用户名: 密码: 验证码:
鄂西志留系裂隙砂岩岩体结构特征及其力学参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂隙岩体是坝基、边坡、地下硐室等岩体工程中广泛遇到的一类复杂介质,它的变形、强度和地下水渗透性等力学特性将直接影响到各类岩体工程的设计与施工,以及工程运营期间的长期稳定性。而工程岩体又是工程地区地质体的组成部分,它存在于一定地质环境中,其形成和发展经过地质历史时期内各种外动力地质作用的改造和影响。因此岩体受各种结构面切割而具有一定的结构特征,并表现出强烈的非均质性、不连续性以及各向异性。岩体的变形、破坏等力学性状也受到岩体结构特征的制约。传统的均质、连续、各向同性的力学分析方法不再适用于裂隙岩体的评判。对岩体结构条件进行定量化研究,在考虑其结构特征的基础上研究其变形及破坏特性,是岩体力学的一个重要研究课题。
     岩体内部的结构面的产状、分布常常决定着整个岩体的力学特性。岩体的失稳和破坏最终都是通过岩体内部这些裂隙的张开、闭合和扩展进而形成的贯通破裂面所引起的。因此,从岩体中结构面分布状况入手进行研究,才能获得对裂隙岩体变形和强度特性的正确认识。在野外结构面测量的基础上,利用Monte-Carlo原理计算机再现岩体结构面网络,可以使模拟结果与岩体结构面实际分布在统计规律上一致,从而可以建立岩体结构模型,为进一步研究岩体的力学特性提供依据。
     由于裂隙岩体中结构面的大量存在,很难通过原位实验或室内实验确定岩体宏观力学参数。近年来,随着断裂理论、损伤理论、分形几何、模糊数学等非线性科学的发展,国内外专家学者提出了多种模型来估算岩体宏观力学参数。但岩体在不同应力状态下裂隙间的相互作用原理,复杂应力状态下裂隙岩体的变形及强度特征等仍是理论研究的难点,至今还没有很好地解决。
     随着数值模拟技术的日益强大,综合现场地质调查、结构面统计、室内小试件试验成果,模拟岩体裂隙,研究不同尺度的“岩体试件”力学行为的数值试验研究方法近来发展迅速,为探讨分析裂隙岩体力学特性、破坏机理及合理确定岩体的宏观力学参数开辟了一条新的途径。由于裂隙岩体的强度、变形及稳定性主要受结构面控制,因而对结构面的模拟成为这些数值分析方法的关键。基于牛顿运动第二定律的离散单元法是一种适于分析裂隙密集的岩体或离散体的力学行为的数值方法,可以较好的研究岩体等非连续介质的力学行为。但是,目前对它的研究还只是在探讨和实践阶段,还需要不断的应用、比较和改进。
     鄂西恩施地区属云贵高原的东延部分,地近四川盆地边缘,处于我国地形第二阶梯末端的大陆地形坡降带上,岩石边坡通常处于复杂的地质环境并具有复杂的地质结构。鄂西志留系砂岩在各种内外地质营力作用下,岩石结构构造易破坏,因而砂岩岩层中构造裂隙、节理发育密集。砂岩地层一旦出露地表,在外力的触发下岩体易产生变形破坏,引发崩塌、滑坡、泥石流等地质灾害。
     本课题在系统科学方法论的指导下,采用现场调研、工程地质分析、统计分析、室内试验、力学计算、计算机模拟相结合的综合研究方法,分析鄂西志留系砂岩结构面的地质历史成因、随机分布规律,概化建立典型砂岩岩体结构模型,采用计算机数值模拟方法对不同结构特征的裂隙砂岩进行不同尺度的数值试验,寻求鄂西志留系裂隙砂岩的变形特征及破坏模式,合理确定砂岩岩体变形参数及强度参数,指导工程实践。因而论文主要完成了下几个方面的工作:
     (1)裂隙砂岩岩体结构特征研究。鄂西恩施地区构造体系是经过印支运动、燕山运动和喜马拉雅运动长期演化发展而成的,志留系砂岩岩层先后经过N-S向压应力、N-S向扭动、NW-SE向压应力和E-S向压应力作用后,产生了以NW、NE、NNW与NEE向为优势方位的结构面。各组优势结构面倾向均服从正态分布,倾角除第三组服从负指数分布外,其它三组均服从对数正态分布,半迹长和隙宽一般服从负指数分布。在砂岩层面和随机分布结构面的互相交错切割下,裂隙砂岩岩体结构模型可概化为层状岩体结构,双组贯通裂隙岩体结构和耦合随机分布裂隙岩体结构三类模型。
     (2)通过砂岩室内试验,获取岩块弹性模量与泊松比分别为7.4GPa和0.25(均值),抗剪强度参数内摩擦角为42.3°,内聚力为12.9MPa。
     (3)砂岩结构面本构模型及其力学参数研究。采用幂函数模型可较好的反映结构面闭合变形特性。对于法向循环加载试验,则提出了直线-圆弧型本构方程,分别用直线和圆弧线来拟合砂岩结构面的加载曲线和卸载曲线,以描述结构面法向循环加载过程中的回滞特性和整体现硬化特性。此外,还提出了半对数函数型式剪切变形本构模型反映结构面剪切变形特性。在中低法向应力作用下,采用物理意义明确的三参数Mohr-Coulomb抗剪强度准则即可较好的表示结构面抗剪强度特性。
     (4)砂岩岩块和结构面离散元数值试验研究。通过对砂岩岩块和结构面数值拟合试验,证明岩块数值压缩试验结果和结构面直剪数值试验结果与室内实物试验结果是一致的,说明采用离散单元数值试验方法研究岩体的力学行为是可靠的。
     (5)裂隙砂岩岩体变形特性及其变形参数研究。裂隙砂岩受压变形特性及等效变形参数与岩体结构模型、不同组系结构面间的交切情况、分析域的尺寸大小、岩块和结构面的变形参数等因素有关。层状砂岩宏观等效变形模量为3.91GPa~7.36GPa,等效泊松比为0.13~0.34;双组贯通裂隙砂岩宏观等效变形模量为3.25GPa~4.86GPa,等效泊松比为0.12~0.34;耦合随机分布裂隙砂岩宏观等效变形模量为1.68GPa~2.75GPa,等效泊松比为0.18~0.29。并且,层状砂岩和双组贯通裂隙砂岩变形参数关于层面方向和层面法向方向对称,而耦合随机分布裂隙砂岩变形参数仅关于层面方向对称。其中,层状砂岩等效变形参数的各向异性最明显,尺寸效应最不明显,耦合随机分布裂隙砂岩等效变形参数各向异性最不明显,尺寸效应最明显,双组贯通裂隙砂岩等效变形参数的各向异性和尺寸效应介于两者之间。
     (6)裂隙砂岩岩体破坏模式及其强度参数研究。裂隙砂岩受压破坏特征及其抗剪强度参数与岩体结构模型、不同组系结构面间的交切情况、分析域的尺寸大小、岩块和结构面的变形参数等因素有关。随着裂隙砂岩所含结构面的逐渐增加,岩体的抗剪强度参数逐渐减小。并且岩体所含结构面数量越多,其强度参数的各向异性越不明显,但其尺寸效应则越明显。层状砂岩内摩擦角为29.7°~42.3°,平均值为38.6°,内聚力为0.1~12.9MPa,平均值为7.2MPa;双组贯通裂隙砂岩内摩擦角为29.5°~42.1°,平均值为35°,内聚力为0.2~12.6MPa,平均值为6.1MPa;耦合随机分布裂隙砂岩内摩擦角为28.3°~38.1°,平均值为32.5°,内聚力为0.2~13.5 MPa,平均值为2.65MPa。层状砂岩的破坏模式与主应力方向密切相关,随着主应力方向与层面夹角的增大,岩体将产生三种不同的破坏模式:岩块材料的剪切破坏、岩块材料的剪切破坏联合沿层面的滑动破坏和沿层面的滑动破坏。对于双组贯通裂隙砂岩,当主应力与层面平行或夹角较小时,岩体产生由岩块材料的屈服而导致的整体破坏;当主应力与层面夹角逐渐增大时,岩体的破坏模式将转变为局部岩石块体的剪切屈服联合陡倾结构面形成贯通的联合破坏面的破坏模式;当主应力与层面夹角增大到45°到60°左右时,岩体以沿结构面的错动破坏为主。耦合随机分布裂隙砂岩的破坏路径不但与主应力方向有关,而且还与围压的大小、岩体模型的大小有关,但其最易发生破坏的路径为与最大主应力夹角在30°~45°之间的裂隙或岩块组成联合破坏面。
     (7)关于非贯通裂隙对砂岩岩体力学参数影响的探讨研究。对于应力状态较低的浅表岩体工程,岩体内部与主应力方向夹角较小的非贯通裂隙对岩体变形参数的影响是可以忽略的,对于与主应力方向夹角较大的非贯通裂隙则应根据实际工程对岩体整体变形的要求来考虑其对岩体变形参数的影响。但是,随着岩体非贯通裂隙的扩展开裂,其所需施加在岩体上的竖向压力越来越大,因此工程岩体应力水平较低时,在最大主应力增大到导致其中非贯通裂隙扩展开裂之前,岩体己经可能沿其包含的贯通裂隙组合而成的联通路径发生破坏。此时,非贯通裂隙对岩体破坏影响不大,岩体破坏主要受贯通裂隙的控制,非贯通裂隙对岩体强度的影响可以忽略不计。
