用户名: 密码: 验证码:
城市热岛演变及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市化导致城市人口和建筑的迅速增加,城市自然地表逐渐被城市不透水地表如水泥、柏油路面及混凝土等所代替,地表覆盖性质的改变使得地表与大气间的水分、物质和能量交换发生变化,形成城市地区气温或者地表温度明显高出城市周围的特殊小气候特征——城市热岛效应。城市热岛引起的城市地表温度的升高将产生一系列的生态环境效应,调节和控制着城市生态系统的结构和功能,研究城市化过程中的城市热岛时空演变特征及其主要影响因素是城市热岛的核心,将为改善城市人居环境、城市规划、环境管理及城市的可持续发展提供理论依据和技术支撑。
     本文以武汉市为例,以1987-2007年约20年间的遥感卫星影像Landsat TM数据为主要数据来源,结合气象站点的统计资料和城市土地利用信息,以遥感定量反演和GIS空间分析为技术支撑,以景观生态学理论为指导,全面系统的分析了城市化地表覆盖类型变化、不透水面分布、城市热岛时空演变特征及其主要影响因素分析,并得出以下结论:
     (1)从入口城市化、经济城市化、空间城市化和生活方式的城市化四个层次选取15项代表城市化特征指标,并分析武汉市1987-2007年的城市化发展与武汉市气温变化趋势的影响,结果表明城市化对武汉市20年的气温具有明显的贡献。
     (2)对武汉市地表温度的时空分布特征的分析结果表明武汉市地表温度的分布与城市发展有着较好的一致性,高温集中分布于建设密度大、人口集中的城市中心区和城镇的建成区,而低温则分布于大型水体及武汉市的近郊和郊区的植被覆盖区:随着城市化的发展对城市热环境特征的影响,武汉市高温区面积有着明显的增加趋势,热岛范围也明显扩张。
     (3)1987-2007年各土地利用/覆盖类型变化明显,其中变化最大的是建设用地的面积,20年间增加了303.14%,不同的土地利用/覆盖类型的热环境特征表现出明显的差异:建设用地和裸地表现出类似的高温,成为热岛最容易发生的区域,而有植被覆盖的耕地、林地和草地则表现出较低的温度,最低温度则主要集中在水体类型;超过90%的建设用地区域和超过80%的裸地区域被次高温和高温占据,说明这两种类型的地表覆盖更容易成为热岛中心,只有0.01%到1.6%的水体面积被确定为热岛。
     (4)20年间中密度发展区域(45%80%)面积分别增加了424.34%和221.00%,说明城市化的发展导致城市新增道路和建设面积的增加,从而使城市不透水面率不断增加;城市热岛范围的扩张与城市不透水面的增加趋势表现出良好的一致性,这就说明不透水面率能很好的诠释城市热岛的变化;利用1%和0.01的增量分别统计ISA和LST平均地表温度并进行分析,结果表明平均NDVI与地表温度之间具有更强的线性相关性,并且对地表温度的影响也更大。
     (5)对武汉市不同尺度范围内城市热岛的主要影响因素进行分析,并对各影响因子进行主成分回归分析,结果表明,各影响因子对地表温度的影响具有明显的尺度性。本文所选与人类活动有关的影响因子对市域5000m×5000m尺度的地表温度影响并不明显,对中心城区2000m×2000m和建成区1000m×1000m尺度地表温度有较大的影响,且各影响因子的影响程度各不相同。总的来说,与硬化地表有关的指数如归一化建筑指数和不透水面率对地表温度的升高贡献最大,水体面积比例对地表温度有降低的作用,植被覆盖相关的因子对地表温度的影响随尺度变化最大。
Rapid urbanization results in a tremendous growth of population and buildings in cities, as well as an increasing replacement of natural landscapes by impervious surface areas. With the reduction in vegetated area and an increase in impervious area, land surface properties (such as soil water content and vegetation cover) are modified. These modifications consequently alter the exchanges of water, matter and energy between land surface and boundary layers. Urban areas typically experience higher surface and air temperatures when compared to the surrounding rural areas, known as urban heat island (UHI) effect. Increased temperatures may lead to a series of environmental issues, which changes the ecological structures and functions in city. How urban heat island forms and what are the major factors are the key issues of UHI-related problems. The solutions can provide useful information for urban planning, environmental management and air quality improvement.
