAP基因多态性与中国汉族人群脓毒症致ALI/ARDS的易感性显著相关。
     第二部分
     TLRs信号传导通路相关基因多态性与ALI/ARDS易感性关联研究
     [目的]TLRs信号通路的过度激活和负性调节因子的功能失调均可引起炎症介质的过量生成,导致组织和器官的损伤,在ALI/ARDS的发病机制中具有重要的作用。本部分研究选择TLRs信号传导通路及负性调节因子的部分基因IRAK1, TRAF6、SIGIRR和IRAK3进行研究,探讨以上基因SNPs与中国汉族人群ALI/ARDS遗传易感的关联性。
     [方法]临床上收集336例ALI/ARDS患者和384名对照患者(入住ICU,具有ALI/ARDS发病的高危因素,而未进展至ALI/ARDS)入选本部分研究。根据Hapmap数据库共选择IRAK、TRAF6、SIGIRR和IRAK3基因的17个tag SNPs,利用SNPstream技术平台对17个SNPs进行分型。基因型频率和等位基因频率在各组之间的比较采用χ2检验,运用Bonferroni方法进行校正检验和Logistic回归分析去除混杂因素的影响。
     [结果]4个基因的17个SNPs成功分型,且所有的SNPs等位基因分布在研究样本中均符合HWE。研究发现:①TRAF6基因rs4755453的等位基因频率和基因型频率在ALI/ARDS组和对照组之间存在显著的统计学差异(p= 0.0000187, p= 0.00015)。ALI/ARDS患者rs4755453C的频率(10.7%)明显低于对照组(18.8%),等位基因C对ALI/ARDS的患病具有保护作用(OR=0.52,95%CI0.38-0.70); Logistic回归分析去除混杂因素后等位基因频率(p=0.000062,OR=0.61,95% CI 0.46-0.78)和基因型频率分布(p=0.00046)仍有显著性的统计学差异。Bonferroni校正后等位基因和基因型频率在两组之间仍存在显著性的统计学差异;②IRAK3基因rs1370128和rs2289314等位基因频率和基因型频率在对照组和ALI/ARDS疾病组之间也存在显著性的统计学差异,但运用Logistic去除混杂因素和Bonferroni校正后等位基因和基因型频率在两组之间无显著性差异(p>0.05)。Haplotype分析发现IRAK3基因10个SNPs组成2个单倍域共包括7种单倍型,2个单倍域与ALI/ARDS发病无明显的相关性;7种单倍型的分布频率在两组之间无显著的统计学差异;③IRAK1基因的1个tag SNP和SIGIRR基因的3个tag SNPs的等位基因和基因型频率分布在两组之间无显著的统计学差异。
     [结论]TRAF6基因多态性与中国汉族人群ALI/ARDS的遗传易感性相关。
     第三部分
     TNF-a信号传导通路相关基因多态性与ALI/ARDS易感性关联研究
     [目的]TNF-α是一种多效应的细胞因子,具有极强的促炎性反应以及免疫调节功能,是炎症反应的核心环节,已有大量的研究证实TNF-α在ALI/ARDS发病机制中具有重要的作用。TNF-α主要通过细胞膜上的受体(TNF receptor, TNFR)发挥生物学效应。A20是TNF-α信号传导通路的负反馈调节因子,是防止体内炎症反应失控的重要调节蛋白。本研究选择TNF-α、TNFRSFIA、TNFRSF1B和TNFAIP3作为候选基因,探讨以上基因的SNPs与中国汉族人群ALI/ARDS遗传易感的相关性。
     [方法]临床上收集336例ALI/ARDS患者和384名对照患者(入住ICU,具有ALI/ARDS发病的高危因素,而未进展至ALI/ARDS)入选本部分研究。共选择TNF-a、TNFRSF1A、TNFRSF1B和TNFAIP3基因的14个SNPs进行研究,利用PCR-直接测序法和SNPstream技术平台对14个SNPs进行分型。基因型频率和等位基因频率在各组之间的比较采用χ2检验,运用Bonferroni方法进行校正和Logistic回归分析去除混杂因素影响。
     [结果]14个SNPs的等位基因分布在研究样本中均符合HWE。研究发现:①TNFAIP3基因rs661561等位基因频率在ALI/ARDS组和对照组之间存在着显著的统计学差异(p=0.0002),等位基因T频率在ALI/ARDS组为7.5%,明显低于对照组的频率13.6%,等位基因T对ALI/ARDS的发病具有保护作用(OR=0.52,95%CI0.36-0.74)。rs661561基因型GG、GT和TT的频率在两组之间也存在着显著的统计学差异(p=0.001)。Logistic回归分析去除混杂因素后rs661561等位基因频率(p=0.00052,OR=0.56,95%CI0.46-0.81)和基因型频率分布(p=0.0016)在两组之间的差异仍有显著性的统计学意义。Bonferroni校正后等位基因和基因型频率在两组之间仍存在显著性的统计学差异。Haplotype分析发现由2个SNPs(rs661561和rs610604)组成的单倍域与ALI/ARDS的发病明显相关,单倍型GT的频率在两组之间存在着显著的统计学差异(p=0.00039,OR=1.87,95% CI 1.32-2.65), ALI/ARDS患者单倍型GT的频率(92.2%)明显高于对照组(86.3%),携带GT的个体易患ALI/ARDS;单倍型TG的频率在两组之间也存在显著的统计学差异(p=0.029,OR=0.63,95%CI0.42-0.96),携带单倍型TG个体不易患ALI/ARDS, Logistic回归分析后仍具有显著性的统计学差异;②TNF-α基因的4个SNPs、TNFRSF1A基因的2个SNPs以及TNFRSF1B基因的2个SNPs等位基因频率和基因型频率两组相比无显著的统计学差异。
     [结论]编码TNF-a信号传导通路的负性调节因子A20蛋白的-TNFAIP3基因变异与中国汉族人群ALI/ARDS的遗传易感性相关。
PART I Genetic variants in the TIRAP gene are associated with increased risk of sepsis-associated acute lung injury
     Background:Toll like receptors (TLRs) signaling pathways, including the adaptor protein Mal encoded by the TIRAP gene, play a central role in the development of acute lung injury (ALI). Recently, the TIRAP variants have been described association with susceptibility to inflammatory diseases. The aim of this study was to investigate whether genetic variants in TIRAP are associated with the development of ALI.