Fractured rockmass is a kind of complex medium which is existing in dam foundation engineering, slope engineering, underground chamber engineering and so on. Its mechanical characteristics, such as deformation, strength, and penetrability of groundwater, can affect the design, construction and the long term stability of rockmass engineering directly. The engineering rockmass is a part of the geologic body in the engineering area. It is existing in a certain geological environment. The formation and development of rockmass has been affected and changed by all kinds of external dynamic geological process in geological history period. So the rockmass has been cut by discontinuities, and has a certain of structure characteristic. The rockmass shows itself as heterogeneous, discontinuous and anisotropism strongly. The deformation and failure of rockmass are also controlled by its structure characteristics. The traditional mechanical analysis methods for homogeneous, continuous and isotropy medium will not be suitable to evaluate the fractured rockmass. The study of deformation and failure of rockmass based on quantitative analysis of its structure conditions is an important question for discussion of the rockmass mechanics.
     The mechanics of the whole rockmass is always defined by the orientations and distributing of the discontinuities in rockmass. The failure and breakage of rockmass are all begeted by the connected fracture planes which come into being of rupturing, closing and expanding of cracks in rockmass. So, the distributing of rockmass discontinuities should be studied first. And then the deformation and strength properties of fractured rockmass can be realized correctly. Based on surveing discontinuities in the field, the discontinuity network can be rebuilded on the computer with the Monte-Carlo theory. The simulation results can be consistent with the real distributing of rockmass discontinuities in a statistical rule. So we can set up the models of rockmass structure to provide a basis for the further study of the mechanics of fractured rockmass.
     Because of the large number of discontinuities existing in rockmass, it would be very hard to confirm the macromechanical parameters of rockmass by in-situ tests or lab tests. In recent years, with the development of nonlinear science of fracture theory, damage theory, fractal geometry, and fuzzy mathematics, many kinds of models have been adopted to estimate the macromechanical parameters of fractured rockmass. However, the reciprocity theory of discontinuities in different stress conditions and the deformation and strength properties of rockmass in complex stress conditions are still the theoretics research difficulties, and have not yet been solved very well.
     With the development of numerical simulation technique, numerical test method, which colligate the results of is-situ investigations, discontinuities statistic, lab tests with small samples, can simulate the rockmass fractrures and its mechanical behavior with different scales. It provides a new approach to study the mechanical properties, failure theory and confirm its macromechanical parameters of fractured rockmass. As the deformation, strength and stability of rockmass are mainly controlled by the discontinuities, the simulation of discontinuities is become the key problem of these numerical methods. Distinct Element Method, based on the Newton's second law of motion, is especially adapted for discontinue deformation analysis of fractured rock mass. At present, the study of Distinct Element Method is still at the beginning phase, and much achievement need to be applied, compared and improved.