     In this study, remote sensing techniques were applied to derive information on land use/land cover (LULC) and land surface temperature (LST). The multi-temporal Landsat-5Thematic Mapper (TM) images of1987,1996and2007were used to detect the LULC changes, impervious surface area (ISA) distribution, UHI spatio-temporal variation and the associated major factors and analyze their relationships among these elements. The main findings are followed:
     (1) Fifteen variables indicating urbanization level were selected and their impacts on air temperature were analyzed. The linear regression correlations between the variables and air temperature were then modeled. Results show that air temperatures tended to positively correlate with all variables associated with urbanization. This implied that urbanization had a significant influence on urban air temperatures and urban heat island.
     (2) The LST spatial distribution corresponded to the urbanized area, with an ongoing expansion from1987to2007. Higher temperatures centralized in the center of the city where urban or built-up areas prevailed. This forms the vivid'heat island', which compares to lower temperatures found in suburbs with high vegetation coverage. The Yangtze River together with other water bodies had relatively lower temperatures, which produced a'cool corridor'flowing through the city.
     (3) Wuhan has experienced an ongoing and accelerated urbanization from1987to2007with the urban built-up area increasing by nearly303.14%. LST values varied with land use/land cover types. Generally, water type exhibited the lowest mean temperatures as compared to the other land cover types. The built-up and bare lands were found to have similarly higher temperatures. Only0.01%to1.60%of the water areas were identified as heat islands, with most areas classed into the classes of low and sub-low temperature. However, more than90%urban areas and nearly80%of the bare land areas were occupied by sub-high and high temperatures, indicating UHI effect frequently occurred in these two land cover types.
     (4) There has been a drastic change in urban built-up areas from1987to2007. The areas of medium-density (45-80%ISA) and high-density (>80%ISA) were112.80km2and174.67km2in1987, significantly increasing to591.45km2and560.69km2respectively in2007. The wide variation between1987and2007revealed that the city has experienced rapid urban expansion during the last two decades. In both1987and2007, the spatial patterns of LST show increasing values from lower ISA percentages to higher ones. The thermal response of different ISA percentages resulted in the surface temperature differences between urban and non-urban areas, which clearly illustrated the UHI effect. A zonal analysis was carried out to evaluate the mean LST at each1%and0.01increment of percent ISA and normalized difference vegetation index (NDVI) from0%to100%and-1to1, respectively. Compared to the percent ISA, the NDVI was found to have a stronger linear correlation with the mean LST.
     (5) To seek the major factors that influence land surface temperature at different scales, we modeled the principal component regression equation between land surface and the associated factors. Results showed that the effect of the selected factors associated with human activities on LST significantly varied on different scales. They significantly influenced LST variation within2000m X2000m grid cell in the urban area and1000m×1000m grid cell in the built-up area, while insignificantly within5000m X5000m grid cell in the administrative area of Wuhan. Generally, the impervious surface (IS)-related variables such as normalized difference built-up index (NDBI) and ISA did contribute to the increase of LST. The percentage of water area (PerWater) in a studied grid cell could efficiently decrease LST values. The vegetation-related indexes such as NDVI and the percentage of vegetation cover (PerVeget) had varing efficiency on LST with different scales.
引文
1.边海,铁学熙.天津市夜间热岛的数值模拟[J].地理学报,1988,43(2):150-158.