     Methods:A case-control collection from Han Chinese of 298 healthy subjects,278 sepsis-associated ALI and 288 sepsis alone patients were included. Three tag single nucleotide polymorphisms (SNPs) of the TIRAP gene and two additional SNPs that have previously showed association with susceptibility to other inflammatory diseases were genotyped by direct sequencing. The differences of allele, genotype and haplotype frequencies were evaluated between three groups.
     Results:The minor allele frequencies of both rs595209 and rs8177375 were significantly increased in ALI patients compared with both healthy subjects (odds ratio (OR)= 1.47,95% confidence interval (CI) 1.15-1.88, p= 0.0027 and OR= 1.97, 95% CI 1.38-2.80, p= 0.0001, respectively) and sepsis alone patients (OR= 1.44, 95% CI 1.12-1.85, p= 0.0041 and OR= 1.82,95% CI 1.28-2.57, p= 0.00079, respectively). Haplotype consisting of these two associated SNPs strengthened the association with ALI susceptibility. The frequency of haplotype AG (rs595209A, rs8177375G) in the ALI samples was significantly higher than that in the healthy subjects (OR= 2.13,95% CI 1.46-3.09, p= 0.00006) and the sepsis alone group (OR = 2.24,95% CI 1.52-3.29, p= 0.00003). Carriers of the haplotype CA (rs595209C, rs8177375A) had a lower risk for ALI compared with healthy control group (OR= 0.69,95% CI 0.54-0.88, p= 0.0003) and sepsis alone group (OR= 0.71,95% CI 0.55-0.91, p= 0.0006). These associations remained significant after adjustment for covariates in multiple logistic regression analysis and for multiple comparisons.
     Conclusions:These results indicated that genetic variants in the TIRAP gene might be associated with susceptibility to sepsis-associated ALI in the Han Chinese population. However, the association needs to be replicated in independent studies.
     PARTⅡAn association study of TLRs signaling pathway genetic variants and susceptibility to ALI/ARDS in the Chinese Han population
     Background:Deregulated or excessive host immune responses contribute to the pathogenesis of ALI/ARDS. TLRs signaling pathways and their negative regulators play a pivotal role in the modulation of host immune responses and the development of ALI/ARDS. The objective of this study was to investigate the association of variants in the TLR signaling pathway genes and their negative regulator genes with susceptibility to ALI/ARDS in the Chinese Han population.
     Methods:720 critically ill patients with risk factors for ALI/ARDS admitted to the ICUs from 2006 to 2010. Cases were 336 patients who developed ALI/ARDS and controls were 384 subjects who did not developed ALI/ARDS. Four genes, namely IRAKI, TRAF6, SIGIRR and IRAK3, were investigated for their association with ALI/ARDS susceptibility by a tag SNP strategy. Seventeen tag SNPs were selected based on the data of Chinese Han in Beijing from the HapMap project and genotyped by the SNPstream system. The differences of allele and genotype distributions between two groups were compared with the chi-square test or Fisher's exact test when appropriate. Multivariate logistic regression was used to adjust for potential confounding factors and Bonferroni method was used to correct for multiple comparisons.
     Results:All of the 17 tag SNPs were genotyped successfully and all of the genotype distributions were consistent with Hardy-Weinberg equilibrium. Single SNP analyzing showed rs4755453 in TRAF6 is associated with susceptibility to ALI/ARDS. The allele and genotype distributions of rs4755453 in TRAF6 were significantly different between ALI/ARDS and control groups (p=0.0000187, p=0.00015). The allele frequency of rs4755453C was associated with a decreased risk of ALI/ARDS (OR= 0.52,95%CI 0.38-0.70). These associations remained significant after adjustment for covariates in multiple logistic regression analysis and for multiple comparisons. The allele and genotype distributions of rsl370128 and rs2289314 in 1RAK3 were also significantly different between ALI/ARDS and control groups. But this difference disappeared after adjustment for covariates in multiple logistic regression analysis and after Bonferroni correction. Two haplotype blocks were indentified in the IRAK3 region. But no association was found between these two blocks and the susceptibility to ALI/ARDS.
     Conclusions:These results indicated that genetic variants in the TRAF6 gene might be associated with susceptibility to ALI/ARDS in the Han Chinese population. However, the association needs to be replicated in independent studies.
     PART III
     An association study of TNF-a signaling pathway genetic variants and susceptibility to ALI/ARDS in the Chinese Han population
     Background:The pleiotropic cytokine tumour necrosis factor-a (TNF-a) is an important pro-inflammatory cytokine involved in the pathogenesis and development of ALI/ARDS. TNF-a binds directly to tumor necrosis factor receptors (TNFR) and induces the inflammatory response. A20, the product of the TNFAIP3 gene, is a key negative regulator of NF-κB activity downstream of TNF-a. The objective of this study was to investigate the association of variants in the TNF-a signaling pathway genes with susceptibility to ALI/ARDS in the Chinese Han population.