     The Enshi area in the west of Hubei Province, which locats on the end of the second ladder landform of China, is a part of the expend of Yunnan and Guizhou Plateau, and nearby the Szechwan basin. The rock slopes are often in a complex geological enviroment and have complicated geological structures. Because of all kinds of internal and external dynamic geological process, the structure of Silurian fractured sandstone rockmass can be destroied easily. Joints and fractures are very dense in these sandstone rockmasses. When the Silurian fractured sandstone stratum emerged on the ground, the fractured sandstone rockmasses can be deformed and breakaged by outside force. And the geological disasters of falling, sliding and debris flow may be induced.
     This study is under the guide of system science methodology. In-situ investigations, engineering geological analysis, statistic analysis, lab. tests, mechanic calculations and computer simulations are adopted for the research. The geological history cause of formation and stochastic distributing rule of the discontinuities in Silurian fractured sandstone rockmass have been analyzed. Numerical tests with different scale models of different structure characteristics of fractured sandstone rockmasses have been carried out in order to look for the deformation properties, failure modes, and estimate the defromation parameters and strength parameters. And they can be applied in engineering practice. So the main task completed in this paper are as follows:
     (1)Study on the structure characteristics of fractured sandstone rockmass in the west area of Hubei Province. The structural system in Enshi area in the west of Hubei province is come into being by Indosinian movement, Yanshan movement and Himalayan movement in a long term. The Silurian fractured sandstone stratum are effected by N-S compressive stress, N-S compressive-shear stress, NW-SE compressive stress, E-S compressive stress from early to late. And the NW, NE, NNW and NEE are the predominance directions of discontinuities. Each group of the discontinuities azimuth submits to normal distribution. The discontinuities obliquity of the third group submits to negative exponential distribution, and the others submit to logarithm normal distribution. The half trace length and aperature of the discontinuities submit to negative exponential distribution generally. With the intersection of sandstone layer and stochastic distributing discontinuities, the structural model of fractured sandstone rockmass can be generalized into three types: layered rockmass model, rockmass model contained fracturs attribute to two groups and rockmass model contained stochastic distributing discontinuities.
     (2)The mechanics of sandstone are obtained by lab tests. The average value of deformation modulus is 7.4GPa, the average Poisson's ratio is 0.25, the shear strength parameter internal friction angle is 42.3°, and the cohesion is 12.9MPa.
     (3)Study on the constitutive model and mechanical parameters of sandstone discontinuities. The power function model can represent the deformation properties of discontinuities fairly well. According to the results of normal cyclic loading tests, a linear-arc curve model is adopted. The linear model is adopted to fit the loading curve and an arc curve model is adopted to fit the unloading curve. The linear-arc curve model not only represent the sclerotic properties during the normal cyclic loading process of discontinuities, but aslo reproduce the hysteresis loops in cyclic loading tests. Besides, a half-logarithm function model is adopted to represent the shear deformation curves of sandstone discontinuities. In the low stress conditions, the the three parameters in three-parameter Mohr-Coulomb strength criterion can represent the shear strength properties of the discontinuities.
     (4)Study on the numerical tests of rock blocks and discontiuities. Through the numerical tests of rock blocks and discontinuities, the results of numerical compress tests of rock blocks and shear tests of discontinuities are consistent with the lab tests. It shows that the study of rockmass mechanical actions by numerical tests with Distinct Element Mehtod is reliable.
     (5)Study on the deformation properties and its deformation parameters of fractured sandstone rockmass. The compressive defromation properties and equivalent deformation parameters have a close relation to these factors: structure model of rockmass, network of discontinuities, analysis scale of rockmass, deformation parameters of rock blocks and discontinuities and so on. The macro equivalent deformation modulus of layered sandstone rockmass change from 3.91GPa to 7.36GPa, the equivalent Poisson's ratios change from 0.13 to 0.34; The macro equivalent deformation modulus of sandstone rockmass contained fractures attribute to two groups change from 3.25GPa to 4.86GPa, the equivalent Poisson's ratios change from 0.12 to 0.34; The macro equivalent deformation modulus of sandstone rockmass contained stochastic distributing discontinuities change from 1.68GPa to 2.75GPa, the equivalent Poisson's ratios change from 0.18 to 0.29. The deformation parameters of layered sandstone rockmass and sandstone rockmass contained fractures attribute to two groups are symmetrical with layer direction and its normal direction. The deformation parameters of sandstone rockmass contained stochastic distributing discontinuities are symmetrical with layer direction. Besides, the anisotropy of equivalent deformation parameters of layered sandstone rockmass is the most conspicuous of all, but its scale effect is the most unconspicuous; the anisotropy of equivalent deformation parameters of sandstone rockmass contained stochastic distributing discontinuities is the least conspicuous of all, but its scale effect is the most conspicuous; and the anisotropy and scale effect of sandstone rockmass contained fractures attribute to two groups are between the layered sandstone rockmass and sandstone rockmass contained stochastic distributing discontinuities.
     (6)Study on the failure modes and its strength parameters of fractured sandstone rockmasses. The failure properties and shear strength parameters have a close relation to these factors too, such as structure model of rockmass, network of discontinuities, analysis scale of rockmass, deformation parameters of rock blocks and discontinuities and so on. With the quantity of discontinuities increasing, the equivalent shear strength parameters of fractured rockmass will minish gradually. And the quantity of discontinuities is bigger, the anisotropy of the strength parameters is less conspicuous, but its scale effect will be more conspicuous. The shear strength parameter internal friction angles of layered sandstones change from 29.7°to 42.3°, and the average value is 38.6°; the cohesions change from 0.1 to 12.9MPa, and the average value is 7.2MPa. The shear strength parameter internal friction angles of sandstones contained fractures attribute to two groups change from 29.5°to 42.1°, and the average value is 35°; the cohesions change from 0.2 to 12.6MPa, and the average value is 6.1MPa. The shear strength parameter internal friction angles of sandstones contained stochastic distributing discontinuities change from 28.3°to 38.1°, and the average value is 32.5°; the cohesions change from 0.2 to 13.5MPa, and the average value is 2.65MPa. The failure mode of layered sandstone has a close relation to the principal stress directions. With the angles between the layer direction and the principal stress directions increasing, three different failure modes will happen: shear yield of rock block, mixed failure of rock block and disncontinuities and slide failure along the discontinuities. When the principal stress parallel to the layer of rockmass or the angle between them is on the small side, holistic failure caused by the yield of rock block material will happen in the fractured sandstone rockmass contained fractures attribute to two groups. When this angle become bigger, the failure mode will be changed to another one, combining failure surface of local rock block yield surface and discontinuities with steep dip angles. When this angle is between 45°and 60°more or less, the main failure mode is slide along the discontinuities. However, the failure modes of fractured rockmass contained stochastic distributing discontinuities not only have a relation to the principal directions, but also have a relation to the confining pressures and the scale of rockmass models. And the failure paths are mostly the combined surfaces of the discontinuities which have an angle of 30°to 45°to the maximum principal stress.