    2.曹丽琴,张良培,李平湘,黄微.城市下垫面覆盖类型变化对热岛效应影响的模拟研究. 武汉大学学报信息科学版,2008,33(12):1229-1232
    3.朝鲁门,孙建新.1956-1998年间中纬度近海与内陆城市年气温与热岛效应的变化趋势. 应用生态学报,2009,20(12):2839-2846
    4.陈丹.减缓城市“热岛效应”调节城市生态系统[J]. 广西气象,2003,24(2):18-20
    5.陈二平,武永利,张怀德.太原市城市热岛的数值模拟及其成因浅析[J].山西气象,2001,14(2):26-28
    6.陈辉,古琳,黎燕琼,慕长龙.成都市城市森林格局与热岛效应的关系.生态学报,2009,29(9):4865-4874
    7. 陈业国,农孟松.2003—2006年南宁市热岛强度变化特征.气候变化研究进展.2009,5(1):35-38
    8.陈云浩,王洁,李晓兵.夏季城市热场遥感分析[J].国土资源研究,2000,54(4):55-59
    9.陈正洪,王海军,任国玉.武汉市城市热岛强度的的非对称性变化[J].气候变化研究进展,2007,3(5):282-286
    10.戴晓燕,张利权,过仲阳,吴健平,栗小东,朱燕玲.上海城市热岛效应形成机制及空间格局.生态学报,2009,29(7): 3995-4004
    11.但尚铭,但玻,许辉熙.成都市城市演变对热岛效应的影响分析[J].环境科学与技术,2011,34(7):180-185
    12.丁金才,张志凯,奚红,周红妹.上海地区盛夏高温分布和热岛效应的初步研究[J].大气科学,2002,26(3):413-420
    13.董妍,李星敏,杨艳超,彭艳,王繁强.西安城市热岛的时空分布特征.干旱区资源与环境,2011,25(8): 107-112
    14.范文义,白新源,冯欣,李明泽,杜华强.哈尔滨热岛效应与植被指数关系的动态分析.东北林业大学学报,2009,37(6):27-29
    15.方圣辉,刘俊怡. 利用Landsat数据对武汉城市进行热岛效应分析.测绘信息与工程.2005,30(2):1-2
    16.房世波,李佑国,杨武年,聂勇.基于TM6数据的成都市地表温度反演.应用技术,2004,1:35-37
    17.宫阿都,李京,王晓娣,陈云浩,胡华浪.北京城市热岛环境时空变化规律研究.地理与地理信息科学,2005,21(6):15-18
    18.宫阿都,陈云浩,李京,胡华浪.北京市城市热岛与土地利用/覆盖变化的关系研究.中国图象图形学报,2007,12(8):1476-1482
    19.龚志强,何介南,康文星,吴耀兴,吴立潮.长沙市城区热岛时间分布特征分析. 中国农学通报2011,27(14):200-204
    20.郭勇,龙步菊,刘伟东,李明.北京城市热岛效应的流动观测和初步研究.气象科技,2006,34(006):656-661
    21.胡华浪,陈云浩,宫阿都.城市热岛的遥感研究进展.国土资源遥感,2005(3):5-13
    22.黄嘉佑,刘小宁,李庆祥.中国南方沿海地区城市热岛效应与人口的关系研究[J]. 热带气象学报,2004,20(6):713-722
    23.黄雅丽,邓斌,杨书运,严平,张平.合肥城市热岛变化特征研究.安徽农业科学,2008,36(12):5088-5089
    24.季崇萍,刘伟东,轩春怡.北京城市化进程对城市热岛的影响研究.地球物理学报,2006,49(1):69-72
    25.贾宝全,王成,仇宽彪,成军峰。鞍山市城区热岛效应变化分析.东北林业大学学报,2010,38(4):125-127
    26.江东,工乃斌,扬小唤,刘红辉.地面温度的遥感反演:理论、推导及应用.甘肃科学学报,2001,13(4):36-40
    27.江学顶,夏北成,郭泺.快速城市化区域城市热岛及其环境效应研究.生态科学,2006,25(2):171-175
    28.江学顶,夏北成,郭烁,李楠.数值模拟与遥感反演的广州城市热岛空间格局比较[J].中山大学学报(自然科学版),2006,45(6):111-121
    29.江学顶,夏北成,郭泺,李楠.广州城市热岛空间分布及时域-频域多尺度变化特征. 应用生态学报.2007,18(1):133-139
    30.蒋永清.中国城市化的世纪回顾与展望Ⅱ.求索,2001:1
    31.李俊杰,何隆华,戴锦芳,李杏朝,傅俏燕.基于不透水地表比例的城市扩展研究.遥感技术与应用,2008,23(004):424-427
    32.李俊祥,宋永昌,傅徽楠.司二海市中心城区地表温度与绿地覆盖率相关性研究.上海环境科学,2003,22(009):599-601
    33.李丽光,刘晓梅,赵先丽,王宏博.沈阳近郊和远郊的热岛特征及其与城市化的关系.应用生态学报,2010,21(6):1609-1613