     Methods:TNF-a, TNFRSF1A, TNFRSF1B and TNFAIP3 were investigated for their association with ALI/ARDS susceptibility. Fourteen SNPs were genotyped in 336 ALI/ARDS patients and 384 controls. The differences of allele and genotype distributions between two groups were compared with the chi-square test or Fisher's exact test when appropriate. Multivariate logistic regression was used to adjust for potential confounding factors and Bonferroni method was used to correct for multiple comparisons.
     Results:All of the 14 SNPs were genotyped successfully and all of the genotype distributions were consistent with Hardy-Weinberg equilibrium. Single SNP analyzing showed rs661561 in TNFAIP3 is associated with susceptibility to ALI/ARDS. There was significant difference of the allele and genotype distributions in ALI/ARDS patients compared with those of control subjects (p= 0.0002, p= 0.001). The minor allele frequency of rs661561T was associated with a decreased risk of ALI/ARDS (OR= 0.52,95% CI 0.36-0.74). A 2-SNP haplotype block harboring rs661561 and rs610604 also displayed strong association with ALI/ARDS risk. Haplotype GT and TG frequencies in ALI/ARDS patients were significantly different from that control subjects (p= 0.00039, OR= 1.87,95% CI 1.32-2.65; p= 0.029, OR = 0.63,95% CI 0.42-0.96, respectively). These associations remained significant after adjustment for covariates in multiple logistic regression analysis and for multiple comparisons. No association was found between TNF-a, TNFRSF1A, TNFRSF1B variants and the susceptibility to ALI/ARDS.
     Conclusions:These results indicated that genetic variants in the TNFAIP3 gene might be associated with susceptibility to ALI/ARDS in the Han Chinese population. However, the association needs to be replicated in independent studies.
引文
1. Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults. Lancet.1967;2(7511):319-323.
    2. Petty TL, Ashbaugh DC. The adult respiratory distress syndrome:clinical features, factors influencing prognosis and primciples of management. Chest.1971; 60:233-239.
    3. Bernard GR, Artigas A, Brigham KL, et al. Report of the American-European consensus conference on ARDS:definitions, mechanisms, relevant outcomes and clinical trial coordination. The Consensus Committee. Intensive Care Med. 1994;20(3):225-232.
    4. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334-1349.
    5. Lu Y, Song Z, Zhou X, et al. A 12-month clinical survey of incidence and outcome of acute respiratory distress syndrome in Shanghai intensive care units. Intensive Care Med.2004; 30(12):2197-2203.
    6.葛庆岗,朱曦,么改琦,等.1998-2003年北京地区重症加强治疗病房急性呼吸窘迫综合征的临床流行病学调查.中国危重病急救医学.2007;19(4):201-204.
    7. Jerng JS, Yu CJ, Liaw YS, et al. Clinical spectrum of acute respiratory distress syndrome in a tertiary referral hospital:etiology, severity, clinical course, and hospital outcome. J Formos Med Assoc.2000;99(7):538-543.
    8. Brookes AJ. The essence of SNPs. Gene.1999;234(2):177-186.
    9. Taylor JG, Choi EH, Foster CB, et al. Using genetic variation to study human disease/Trends Mol Med.2001;7(11):507-512.
    10 Nickerson DA, Taylor SL, Weiss KM, et al. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet.1998;19(3):233-240.
    11 The international Hapmap consortium. The international HapMap project. Nature. 2003; 4(6):779-789.
    12 Badner JA, Gershon ES, Goldin LR. Optimal ascertainment strategies to detect linkage to common disease alleles. Am J Hum Genet.1998;63(3):880-888.
    13 Devlin B, Roeder K, Wasserman L. Genomic control, a new approach to 1genetic-based association studies. Theor Popul Biol.2001;60(3):155-166.
    14 Suter PM. Lung Inflammation in ARDS--friend or foe? N Engl J Med.2006; 354 (16):1739-1742.
    15 Kollef MH, Schuster DP. The acute respiratory distress syndrome. N Engl J Med. 1995;332(1):27-37.
    16 Gong MN, Zhou W, Williams PL, et al.-308GA and TNFB polymorphisms in acute respiratory distress syndrome. Eur Respir J.2005;26(3):382-389.
    17 李芝晃,陈正堂.重庆地区汉族人肿瘤坏死因子-α基因的多态性与急性肺损伤.中国危重病急救医学.2001;13(9):536-538.
    18 Flores C, Ma SF, Maresso K, et al. IL6 gene-wide haplotype is associated with susceptibility to acute lung injury. Transl Res.2008; 152(1):11-17
    19 Hildebrand F, Stuhrmann M, van Griensven M, et al. Association of IL-8-251A/T polymorphism with incidence of Acute Respiratory Distress Syndrome (ARDS) and IL-8 synthesis after multiple trauma. Cytokine.2007;37(3):192-199.
    20 Gong MN, Thompson BT, Williams PL, et al. Interleukin-10 polymorphism in position-1082 and acute respiratory distress syndrome. Eur Respir J. 2006;27(4):674-681.
    21 Schroeder O, Schulte KM, Schroeder J, et al. The-1082 interleukin-10 polymorphism is associated with acute respiratory failure after major trauma:a prospective cohort study.Surgery.2008;143(2):233-242.
    22 Gao L, Flores C, Fan-Ma S, et al. Macrophage migration inhibitory factor in acute lung injury:expression, biomarker, and associations. Transl Res.2007; 150 (1):18-29.
    23 Gao L, Grant A, Halder Ⅰ, et al. Novel polymorphisms in the myosin light chain kinase gene confer risk for acute lung injury. Am J Respir Cell Mol Biol. 2006;34(4):487-495.
    24 Ye SQ, Simon BA, Maloney JP, et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med. 2005;171(4):361-370.
    25 Bajwa EK, Yu CL, Gong MN, et al. Pre-B-cell colony-enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome. Crit Care Med. 2007;35(5):1290-1295.