     (7)Discussion on the influences of the intermittent fractures to the mechanical parameters of rockmasses. For rockmass engineering in shallow surface, the influences of these intermittent fractures to the equivalent deformation parameters can be ignored, which have small angles with the principal stress directions. However, for these intermittent fractures, which have large angles with the principal stress directions, its influences should be considered with the deformation standard of the whole engineering rockmass. However, with the expanding and cracking of the intermittent fractures in sandstone rockmass, the vertical compressive stress inflicted on the rockmass should be more greater. So if the stress of engineering rockmass is low, before the intermittent fractures are cracked by the maximum principal stress, a failure along a combined path of transfixed discontinuities may happen in the fractured rockmass. In this condition, the intermittent fractures have little influence to the failure of rockmass. The failure of rockmass is controlled by the transfixed discontinuities, and the influence of the intermittent fractures to the strength parameters of fractured rockmass can be ignored.
引文
[1] 谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979
    [2] 孙玉科,牟会宠,姚宝魁.边坡岩体稳定性分析[M].北京:科学出版社,1988
    [3] 孙广忠.岩体结构力学[M].北京:科学出版社,1988
    [4] Binham C. Distributions on the sphere and on the projective plan[D]. Yale university. 1984:93-95
    [5] Hock E., Brown E. T. Underground excavation in rock[M]. London. 1980
    [6] Hock E., Bray J. W. Rock slope engineering[M]. London: IMM, 1981
    [7] Shanley R. J., Mathtab M. A. Delimeation and analysis of clusters in orientation data[J].Math. Geol. 1976, 9-23
    [8] Mahtab M. A., Yegulalp T. M. Rejection criterion for definition of clusters in orientation data[C]. Proceedings 23rd Symposium on Rock Mechanics, 1982, p116-123
    [9] Yegulalp T. M., MahtabM. A., Proposed model for statistical representation of mechanical properties of rock[C]. Proceedings - Symposium on Rock Mechanics, 1983, p 61-69
    [10] Mahtab M. A., Yegulalp T. M. Similarity test for grouping orientation date in rock mechanics[C]. Proceedings - 25th Symposium on Rock Mechanics, 1984, p 495-502
    [11] Kulatilake P. H. S.W. and Wu T.H. Estimation of Mean Trace Length of Discontinuties[J]. Rock Mech.&Rock Engng., 1984, 17(4): 215-232
    [12] Kulatilake P.H. S. W., Wu, T. H. Sampling bias on orientation of discontinuties[J]. Rock Mech.&Rock Engng., 1984, 17(4): 243-253
    [13] Wathugala Deepa N., Kulatilake P. H.S.W., Wathugala Gamage W. General procedure to correct sampling bias on joint orientation using a vector approach[J]. Computers and Geotechnics, 1990, 10(1): 1-31
    [14] Deere D C. Technical description of rock cores for engineering purposes[J]. Rock Mech.&Eng. Geol., 1964,(1): 17-22
    [15] Bieniawski Z T. Engineering classification of jointed rock masses[J]. Trans. S. African Inst.Civil Eng., 1973, 15(12):335-344
    [16] Einstein H. H., Baecher G. B. Probabilistic and statistical methods in engineering geologoy specific methods and examples. Part Ⅰ exploration[J]. Rock Mech.&Eng. Geol., 1983,16(1):39-72
    [17] Priest S. D., Hudson J. A. Discontinuity spacings in rock[J]. Int. J. of Rock Mech. Min. Sci.& Geomech. Abstr., 1976, 13(5): 135-148
    [18] Hudson J. A., Priest S. D. Discontinuities and rock mass geometry[J]. Int. J. of Rock Mech. Min. Sci. & Geomech. Abstr., 1979, 16(6): 339-362
    [19] Hudson J. A., Priest S. D. Discontinuity frequency in rock masses[J]. Int. J. of Rock Mech. Min. Sci. & Geomech. Abstr., 1983, 20(2): 73-89
    [20] Karzulovic A. , Goodman R. E. Determination of principal joint frequencies[J]. Int. J. of Rock Mech. Min. Sci. & Geomech. Abstr., 1985, 22(6): 471-473
    [21] Sen Z., Kazi A. Discontinuity spacing and RQD estimates from finile length scanline[J].Inter J. Rock, Mech, Min. Sci. and Geomech Abstr. 1984, 21 (4):203-212
    [22] Steffen O. H. K. et al. Recent developments in the interpretation of data from the joint surveys in rock masses[C]. Proc. 6~(th) Regional Conf. for Africa on Soil Mech. and Foundation Engineering Durban, South Africa, 1975:135
    [23] Cruden D.M. Describing the Size of Discontinuities[J]. Int. J. Rock Mech. Sci.& Geomech. Abstr. 1977, 14(3) :133-137
    [24] Baecher C. B., Lanney N. A. Trace length biases in joint surveys [C]. Proc. 19th US symp on Rock mech. Nevada;1978:56-65
    [25] Wallis P.F., King M. S. Discontinuity spacings in crystalline rock[J]. Inter J. Rock Mech. Min. Sci and Geomech Abstr. 1980, 17(1): 63-66
    [26] Roulean A., Gale J. E. Statical Characterisation of fracture system in the Stripa Granite[J]. Inter. J. Rock Mech. Min. Sci. and Geomech. Abstr., 1985, 22(6):353-367
    [27] Laslett.G.M. Censoring and edge effects in area and line transect sampling of rock joint traces[J].Mathematical geology. 1982
    [28] Kulatilake P.H.S.W et al. New Peak Strength Criteria for Anistropic Rock Joints[J]. Int. J. Rock Mech. Sci.& Geomech. Abstr. 1995, 32(7):673-697
    [29] 黄润秋,许模,胡卸文等.复杂岩体结构精细描述及其工程应用[M]北京:科学出版社,2004
    [30] 袁绍国,王震.节理测量误差的来源及其分析[J].包头钢铁学院学报,1998,17(4):253-257
    [31] 袁绍国,王震.节理测量中迹长误差的计算机模拟分析[J].金属矿山.1999,(2):5-11
    [32] 陈剑平,吴源,尚晓春.取样窗口迹长均值估计方法的讨论[J].工程地质学报.2001,9(3):302-307
    [33] Barton N. A model study of rock-joint deformation[J]. Int. J. of Rock Mech. Min. Sci. &Geomech. Abstr., 1972, 9(5):579-602
    [34] Barton N. Review of a new shear-strength criterion for rock joints[J]. Eng. Geol., 1973,7(4):287-417
    [35] Barton N., Choubey V. The shear strength of rock joints in theory and practice[J]. Rock Mech. 1977,10:1-54.