    34.李维亮,李维亮,刘洪利,周秀骥,秦瑜.长江三角洲城市热岛与太湖对局地环流影响的分析研究[J].中国科学(D辑),2003,33(2):97-104
    35.李小风.热岛效应强迫下的中尺度环流的动力特征及极限风速的一种解析表达[J].气象学报,1990,48(3):327-335
    36.李小文,王锦地.地表非同温象元发射率的定义问题.科学通报,1999,44(15)1612-1617
    37.李兴荣,胡非,舒文军.北京春季城市热岛特征及强热岛影响因子.南京气象学院学报,2008,31(1):129-134
    38.李玉娥,高万泉.保定市城市热岛效应特征分析.气象与环境科学(增刊),2009,32:265-267
    39.梁益同,陈正洪,夏智宏.基于RS和GIS的武汉城市热岛效应年代演变及其机理分析.2010,19(8):914-918
    40.林学椿,于淑秋.北京地区气温的年代际变化和热岛效应.地球物理学报,2005,48(1):39-45
    41.林云杉,徐涵秋,周榕.城市不透水面及其与城市热岛的关系研究—以泉州市区为例.遥感技术与应用,2007,22(001):14-19
    42.林志垒.福州市热岛效应动态分析研究. 四川测绘,2001,24(3):140-143
    43.刘凤梅,曾敏,张志,黄长生.基于Landsat 7的武汉市热岛效应研究.中国环境监测,2010,26(5):51-54
    44.刘润幸.利用SPSS进行主成分回归分析.中国公共卫生,2001,17(8):746-748
    45.刘文杰.李红梅.景洪市城市热岛效应对城市高温的影响及其防御对策.热带地理,1998,28(2):143-146
    46.马勇刚,塔西甫拉提特依拜,黄粤.城市景观格局变化对城市热岛效应的影响—以乌鲁木齐市为例.干旱区研究,2006,23(1):172-176
    47.马跃良.广州市城区热岛效应的遥感应用研究.云南地理环境研究,2009,21(1):83-88
    48.苗曼倩,唐有华.长江三角洲夏季海陆风与热岛环流的相互作用及城市化的影响.高原气象,1998,17(3):280-289
    49.彭仲.基于多源遥感数据的北京城市热岛研究.安徽农业科学,2009,37(22):10527-10529,10600
    50.桑建国.城市热岛效应的分析解[J].气象学报,1986,4(2):251-255
    51.宋艳玲,张尚印.北京市近40年城市热岛效应研究.中国生态农业学报,2003,11(4):126-129
    52.宋治清,工仰麟.城市景观及其格局的生态效应研究进展.地理科学进展,2004,23(2):97-106
    53.苏万楷,张文,刘波,郎平.成都市城市热岛分析.四川林业科技,2006,27(3):57-60
    54.孙嘉,陆昳丽.南京市热岛效应及效应响应分析.遥感技术与应用,2008,23(3):336-340
    55.孙旭东,孙孟伦,李兆元.西安市城市边界层热岛的数值模拟.地理研究,1994,13(2):49-54
    56.覃志豪,Zhang Minghua, Arnon Karnieli, Pedro Berliner.用陆地卫星TM6数据演算地表温度的单窗算法.地理学报,2001,56(4):456-466
    57.田喆,朱能,刘俊杰.城市气温与人为影响因素的关系[J].天津大学学报,2005,38(9):830-833
    58.王朝春.城市气候高温化的成因与对策.城市问题,2006,(9):98-102
    59.王桂新,沈续雷.上海城市化发展对城市热岛效应影响关系之考察.亚热带资源与环境学报,2010,5(2):1-11
    60.王娟敏,孙娴,毛明策,杨联安.西安市城市热岛效应卫星遥感分析.陕西气象,2011,3: 23-25
    61.王伟武,李国梁,薛瑾.杭州城市热岛空间分布及缓减对策.自然灾害学报,2009,18(6):14-20
    62.工文杰,申文明,刘晓曼,张峰,潘英姿,罗海江.基于遥感的北京市城市化发展与城市热岛效应变化关系研究.环境科学研究,2006,19(2):44-48
    63.王雪,白降丽.城市热岛效应研究进展及未来发展趋势.佛山科学技术学院学报: 自然科学版,2008,26(1):53-56
    64.王艳霞,董建文,王衍桢,吴南生.城市绿地与城市热岛效应关系探讨.亚热带植物科学,2005,34(4):55-59
    65.吴宜进,工万里,邱爱武,李成尊,张振德.武汉市热岛的主要形成机制.中南民族学院学报(自然科学版),1998,17(4):75-78
    66.武鹏飞,工茂军,张学霞.基于归一化建筑指数的北京市城市热岛效应分布特征.生态环境学报2009,18(4): 1325-1331
    67.肖荣波,欧阳志云,李伟峰,张兆明.王效科城市热岛时空特征及其影响因素. 气象科学,2007,27(2): 230-236