    26 Adamzik M, Frey UH, Rieman K, et al. Insertion/deletion polymorphism in the promoter of NFKB1 influences severity but not mortality of acute respiratory distress syndrome. Intensive Care Med.2007;33(7):1199-1203.
    27 Zhai R, Zhou W, Gong MN, et al. Inhibitor kappaB-alpha haplotype GTC is associated with susceptibility to acute respiratory distress syndrome in Caucasians. Crit Care Med.2007;35(3):893-898.
    28 Gong MN, Zhou W, Williams PL, et al. Polymorphisms in the mannose binding lectin-2 gene and acute respiratory distress syndrome. Crit Care Med. 2007;35(1):48-56.
    29 Arcaroli JJ, Hokanson JE, Abraham E, et al. Extracellular superoxide dismutase haplotypes are associated with acute lung injury and mortality. Am J Respir Crit Care Med.2009;179(2):105-112.
    30 Marshall RP, Webb S, Bellingan GJ, et al. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Resp Crit Care Med. 2002;166(5):646-650.
    31 Jerng JS, Yu CJ, Wang HC, et al. Polymorphism of the angiotensin-converting enzyme gene affects the outcome of acute respiratory distress syndrome. Crit Care Med.2006;34(4):1001-1006.
    32 Villar J, Flores C, Perez-Mendez L, et al. Angiotensin-converting enzyme insertion/deletion polymorphism is not associated with susceptibility and outcome in sepsis and acute respiratory distress syndrome. Intensive Care Med. 2008;34(3):488-495.
    33 Gong MN, Wei Z, Xu LL, et al. Polymorphism in the surfactant protein-B gene, gender and the risk of direct pulmonary injury and ARDS. Chest.2004; 125 (1):203-211.
    34 Quasney MW, Waterer GW, Dahmer MK, et al. Association between surfactant protein B+1580 polymorphism and the risk of respiratory failure in adults with community-acquired pneumonia. Crit Care Med.2004;32(5):1115-1119.
    35 Adamzik M, Frey UH, Riemann K, et al. Factor V Leiden mutation is associated with improved 30-day survival in patients with acute respiratory distress syndrome. Crit Care Med.2008;36(6):1776-1779.
    36 Arcaroli J, Sankoff J, Liu N, et al. Association between urokinase haplotypes and outcome from infection-associated acute lung injury. Intensive Care Med. 2008;34(2):300-307.
    37 Zhai R, Gong MN, Zhou W, et al. Genotypes and haplotypes of the VEGF gene are associated with higher mortality and lower VEGF plasma levels in patients with ARDS. Thorax.2007;62(8):718-722.
    1. Jiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by Toll-like receptors and aluronan. Nat Med.2005;11(11):1173-1179.
    2. Togbe D, Schnyder-Candrian S, Schnyder B, et al. Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury. Int J Exp Pathol. 2007;88(6):387-391.
    3. Harken AH, Abraham E, Banerjee A, et al. Hemorrhage-induced acute lung injury is TLR-4 dependent. Am J Physiol Regul Integr Comp Physiol.2004;287(3): 592-599.
    4. Jeyaseelan S, Manzer R, Young SK, et al. Toll-IL-1 receptor domain-containing adaptor protein is critical for early lung immune responses against Escherichia coli lipopolysaccharide and viable Escherichia coli. J Immunol.2005; 175 (11):7484-7495.
    5.王国兴,王伯瑶Toll样受体及其信号传导.细胞与分子免疫学杂志.2002.18(6):666-669.
    6. Hawn TR, Dunstan SJ, Thwaites GE, et al. A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J Infect Dis.2006;194(8):1127-1134.
    7. Khor CC, Chapman SJ, Vannberg FO, et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet.2007;39(4):523-528.
    8. Ferwerda B, Alonso S, Banahan K, et al. Functional and genetic evidence that the Mal/TIRAP allele variant 180L has been selected by providing protection against septic shock. Proc Natl Acad Sci U S A.2009; 106(25):10272-10277.
    9. Ramasawmy R, Cunha-Neto E, Fae KC, et al. Heterozygosity for the S180L variant of MAL/TIRAP, a gene expressing an adaptor protein in the Toll-like receptor pathway, is associated with lower risk of developing chronic Chagas cardiomyopathy. J Infect Dis.2009; 199(12):1838-1845.
    10. Castiblanco J, Varela DC, Castano-Rodriguez N, et al. TIRAP (MAL) S180L polymorphism is a common protective factor against developing tuberculosis and systemic lupus erythematosus. Infect Genet Evol.2008;8(5):541-544.
    11. Bernard GR, Artigas A, Brigham KL, et al. Report of the American-European consensus conference on ARDS:definitions, mechanisms, relevant outcomes and clinical trial coordination. The Consensus Committee. Intensive Care Med.1994; 20(3):225-232.
    12. American College of Chest Physicians/Society of Critical Care Medicine ConsensusConference:definitions for sepsis and organ failure and guidelines for the use ofinnovative therapies in sepsis. Crit Care Med.1992;20(6):864-874.
    13. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science.2002;296(5576):2225-2229.
    14. Sheu CC, Gong MN, Zhai R, et al. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest.2010;138(3):559-567.
    15. Purcell S, Neale B, Todd-Brown K, et al. PLINK:a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-575.
    16. Imai Y, Kuba K, Neely GG, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell.2008; 133(2):235-249.
    17. Wurfel MM, Gordon AC, Holden TD, et al. Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med.2008;178(7):710-720.
    18. Schroder NW, Schumann RR. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis.2005; 5(3):156-164.
    19. Hamann L, Kumpf O, Schuring RP, et al. Low frequency of the TIRAP S180L polymorphism in Africa, and its potential role in malaria, sepsis, and leprosy. BMC Med Genet.2009; 10:65.