    [36] Barton N., Bandis S.Some effects of scale on the shear strength of rock behavior of rock joints[J]. Int. J. Rock Mech. Min. Sci. Geomech. Abst., 1980, 17(1): 69-73
    [37] Barton N.,Bandis S. Effects of block size on shear behavior of joints rock[C]. 23rd. U. S. Symp. On Rock Mech. Berkely, CA. 1982. pp. 739-73
    [38] Barton N., Bandis S., Bakhtar K. Strength, deformation and conductivity coupling of rock joints[J]. Int. J. of Rock Mech. Min. Sci. & Geomech. Abstr., 1985, 22(3): 121-240
    [39] Barton N.,Bandis S. Review of predictive capability of JRC-JCS model in engineering practice[M]. Rock joints. Balkema AA. 1990, pp. 603-610.
    [40] ISRM. Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses[J]. Int. J. Rock Mech.Min.Sci.&Geomech.Abstr. 1978, 15(6): 319-368
    [41] Tse. R., Cruden D. M. Estimating joint roughness coefficients[J]. Int. J. Rock Mech. Min.Sci. &Geomech. Abst. 1979, 16:303-307.
    [42] 王歧.用伸长率R确定岩石节理粗糙度系数的研究[C].地下工程经验交流会论文选集.北京:地质出版社.1986,343-348
    [43] 杜时贵.直边法估测JRC的实践检验[C].第三届全国青年工程地质学术讨论会论文集.成都:成都科技大学出版社.1993,575-579
    [44] Carr J. R., Warriner J. B. Rock mass classification using fractal dimension[C]. 28tn US Symp. On Rock Mech. Tucson. 1987.
    [45] Turk N., Greig M. J. Dearman W. R. et al. Characterization of rock joint surfaces by fractal dimension[C]. 28tn US Symp. On Rock Mech. Tucson. 1987:1223-1236
    [46] 谢和平.岩石节理粗糙系数(JRC)的分形估计[J].中国科学(B辑),1994,24(5):524-530
    [47] Beer A. J., Stead D., Conggan J. S. Estimation of the joint roughness coefficient (JRC) by visual coMParison[J]. Rock Mech. Rock Engng. 2002,35(1):64-75
    [48] Chae B.G., Ichikawa Y., Jeong G.C. et al. Roughness measurement of rock discontinuities using a confocal laser scanning microscope and the Fourier spectral analysis[J]. Engng. Geol., 2004, 72(3): 181-199
    [49] 徐光黎,潘别桐,唐明辉等.岩体结构模型与应用[M].武汉:中国地质大学出版社,1993
    [50] 陶振宇,王宏.岩石力学中节理网络模拟技术[J].长江科学院院报.1990,7(4):18-26
    [51] 周维垣,杨强.岩石力学数值计算方法[M].北京:中国电力出版社,2005.
    [52] 刘连峰,王泳嘉.三维节理岩体计算模型的建立[J].岩石力学与工程学报.1997,16(1):36-42
    [53] 陈征宙,胡伏牛,方磊等.岩体节理网络模拟技术研究[J].岩土工程学报.1998,20(1):22-25
    [54] 秦四清,张淖元,王士天等.节理岩体的分维特征及其工程地质意义[J].工程地质学报.1993,(2):14-23
    [55] 陈剑平,王清,肖树芳.岩体裂隙网络分数维计算机模拟[J].工程地质学报,1995,3(3):79-85
    [56] 黄国明,黄润秋.节理岩体分形描述[J].中国煤田地质,1998,10(3):45-48
    [57] 刘建国,彭功勋,韩文峰.岩体裂隙网络的分形特征[J].兰州大学学报(自然科学版).2000,36(4):96-99
    [58] 盛建龙,伍佑伦.基于分形几何理论的岩体结构面分布特征研究[J].金属矿山,2002, (8):45-47
    [59] Peter B. Attewell, Michael R. Sandford. Intrinsic shear strength of a brittle, anisotropic rock-Ⅰ : Experimental and mechanical interpretation[J]. Int. J. of Rock Mech. Min. Sci. &Geomech. Abstr., 1974, 11(11): 423-430
    [60] Peter B. Attewell, Michael R. Sandford. Intrinsic shear strength of a brittle, anisotropic rock-Ⅱ : Textural data acquisition and processing [J]. Int. J. of Rock Mech. Min. Sci. &Geomech. Abstr., 1974, 11(11): 431-439
    [61] Peter B. Attewell, Michael R. Sandford. Intrinsic shear strength of a brittle, anisotropic rock-Ⅲ : Textural interpretation of failure [J]. Int. J. of Rock Mech. Min. Sci. & Geomech.Abstr., 1974, 11(11): 439-451
    [62] G. Duveau, J. F. Shao. A Modified Single Plane of Weakness Theory for the Failure of Highly Stratified Rocks[J]. Int. J. of Rock Mech. Min. Sci., 1998, 35(6): 807-813
    [63] M. H. B. Nasseri, K. S. Rao, T. Ramamurthy. Anisotropic strength and deformational behavior of Himalayan schists[J]. Int. J. of Rock Mech. Min. Sci., 2003, 40(1): 3-23
    [64] Tien YM, Kuo MC. A failure criterion for transversely isotropic rocks[J]. Int. J. of Rock Mech. Min. Sci., 2001, 38(5): 399-412
    [65] H. H. Einstein, D. Veneziano, G. B. Baecher et al. The effect of discontinuity persistence on rock slope stability [J]. Int. J. of Rock Mech. Min. Sci. & Geomech. Abstr., 1983, 20(5):227-236
    [66] T. Ramamurthy, V. K. Arora. Strength predictions for jointed rocks in confined and unconfined states [J]. Int. J. of Rock Mech. Min. Sci. & Geomech. Abstr., 1994, 31(1):9-22
    [67] T. Ramamurthy. Shear strength response of some geological materials in triaxial compression[J]. Int. J. of Rock Mech. Min. Sci., 2001, 38(5): 683-697
    [68] P. H. S. W. Kulatilake, Bwalya Malama, Jialai Wang. Physical and particle flow modeling of jointed rock block behavior under uniaxial loading[J]. Int. J. of Rock Mech. Min. Sci. ,2001, 38(5): 641-657
    [69] Z.Y. Yang, J.M. Chen, T.H. Huang. Effect of joint sets on the strength and deformation of rock mass models[J]. Int. J. of Rock Mech. Min. Sci. ,1998, 35(1): 75-84
    [70] Even Hoek著,刘丰收等译.实用岩石工程技术[M].郑州:黄河水利出版社,2002.