    68.谢庄,崔继良,陈大刚.北京城市热岛效应的昼夜变化特征分析,气候与环境研究,2006,11(1):69-75
    69.徐涵秋,陈本清.不同时相的遥感热红外图像在研究城市热岛变化中的处理方法.遥感技术与应用.2003,18(3):129-133
    70.徐骏,周坚华,李先华.利用热红外遥感研究上海市道路系统对城市热场的影响.应用技术,2003,3:31-34
    71.徐永明,覃志豪,朱焱.基于遥感数据的苏州市热岛效应时空变化特征分析.地理科学,2009,29(4):529-534
    72.许辉熙,但尚铭,何政伟,但玻,杨秀蓉,黄明碧.成都平原城市热岛效应的遥感分析.环境科学与技术,2007,30(8):22-24
    73.闫少锋,张金池,张波,陆茜,王永平,俞红,张增信.2008年南京市热岛效应演变特征及其对城市居民生活影响.气象与环境学报,2011,27(1):14-20
    74.杨德保,王式功,王玉玺.兰州城市气候变化及热岛效应分析[J].兰州大学学报(自然科学版),1994,30(4):161-167
    75.杨士弘等编.城市生态环境学(第二版).北京:科学出版社,2003.
    76.杨英宝,苏伟忠,江南. 基于遥感的城市热岛效应研究. 地理与地理信息科学,2006,22(5):35-40
    77.杨玉华,徐祥德,翁永辉.北京城市边界层热岛的日变化周期模拟.应用气象学报,2003,14(1):61-67
    78.叶有华,彭少麟周凯虞依娜.功能区对热岛发生频率及其强度的影响.生态环境,2008,17(5): 1868-1874
    79.于兴修,杨桂山,王瑶.土地利用/覆被变化的环境效应研究进展与动向.地理科学,2004,24(5): 626-632
    80.岳文泽,吴次芳.基于混合光谱分解的城市不透水面分布估算.遥感学报,2007,11(006):914-922
    81.曾侠,钱光明,潘蔚娟.珠江三角洲都市群城市热岛效应初步研究.气象,2004,30(010): 12-16
    82.张光智,徐祥德,王继志,杨元琴.北京及周边地区城市尺度热岛特征及其演变.应用气象学报,2002,13(特刊):43-50
    83.张佳华.北京城市及周边热岛日变化及季节特征的卫星遥感研究与影响因子分析.中国科学D辑地球科学2005,35(增刊`):187-194
    84.张景哲,刘启明.北京城市气温与下垫面结构关系的时相变化.地理学报,(02):1988,43(2):159-168
    85.张宁,张明军,周堂,王圣杰.基于TM影像的兰州市热岛效应及预测分析.城市环境与城市生态,2010,23(6):20-23
    86.张仁华.实验遥感模型及地面基础[M].北京:科学出版社,1996,211-215
    87.张穗,何报寅,杜耘.武汉市城区热岛效应的遥感研究.长江流域资源与环境,2003,12(5):445-449
    88.张新,孔永健,关彦斌.沥青路面对城市大气受热的影响分析.金陵科技学院学报.2006,22(2):16-18
    89.张新刚,周斌,王珂.杭州市热岛效应的遥感监测.科技通报,2004,20(6):501-505
    90.张一平,何云玲,马友鑫,刘玉洪,李佑荣,窦军霞,郭萍.昆明城市热岛效应立体分布特征[J].高原气象,2002,21(6):604-609
    91.张永芳,张敏.盛夏武汉市局地温度差异与防暑降温之对策[A].见:梁必骐主编.自然地理学研究与对策[C].广州:中山大学出版社,1994:154-161
    92.张兆明,何国金,肖荣波,王威.北京市热岛演变遥感研究.遥感信息,2006,5:46-48
    93.张兆明,何国金,肖荣波,王威,欧阳志云.基于RS与GIS的北京市热岛研究.地球科学与环境学报,2007,29(1):107-110
    94.赵俊华.城市热岛的遥感研究.城市环境与城市生态,1994,7(004):40-43
    95.赵庆由,明庆忠.近20年来昆明市城市化进程对城市热岛效应的影响研究.云南地理环境研究,2010,22(4):87-92
    96.赵小锋,叶红.热岛效应季节动态随城市化进程演变的遥感监测.生态环境学报2009,18(5): 1817-1821
    97.赵小艳,杨沈斌,申双和,王伟.基于遥感的南京市城市热岛效应时空演变分析.安徽农业科学,2009,37(22):10776-10778
    98.赵志敏.城市化进程对城市热岛效应因子的对比分析.中国环境监测,2008,24(6):77-79
    99.郑朝洪,张岸,邓娴芬,陈胜贤.福州市热岛效应的监测与探讨.城市管理与科技,2004,6(3):103-105
    100.郑思轶,刘树华.北京城市化发展对温度、相对湿度和降水的影响.气候与环境研究,2008,13(2): 123-133
    101.周淑贞,张超.上海城市热岛效应.地理学报,1982,37(4):372-382