    20. Putnik M, Zhao C, Gustafsson JA, et al. Effects of two common polymorphisms in the 3'untranslated regions of estrogen receptor beta on mRNA stability and translatability. BMC Genet.2009;10:55.
    1. Leulier F, Lemaitre B. Toll-like receptors-taking an evolutionary approach. Nat Genet Reviews.2008;9(3):165-178.
    2. Barton GM, Medzhitov R. Toll-Like Receptor Signaling Pathways. Science.2003; 300(6):1524-1525.
    3. Carmody RJ, Ruan Q, Palmer S, et al. Negative regulation of toll-like receptor signaling by NF-kappaB p50 ubiquitination blockade. Science.2007; 317 (5838):675-678.
    4. Liew FY, Xu D, Brint EK, et al. Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol.2005;5(6):446-458.
    5. Jiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by Toll-like receptors and aluronan. Nat Med.2005;11(11):1173-1179.
    6. Togbe D, Schnyder-Candrian S, Schnyder B, et al. Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury. Int J Exp Pathol. 2007;88(6):387-391.
    7. Harken AH, Abraham E, Banerjee A, et al. Hemorrhage-induced acute lung injury is TLR-4 dependent. Am J Physiol Regul Integr Comp Physiol.2004;287(3): 592-599.
    8. Lyn-Kew K, Rich E, Zeng X, et al. IRAK-M regulates chromatin remodeling in lung macrophages during experimental sepsis. PLoS One.2010;5(6):e11145.
    9. Seki M, Kohno S, Newstead MW, et al. Critical role of IL-1 receptor-associated kinase-M in regulating chemokine-dependent deleterious inflammation in murine influenza pneumonia. J Immunol.2010;184(3):1410-1418.
    10. Zhang C, Wu X, Zhao Y, et al. SIGIRR inhibits toll-like receptor 4,5,9-mediated immune responses in human airway epithelial cells. Mol Biol Rep.2011; 38(1):601-609.
    11. Feng T, Yunfeng N, Jinbo Z, et al. Single immunoglobulin IL-1 receptor-related protein attenuates the lipopolysaccharide-induced inflammatory response in A549 cells. Chem Biol Interact.2010;183(3):442-449.
    12. Arcaroli John, Silva Eliezer, Maloney JP, et al. Variant IRAK-1 haplotype is associated with increased Nuclear factor-KB activation and wrse outcomes in sepsis. Am J Respir Crit Care Med.2006;173(12):1335-1341.
    13. Toubiana J, Courtine E, Pene F, et al. IRAK1 functional genetic variant affects severity of septic shock. Crit Care Med.2010;38(12):2287-2294.
    14. Wurfel MM, Gordon AC, Holden TD, et al. Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med.2008; 178(7):710-720.
    15. Schroder NW, Schumann RR. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis.2005; 5(3):156-164.
    16. Demirci FY, Manzi S, Ramsey-Goldman R, et al. Association study of Toll-like receptor 5 (TLR5) and Toll-like receptor 9 (TLR9) polymorphisms in systemic lupus erythematosus. J Rheumatol.2007;34(8):1708-1711.
    17.宋振举,童朝阳,孙湛,等.TLR4基因单核苷酸多态性与重症社区获得性肺炎易感性和预后的关联研究.中华急诊医学杂志.2009;18(9):956-959.
    18.宋振举,童朝阳,孙湛,等.TLR2基因单核苷酸多态性与重症社区获得性肺炎易感性和预后的关联研究.中国急救医学.2009;29(5):389-392.
    19. Zhenju Song, Jun Yin, Chenling Yao, et al. Variants in the Toll-interacting protein gene are associated with the susceptibility to severe sepsis in the Chinese Han population. Critical Care.2011; 15:R12
    20. Kobayashi T, Walsh MC, Choi Y. The role of TRAF6 in signal transduction and the immune response. Microbes Infect.2004;6(14):1333-1338.
    21. King CG, Kobayashi T, Cejas PJ, et al. TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nat Med. 2006;12(9):1088-1092.
    22. Gohda J, Matsumura T, Inoue J. Cutting edge:TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol.2004; 173(5):2913-2917.
    23. Verstak B, Nagpal K, Bottomley SP, et al. MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2-and TLR4-mediated NF-kappaB proinflammatory responses. J Biol Chem.2009;284(36):24192-22403.
    24. Mukundan L, Bishop GA, Head KZ, et al. TNF receptor-associated factor 6 is an essential mediator of CD40-activated proinflammatory pathways in monocytes and macrophages. J Immunol.2005;174(2):1081-1090.
    25. Kanzok SM, Hoa NT, Bonizzoni M, et al. Origin of Toll-like receptor-mediated innate immunity. J Mol Evol.2004;58(4):442-448.
    26. Lawrence T, Bebien M, Liu GY, et al. IKK-a limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature.2005;434 (7037):1138-1143.
    27. Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol.2000;12(1):13-19.
    28. Purkerson JM, Smith RS, Pollock SJ, et al. The TRAF6, but not the TRAF2/3, binding domain of CD40 is required for cytokine production in human lung fibroblasts. Eur J Immunol.2005;35(10):2920-2928.
    29. Liu S, Lutz J, Chang J, et al. TRAF6 knockdown promotes survival and inhibits inflammatory response to lipopolysaccharides in rat primary renal proximal tubule cells. Acta Physiol (Oxf).2010; 199(3):339-346.
    30. Zhou XY, Zhou ZG, Ding JL, et al. TRAF6 as the key adaptor of TLR4 signaling pathway is involved in acute pancreatitis. Pancreas.2010; 39(3):359-366.