    [71] Lajtai E. Z.. Shear Strength of Weakness Planes in Rock[J]. Int. J. of Rock Mech. Min. Sci.& Geomech. Abstr. 1969, 6(7): 499-515
    [72] Lajtai E Z. Strength of Discontinuous Rocks in Direct Shear[J]. Geotchnique. 1969, 19(2):218-233
    [73] Lajtai E. Z. A theoretical and experimental evaluation of the Griffith theory of brittle fracture[J]. Techonophysics. 1971,11(1): 129-156
    [74] Savilabti T, Nordlund E, Stephansson O. Shear box testing and modeling of joint bridge[A].Rock joints by Barton N R, Stephansson O. Proc Tnt Symp Rock Joints. Norway, 1990:295-300
    [75] 朱维申,梁作元,冯光北,等.节理岩体强度特性的物理模拟及其强度预测分析[C].葛修润主编.计算机方法在岩石力学及工程中的应用国际学术讨论文集.武汉:武汉测绘科技大学出版社,1994
    [76] 梁作元,朱维申.压剪应力作用下含共面闭合节理岩石材料的剪切破坏准则探讨[C].朱维申编.中国青年学者岩土工程力学及其应用讨论会议论文集.北京:科学出版社,1994
    [77] 徐靖南,朱维申.压剪应力作用下共线裂纹的强度判定[J].岩石力学与工程学报.1995,14(4):306-311
    [78] 朱维申,陈卫忠.雁型裂纹扩展的模型试验及断裂机制研究[J].固体力学学报.1998,19(4):355-360
    [79] 陈卫忠,李术才,朱维申等.岩石裂纹扩展的实验与数值分析研究[J].岩石力学与工程学报.2003,22(1):18-23
    [80] 白世伟,任伟中,丰定祥等.共面闭合非贯通岩体强度特性直剪试验研究[J].岩土力学,1999,20(2):10-16
    [81] 白世伟,任伟中,丰定祥等.平面应力条件下闭合非贯通岩体破坏机制及强度特性[J].岩石力学与工程学报.1999,18(6):635-640
    [82] 沈婷,丰定祥,任伟中等.由岩桥和岩桥组成的剪切面强度特性研究[J].岩土力学.1999,20(1):33-38
    [83] 任伟中,白世伟,丰定祥等.直剪条件下共面闭合非贯通岩体的强度特性分析[C].第六次全国岩石力学与工程学术大会论文集.北京:2000
    [84] 任伟中,王庚荪,白世伟等.共面闭合非贯通岩体的直剪强度研究[J].岩石力学与工程学报.2003,22(10):1167-1672
    [85] C.Gahle, H.K. Kutter, Breakage and shear behaviour of intermittent rocks joints[J]. Int. J. of Rock Mech. Min. Sci., 2003, 40(5): 687-700
    [86] 晏石林.岩体等效模型的复合解析法与节理有限元法[D].武汉:武汉工业大学,1998
    [87] 朱维申,王平.节理岩体的等效连续模型与工程应用[J].岩土工程学报.1992,14(2):1-11
    [88] Kawamoto T., Ichikawa Y., Kyoya T. Deformation and fracture behavior of discontinuous rock mass and damage mechanics theory[J]. Int. J. for Num. and Analy. Meth. in Geomech.1988, 12(1):1-30
    [89] Kawamoto T A. Modeling of jointed rock mass[C]. Proc, 6~(th) Int. Conf. Num. Meth.Geomech. Innsbruck. 1988, 24-32
    [90] 周维垣,杨延毅.节理岩体的损伤断裂模型及验证[J].岩石力学与工程学报.1991,10(1):43-54
    [91] 周维垣,杨延毅.节理岩体力学参数取值研究[J].岩土工程学报.1992,14(5):1-11
    [92] 何满潮,薛延河,彭延飞.工程岩体力学参数确定方法的研究[J].岩石力学与工程学报.2001,20(2):225-229
    [93] 周火明,盛谦.三峡工程永久船闸边坡岩体宏观力学参数的尺寸效应研究[J].岩石力学与工程学报.2001,20(5):661-664
    [94] 盛谦,杨启贵,陈胜宏等.节理岩体宏观力学参数的计算机模拟试验[J].地下空间.1999,19(5):482-487
    [95] 盛谦,黄正加,邬爱清.三峡节理岩体力学性质的数值模拟试验[J].长江科学院院报.2001,18(1):35-37
    [96] 唐辉明,张宜虎,孙云志.岩体等效变形参数研究[J].地球科学-中国地质大学学报.2007,32(3):389-396.