    31.方宇,张璐,周钢桥,等.肿瘤坏死因子受体相关因子6基因多态性与脓毒症易感性研究.中华急诊医学杂志.2010;19(9):904-908.
    32. Mak TW, Yeh WC. Immunology:a block at the toll gate. Nature.2002; 418 (6900):835-836.
    33. Nakashima K, Hirota T, Obara K, et al. An association study of asthma and related phenotypes with polymorphisms in negative regulator molecules of the TLR signaling pathway. J Hum Genet.2006;51(4):284-291.
    34. Balaci L, Spada MC, Olla N, et al. IRAK-M is involved in the pathogenesis of early-onset persistent asthma. Am J Hum Genet.2007;80(6):1103-1114.
    35. Lammers KM, Ouburg S, Morre SA, et al. Combined carriership of TLR9-1237C and CD14-260T alleles enhances the risk of developing chronic relapsing pouchitis. World J Gastroenterol.2005;11(46):7323-7329.
    36.罗玉政,宋林学,龚建平.脓毒症易感性与IRAK-M基因多态性的相关性.中华实验外科杂志.2011;28(1):51-53.
    37. Pino-Yanes M, Ma SF, Sun X, et al. Interleukin-1 Receptor-associated Kinase 3 Gene Associates with Susceptibility to Acute Lung Injury. Am J Respir Cell Mol Biol.2011 Feb 4. [Epub ahead of print]
    38. Qin J, Qian Y, Yao J, et al. SIGIRR inhibits interleukin-1 receptor-and toll-like receptor 4-mediated signaling through different mechanisms. J Biol Chem. 2005;280(26):25233-25241.
    39. Xiao H, Gulen MF, Qin J, et al. The Toll-interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. Immunity.2007;26(4):461-475.
    1. Meduri GU, Headley S, Kohler G, et al. Persistant elevation of inflammatory cytokines predict a poor outcome in ARDS. Chest.1995; 107(4):1062-1073.
    2.丘建华,侯敢,黄迪南TNF-a信号传导通路的分子机理.中国生物化学与分子生物学报.2007;23(6):430-435.
    3. Micheau O, Tschopp J. Induction of TNF receptor Ⅰ-mediated apoptosis via two sequential signaling complexes. Cell.2003; 114(2):181-190.
    4. Dempsey PW, Doyle SE, He JQ, et al. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev. 2003; 14(3-4):193-209.
    5. Wilson MR, Goddard ME, O'Dea KP, et al. Differential roles of p55 and p75 tumor necrosis factor receptors on stretch-induced pulmonary edema in mice. Am J Physiol Lung Cell Mol Physiol.2007;293(1):L60-68.
    6. Opipari AW Jr, Boguski MS, Dixit VM. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem. 1990;265(25):14705-14708.
    7. He KL, Ting AT. A20 inhibits tumor necrosis factor (TNF) alpha-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells. Mol Cell Biol.2002;22(17):6034-6045.
    8. Turer EE, Tavares RM, Mortier E, et al. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J Exp Med.2008; 205(2):451-464.
    9. Beyaert R, Heyninck K, Van Huffel S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem Pharmacol.2000;60(8):1143-1151.
    10. Hitotsumatsu O, Ahmad RC, Tavares R, et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity.2008;28(3):381-390.
    11. Persson C, Canedo P, Machado JC, et al. Polymorphisms in inflammatory response genes and their association with gastric cancer:A HuGE systematic review and meta-analyses. Am J Epidemiol.2011;173(3):259-270.
    12. Aguillon JC, Cruzat A, Cuenca J, et al. Tumor necrosis factor alpha genetic polymorphism as a risk factor in disease. Rev Med Chil.2002;130(9):1043-1050.
    13. Duan ZX, Gu W, Zhang LY, et al. Tumor Necrosis Factor Alpha Gene Polymorphism Is Associated With the Outcome of Trauma Patients in Chinese Han Population. J Trauma.2010 Aug 27. [Epub ahead of print]
    14. Surbatovic M, Grujic K, Cikota B, et al. Polymorphisms of genes encoding tumor necrosis factor-alpha, interleukin-10, cluster of differentiation-14 and interleukin-1 in critically ill patients. J Crit Care.2010;25(3):542.e1-8.
    15. Gong MN, Zhou W, Williams PL, et al.-308GA and TNFB polymorphisms in acute respiratory distress syndrome. Eur Respir J.2005;26(3):382-389.
    16.李芝晃,陈正堂.重庆地区汉族人肿瘤坏死因子-α基因的多态性与急性肺损伤.中国危重病急救医学.2001;13(9):536-538.
    17. Waschke KA, Villani AC, Vermeire S, et al. Tumor necrosis factor receptor gene polymorphisms in Crohn's disease:association with clinical phenotypes. Am J Gastroenterol.2005; 100(5):1126-1133.
    18. Wang GB, Li CR, Yang J, et al. A regulatory polymorphism in promoter region of TNFR1 gene is associated with Kawasaki disease in Chinese individuals. Hum Immunol.2011.
    19. Horiuchi T, Washio M, Kiyohara C, et al. Combination of TNF-RII, CYP1A1 and GSTM1 polymorphisms and the risk of Japanese SLE:findings from the KYSS study. Rheumatology (Oxford).2009;48(9):1045-1049.
    20. Sole-Violan J, de Castro F, Garcia-Laorden MI, et al. Genetic variability in the severity and outcome of community-acquired pneumonia. Respir Med. 2010;104(3):440-447.
    21. Moller M, Flachsbart F, Till A, et al. A functional haplotype in the 3'untranslated region of TNFRSF1B is associated with tuberculosis in two African populations. Am J Respir Crit Care Med.2010;181(4):388-393.
    22. Musone SL, Taylor KE, Lu TT, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet.2008;40(9):1062-1064.
    23. Kawasaki A, Ito Ⅰ, Ito S, et al. Association of TNFAIP3 polymorphism with susceptibility to systemic lupus erythematosus in a Japanese population. J Biomed Biotechnol.2010;2010:207578.
    24. Nair RP, Duffin KC, Helms C, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet.2009;41(2):199-204.
    25. Plenge RM, Cotsapas C, Davies L, et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet.2007;39(12):1477-1482.
    26. Adrianto Ⅰ, Wen F, Templeton A, et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet. 2011;43(3):253-258.
    27. Boonyasrisawat W, Eberle D, Bacci S, et al. Tag polymorphisms at the A20 (TNFAIP3) locus are associated with lower gene expression and increased risk of coronary artery disease in type 2 diabetes. Diabetes.2007;56(2):499-505.
    28. Hua R, Xu JB, Wang JC, et al. Association of TNFAIP3 polymorphism with rheumatic heart disease in Chinese Han population. Immunogenetics.2009; 61(11-12):739-744.
    29. Huizinga TW, Westendorp RG, Bollen EL, et al. TNF-alpha promoter polymorphisms, production and susceptibility to multiple sclerosis in different groups of patients. J Neuroimmunol.1997;72(2):149-153.
    30. Lee YH, Harley JB, Nath SK. Meta-analysis of TNF-alpha promoter-308 A/G polymorphism and SLE susceptibility. Eur J Hum Genet.2006;14(3):364-371.
    31. Zhang J, Dou C, Song Y, et al. Polymorphisms of tumor necrosis factor-alpha are associated with increased susceptibility to gastric cancer:a meta-analysis. J Hum Genet.2008;53(6):479-489.
    32. Heyninck K, De Valck D, Vanden Berghe W, et al. The zinc finger protein A20 inhibits TNF-induced NF-kappaB-dependent gene expression by interfering with an RIP-or TRAF2-mediated transactivation signal and directly binds to a novel NF-kappaB-inhibiting protein ABIN. J Cell Biol.1999;145(7):1471-1482.
    33. Heyninck K, Beyaert R. A20 inhibits NF-kappaB activation by dual ubiquitin-editing functions. Trends Biochem Sci.2005;30(1):1-4.
    34. Boone DL, Turer EE, Lee EG, et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol. 2004;5(10):1052-1060.
    35. Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol.2009;30(8):383-391.
    36. Verstrepen L, CarpentierⅠ,Verhelst K, et al. ABINs:A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol.2009;78(2):105-114.
    37. Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science.2000;289 (5488):2350-2354.
    38. Turer EE, Tavares RM, Mortier E, et al. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J Exp Med.2008;205 (2):451-464.
    39. Onose A, Hashimoto S, Hayashi S, et al. An inhibitory effect of A20 on NF-kappaB activation in airway epithelium upon influenza virus infection. Eur J Pharmacol.2006;541(3):198-204.
    40. Kelly C, Shields MD, Elborn JS, et al. A20 Regulation of NF-{kappa}B: Perspectives for Inflammatory Lung Disease. Am J Respir Cell Mol Biol.2011 Jan 14. [Epub ahead of print]
    1. Lu Y, Song Z, Zhou X, et al. A 12-month clinical survey of incidence and outcome of acute respiratory distress syndrome in Shanghai intensive care units. Intensive Care Med.2004; 30(12):2197-2203.
    2.葛庆岗,朱曦,么改琦,等.1998-2003年北京地区重症加强治疗病房急性呼吸窘迫综合征的临床流行病学调查.中国危重病急救医学.2007;19(4):201-204.
    3.冯英凯,徐剑铖,钱桂生,等.高迁移率族蛋白1对内毒素急性肺损伤大鼠中性粒细胞凋亡改变的影响.免疫学杂志.2006;22(4):410-415.
    4.姜鹏,王建春,赵咏梅,等.过氧化物酶增殖体激活受体在急性肺损伤大鼠肺组织的表达及其意义.中国病理生理杂志.2007;23(3):484-487.
    5.杨冬Peroxiredoxin 6对细菌脂多糖诱发小鼠急性肺损伤的作用及机制研究.复旦大学博士论文.2009.
    6.叶玲,金美玲,徐晓波,等.急性肺损伤/急性呼吸窘迫综合征患者凝血纤溶系统的变化.复旦学报(医学版).2008;35(5):671-680.
    7. Bai C, Fukuda N, Song Y, et al. Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice. J Clin Invest.1999; 103(4):555-561.
    8. Su X, Song Y, Jiang J, Bai C. The role of aquaporin-1 (AQP1) expression in a murine model of lipopolysaccharide-induced acute lung injury. Respir Physiol Neurobiol.2004; 142(1):1-11.
    9. Ben Y, Chen J, Zhu R, Gao L, Bai C. Upregulation of AQP3 and AQP5 induced by dexamethasone and ambroxol in A549 cells. Respir Physiol Neurobiol.2008; 161 (2):111-118.
    10.李波,陈东,王桂芳,等.水通道蛋白1、3、4、5在内毒素致急性肺损伤小鼠肺组织中的表达.第二军医大学学报.2008;29(2):131-135.
    11.谢艳萍,陈才平,王建春,等.急性肺损伤大鼠水通道蛋白1和5的表达及功能的实验研究.中华结核和呼吸杂志.2005;28(6):385-389.
    12.邵兰,陈研生,邱海波,等.酸敏感离子通道-3在急性肺损伤大鼠肺组织中的表达.中华急诊医学杂志.2009;18(5):466-470.