    [97] 章广成.裂隙岩体等效力学参数及工程应用研究[D].武汉:中国地质大学(武汉).2008
    [98] 王志宏.岩石强度理论中的两类破坏判据[J].北京科技大学学报.1992,14(3):297-304
    [99] 俞茂宏.岩土类材料的统强度理论及其应用[J].岩土工程学报.1994,16(2)1-9
    [100] 沈珠江.破坏准则和屈服函数的总结[J].岩土工程学报.1995,17(1):1-8
    [101] 俞茂宏,强洪夫.工程强度理论的发展和统一[J].宁波大学学报.1996,9(9):79-86
    [102] 尤明庆.岩石强度和强度准则[J].岩石力学与工程学报,1998,17(5):602-604
    [103] 俞茂宏,咎月稳,范文.20世纪岩石强度理论的发展[J].岩石力学与工程学报.2000,19(5):545-550
    [104] 俞茂宏.强度理论百年总结[J].力学进展.2004,34(4):529-560
    [105] 俞茂宏,M.Yoshimine,强洪夫等.强度理论的发展和展望[J].工程力学.2004,21(6):1-20
    [106] 俞茂宏,刘继明,ODA Yoshiya等.论岩土材料屈服准则的基本特性和创新[J].岩石力学与工程学报.2007,26(9):1744-1756
    [107] 阮怀宁,徐志英.非均质非线性各向异性岩石破坏准则研究[J].河海大学学报.1992,20(5):1-5
    [108] 高廷法,陶振宇.岩石强度准则的真三轴压力试验与分析[J].岩土工程学报.1993,15(4):26-32
    [109] 许强,黄润秋.岩体强度的各向异性研究[J].水文地质工程地质.1993,14(3):10-12
    [110] 李建林.岩体三轴强度、破坏准则及参数研究[J].武汉水利电力大学(宜昌)学报.1998,20(6):1-5
    [111] 刘宝琛,崔志莲,涂继飞.幂函数型岩石强度准则研究[J].岩石力学与工程学报.1997,16(5):437-444
    [112] 刘宝琛.关于幂函数型岩石强度准则的讨论[J].岩石力学与工程学报.1998,17(5):605-605
    [113] 严春风,徐建著.岩体强度准则概率模型及其应用[M].重庆:重庆大学出版社,1999
    [114] 周家文,徐卫亚,石崇.基于破坏准则的岩石压剪断裂判据研究[J].岩石力学与工程学报.2007,26(6):1194-1201
    [115] 俞茂宏.双剪理论及其应用[M].北京:科学出版社.1998
    [116] 杨雪强,余天庆,何世秀.对岩石双剪强度准则的探讨[J].岩石力学与工程学报. 2002,21(7):1049-1053
    [117] 咎月稳,俞茂宏,王思敬.岩石的非线性统一强度准则[J].岩石力学与工程学报.2002,21(10):1435-1441
    [118] 李春光,郑宏,葛修润等.双参数抛物型Mohr强度准则及其材料破坏规律研究[J].岩石力学与工程学报.2005,24(24):4428-4433
    [119] 刘金龙,栾茂田,许成顺等.Drucker-Prager准则参数特性分析[J].岩石力学与工程学报.2006,25(supp.2):4009-4014
    [120] 郑颖人,高红.岩土材料基本力学特性与屈服准则体系[J].建筑科学与工程学报.2007,24(2):1-5
    [121] 高红,郑颖人,冯夏庭.岩土材料最大主剪应变破坏准则的推导[J].岩石力学与工程学报.2007,26(3):518-524
    [122] 郑颖人.岩土材料屈服与破坏及边(滑)坡稳定分析方法研讨--“三峡库区地质灾害专题研讨会”交流讨论综述[J].岩石力学与工程学报.2007,26(4):649-661
    [123] Evert Hoek. Strength of jointed rock masses[J]. Geotechnique. 1983, 23(3): 187-223
    [124] E. Hoek, C. Carranza-Torres, B. Corkum. Hoek-Brown failure criterion- 2002 Edition[C].Proc. NARMS-TAC Conference, Toronto, 2002, 1,267-273
    [125] 高峰,谢和平,赵鹏.岩石块度分布的分形性质及细观结构[J].岩石力学与工程学报.1994,13(3):240-246
    [126] 高峰,谢和平,巫静波.岩石损伤和破碎相关性的分形分析[J].岩石力学与工程学报.1999,18(5):497-502
    [127] 高峰,钟卫平,黎立云等.节理岩体强度的分形统计分析[J].岩石力学与工程学报.2004,23(21):3608-3612
    [128] 黎立云,许凤光,高峰等.岩桥贯通机理的断裂力学分析[J].岩石力学与工程学报.2005,24(23):4328-4334
    [129] 凌建明,蒋爵光,付永胜.非贯通裂隙岩体力学特性的损伤力学分析[J].岩石力学与工程学报.1992,11(4):373-383
    [130] 凌建明,孙钧.应变空间表述的岩体损伤本构关系[J].同济大学学报.1994,22(2):135-140
    [131] 钱惠国,凌建明,蒋爵光.非贯通裂隙岩体经验强度准则的研究[J].西南交通大学学报.1994,29(1):79-95
    [132] 凌建明.节理裂隙岩体损伤力学研究中的若干问题[J].力学进展.1994,25(2):257-264
    [133] 凌建明.岩体蠕变裂纹起裂与扩展的损伤力学分析方法[J].同济大学学报.1995,23(2):141-146
    [134] 凌建明,孙钧.建立在损伤应变空间的岩体破坏准则[J].同济大学学报.1995,23(5):483-487
    [135] 李同录,罗世毅,何剑等.节理岩体力学参数的选取与应用[J].岩石力学与工程学报.2004.23(13):2182-2186
    [136] 汪小刚,陈祖煜.岩体结构面调查统计和计算机模拟分析[J].水利水电利科学研究院报.1992,(4):48-52
    [137] 汪小刚,陈祖煜,刘文松等.应用蒙特卡洛法确定节理岩体抗剪强度[J],岩石力学与工程学报.1992,11(4):345-355
    [138] 汪小刚,贾志欣,陈祖煜.岩体结构面网络模拟原理在节理岩体连通率研究中的应用[J].水利水电技术.1998,(10):43-47
    [139] 贾志欣,汪小刚.包含定位长大裂隙的节理岩体连通率的计算及应用[J],岩石力学与工程学报.2001,20(4):457-461
    [140] 杜景灿,汪小刚,陈祖煜.结构面倾角对节理岩体的连通特性和综合抗剪强度的影响[J].水利学报.2002,(5):41-46
    [141] 张发明,汪小刚,贾志欣等.3D裂隙网络随机模拟及其工程应用研究[J].现代地质.2002,16(1):100-103
    [142] 杜景灿,陈祖煜,汪小刚.寻优方法在岩体结构面连通特性和综合抗剪强度研究中的应用[J].岩石力学与工程学报.2003,22(9):1441-1447
    [143] 张发明,汪小刚,贾志欣.三维结构面连通率的随机模拟计算[J].岩石力学与工程学报.2004,23(9):1486-1490
    [144] 杜景灿,陈祖煜,弥宏亮.三维条件下应用遗传算法与Monte-Carlo法确定节理岩体的综合抗剪强度[J].岩石力学与工程学报.2004,23(13):2157-2163
    [145] 武雄,贾志欣,陈祖煜等.工程岩体抗剪强度确定综合方法--GMEM研究[J],岩石力学与工程学报.2005,24(2):246-251