    13.邱海波,代静泓,燕艳丽,等.肿瘤坏死因子和白细胞介素-1基因多态性与急性呼吸窘迫综合征的相关性研究.东南大学学报(医学版).2004;23(1):25-30.
    14.陈光建,邱海波,陆晓旻,等.ACE基因I/D多态性与急性肺损伤发生以及预后的关系.临床麻醉学杂志.2009;25(9):806-808.
    15. ZJ Song, CY Tong, Z Sun, et al. Genetic variants in the TIRAP gene are associated with increased risk of sepsis-associated acute lung injury. BMC medical genetics.2010;11:168
    16.宋志芳,郭晓红,单红卫,等.糖皮质激素在创伤与手术致急性呼吸窘迫综合征抢救中的价值.中国急救医学.2006;26(7):498-500.
    17.王洁心,胡琼瑶,丁超峰,等.糖皮质激素对成人急性呼吸窘迫综合征疗效的Meta分析.中华急诊医学杂志.2010;19(1)83-88.
    18.张宝民,孙艳,徐继来,等.乌司他丁治疗急性肺损伤/急性呼吸窘迫综合征34例临床分析.临床医学.2009;34(12):1108-1110..
    19.钱何布,郑志群,陆骏灏,等.乌司他丁辅助治疗肺挫伤致急性呼吸窘迫综合征的临床疗效观察.中国危重病急救医学.2009;21(7):444-445.
    20. Su X, Wang L, Song YL, et al. Inhibition of inflammatory response by ambroxol, a mucolytic agent, in a murine model of acute lung injury induced by lipopolysaccharide. Intensive care medicine.2003; 30(1):133-140.
    21.赵双平,艾宇航,徐道妙.大剂量沐舒坦对急性呼吸窘迫综合征患者呼吸功能的影响.中华麻醉学杂志.2005;25(7):543-544.
    22. Abraham E, Reinhart K, Opal S, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized control trial. JAMA; 2003; 290(2):238-247.
    23. Liu KD, Levitt J, Zhou HJ, et al. Randomized clinical trial of activated protein C for the treatment of acute lung injury. Am J Respir Crit Care Med.2008; 178 (6):618-623.
    24.朱建波,王梅花,王文霞,等.低分子肝素治疗ALI/ARDS的临床研究.临床肺科杂志.2010;15(8):1190-1191.
    25. Sun J, Guo W, Ben Y, et al. Preventive effects of curcumin and dexamethasone on lung transplantation-associated lung injury in rats. Crit Care Med.2008; 36(4):1205-1213.
    26. Sun J, Yang D, Li S, et al. Effects of curcumin or dexamethasone on lung ischemia-reperfusion injury in rats. Eur Respir J.2009; 33(2):398-404.
    27. Sun J, Xue Q, Guo L, et al. Xuebijing protects against lipopolysaccharide-induced lung injury in rabbits. Exp Lung Res.2010; 36(4):211-218.
    28.陈齐红,郑瑞强,汪华玲,等.血必净注射液对急性呼吸窘迫综合征患者呼吸功能影响的前瞻性随机对照研究.中国中西医结合急救杂志.2010;17(3):145-147.
    29.洪群英,白春学,宋元林,等.双水平压力调节通气和反比通气对健康及急性肺损伤犬心肺功能影响的比较研究.中国危重病急救医学.2002;14(3):134-137.
    30.方智野,钮善福,朱蕾.比例辅助通气、压力支持通气对健康和急性肺损伤犬心肺功能影响的比较.中国基层医药.2008;15(3):410-412.
    31.李家琼,邱海波,杨毅,等.肺保护性通气联合肺复张对急性呼吸窘迫综合征家兔气体交换的影响.中华急诊医学杂志.2006;15(11):978-981.
    32.陈秋华,杨毅,邱海波,等.俯卧位通气联合肺复张对肺内/外源性急性呼吸窘迫综合征犬血液动力学的影响.中国危重病急救医学.2008;20(6):349-352.
    33.徐启霞,詹庆元,王辰,等.俯卧位通气加肺复张对急性呼吸窘迫综合征的作用.中国危重病急救医学.2008;20(10):592-596.
    34.吴晓燕,黄英姿,杨毅,等.神经电活动辅助通气对急性呼吸窘迫综合征患者人机同步性的影响.中华结核和呼吸杂志.2009;32(7):508-512.
    35.丁琳,詹庆元,罗祖金,等.无创正压通气治疗急性呼吸窘迫综合征的前瞻性队列研究.中国危重病急救医学.2009;21(10):613-616.
    36.肖倩霞,张志刚,李滨飞,等.体外膜肺氧合治疗重症急性呼吸窘迫综合征的临床研究.中国医师进修杂志.2006;29(13):23-25.
    37.邱海波,黄英姿.急性呼吸窘迫综合征机械通气的新出路.中华急诊医学杂志.2010;19(3):229-230.
    38.解立新,刘又宁.液体通气的临床应用进展.中华结核和呼吸杂志.2007;10(30):730-733.
    39.白春学.应用连续性血液净化救治急性呼吸窘迫综合征.肾脏病与透析肾移植杂志.2006;15(2):137-138.
    40.滕杰,邹建洲,方艺,等.血液滤过辅助治疗急性呼吸窘迫综合征12例.中华内科杂志.2003;42(9):648-670.
    41.解建,杨君.持续高容量血液滤过对急性呼吸窘迫综合征合并多器官功能障碍综合征患者的治疗作用.中国危重病急救医学.2009;21(7):402-404.
    42.金兆辰,虞志新,吉木森,等.连续性血液滤过在急性呼吸窘迫综合征患者中的应用.中华医学杂志.2008;88(32):2274-2277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700