    [146] Stietel A., Millard A., Treille E., et al. Continuum representation of coupleed hydromechanics processes of fracture media. In: Stephansson O, Jing L, Tsang C F, editors.Coupled thermal-hydro-mechanical processes of fractured medium. Developments in Geological Engineering, vol. 79, Amsterdam: Elsevier Science BV, 1996
    [147] A.Pouya and M. Ghoreychi. Determination of rock mass strength properties by homogenization. Int. J. Numer. Anal. Meth. Geomech[J]. 2001,25:1285-1303
    [148] 刘东燕,朱可善.岩石压剪断裂及其强度特性分析[J].重庆建筑工程学院学报.1994,16(2):54-60
    [149] 李建林.岩石边坡卸荷岩体宏观力学参数研究[M].北京:中国建筑工业出版社.1997
    [150] 唐春安,赵文.岩石破裂全过程分析系统RFPA2D[J],岩石力学与工程学报.1997,16(5):507-508
    [151] 梁正召,唐春安,李厚样等.单轴压缩下横观各向同性岩石破裂过程的数值模拟[J].岩土力学.2005,26(1):57-62
    [152] Thapa B. B., Ke T.C., Goodman R. E. et al. Numericall simulated direct shear testing of in situ joint roughness profiles[J]. Int. J. of Rock Mech. Min. Sci. & Geomech. Abstr., 1996,33(1): 75-82
    [153] Thapa B. B., Goodman R. E. The induced wedge test for field measurement of joint friction[J]. Int. J. of Rock Mech. Min. Sci, & Geomech. Abstr., 1996, 33(1): 655-657
    [154] Rajinder Bhasin, Kaare Hoeg. Numerical Modelling of Block Size Effects and Influence of Joint Properties in Multiply Jointed Rock[J]. Tunnelling and Undergroud Space Technology. 1997,12 (3):407-415
    [155] Ki-Bok Min, Lanru Jing. Numerical determination of the equivalent elastic compliance tensor for fractrued rock masses using the distinct element method[J]. Int. J. Rock Mech.Min. Sci. 2003, 40(6):795-816
    [156] K.B. Min, L. Jing and O.Stephansson, Determining the equivalent permeability tensor for fractured rock mass using a stochastic REV aprpach: method and application to the field data from Sellafield, UK. Hydrogeol. 2004, 12(5)497-510
    [157] 李世海,董大鹏,燕琳.含节理岩块单轴受压试验三维离散元数值模拟[J].岩土力学2003,24(4):648-652
    [158] 李世海,汪远年.三维离散元计算参数选取方法研究[J].岩石力学与工程学报.2004,23(21):3642-3651
    [159] 李树忱,李术才.断续节理岩体破坏过程的数值方法及工程应用[M].北京:科学出版社.2007
    [160] 张志刚.节理岩体强度确定方法及其各向异性特征研究[D].北京:北京交通大学,2007
    [161] 湖北省地质矿产局.湖北省区域地质志[M].北京:地质出版社,1990
    [162] 徐瑞春,谢广林,吴树仁.清江流域断裂活动性与地壳稳定性研究[M].北京:科学出版社,2000
    [163] 王渭明,李先炜.裂隙岩体优势结构面产状反演[J].岩石力学与工程学报,2004,23(11):1832-1835.
    [164] 陈剑平,石丙飞,王清.工程岩体随机结构面优势方向的表示法初探[J].岩石力学与工程学报,2005,24(2):241-245
    [165] 荣冠,周创兵,朱焕春,等.三峡水库某库段岩体裂隙网络模拟研究[J].岩土力学,2004,25(7):1122-1126
    [166] 夏才初,孙宗颀.工程岩体节理力学[M].上海:同济大学出版社,2002
    [167] 刘佑荣,唐辉明.岩体力学[M].武汉:中国地质大学出版社,1999
    [168] 朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,2000
    [169] 范天佑.断裂理论基础[M].北京:科学出版社,2003
    [170] 尹双增.断裂、损伤理论及应用[M].北京:清华大学出版社,1992
    [171] 易顺民,朱珍德.裂隙岩体损伤力学导论[M].北京:科学出版社,2005
    [172] 朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002
    [173] 徐靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学特性--本构模型[J].岩土力学,1993,14(4):1-15
    [174] 周家文,徐卫亚,石崇.基于破坏准则的岩石压剪断裂判据研究[J].岩石力学与工程学报,2007,26(6):1194-1201
    [175] 郑炎,刘杰,李建林,王乐华.C-M和D-P屈服准则参数与岩石断裂韧度关系研究[J].华中科技大学学报(城市科学版),2006,23(sup.2):30-32
    [176] 土桂尧,孙宗颀,徐纪成.岩石压剪断裂机理及强度准则的探讨[J].岩土工程学报,1996,18(4):68-74
    [177] 李建林,孙志宏.节理岩体压剪断裂及其强度研究[J].岩石力学与工程学报,2000,19(4):444-448
    [178] 王元汉,徐钺,谭国焕等.岩体断裂的破坏机理与计算模拟[J].岩石力学与工程学报,2000,19(4):449-452
    [179] 何江达,张建海,范景伟.霍克-布朗强度准则中m,s参数的断裂分析[J].岩石力学与工程学报,2001,20(4):432-435
    [180] 郭少华,孙宗颀,谢晓睛.压缩条件下岩石断裂模式与断裂判据的研究[J].岩土工程学报,2002,24(3):304-308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700