    102.周淑贞,束炯.城市气候学.北京:气象出版社,1994.
    103.周志翔,邵天一,唐万鹏,王鹏程,刘学全,徐永荣。城市绿地空间格局及其环境效应——以宜昌市中心城区为例.生态学报,2004,24(2):186-192
    104.Akbari H, Konopacki S. Calculating energy-saving potentials of heat-island redtiction strategies [J]. Energy Policy,2005 33(6):721-756
    105.Artis DA, Carnahan WH. Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment,1982,12:313-329
    106.Balling RC and Brazell SW. High resolution surface temperature patterns in a complex urban terrain. Photogramm Eng Rem S,1988,54:1289-1293.
    107.Bauer ME, Doyle JK, Heinert NJ. Impervious Surface Mapping Using Satellite Remote Sensing. Geoscience and Remote Sensing Symposium, IGARSS'02. IEEE International,2002,4:2334-2336
    108.Bohm, reinhard, Urban bias temperature time series-a case study for the city of Vienna, Austria, Climate Change,1998,38:113-128
    109.Bornstein R, Lin QL. Urban heat islands and summertime convective thunderstorms in Atlanta:three case studies. Atmospheric Environment,2000,34:507-516.
    110.Bottyyan Z and Unger J. A multiple linear statistical model for estimating the mean maximum urban heat island. Theoretical and Applied Climatology,2003,75: 233-243.
    111.Carlson TN and Traci Arthur S. The impact of land use-land cover changes due to urbanization on surface microclimate and hydrology:a satellite perspective. Global and Planetary Change,2000,25(1-2):49-65
    112.Caselles V, Lopez Garcia MJ, MeLia J. Analysis of the heat-island effect of the city of Valencia, Spain, through air temperature transacts and NOAA satellite data. Theory and Application of Climatology,1991,43:195-203
    113.Chen XL, Zhao HM, Li PX, Yin ZY. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ,2006,104:133-146
    114.Chung U, Jaeyeon C, Jin IY, Urbanization effect on the observed change in mean monthly temperatures between 1951-1980 and 1971-2000 in Korea, Climate Change, 2004,66:127-136
    115.Fan HL and SAILOR DJ. Modeling the impacts of anthropogenic heating on the Urban climate of Philadelphia:a comparison of implementations in two PBL scheme. Atmospheric Environment,2005,39(1):73-84
    116.Franca GB and Cracknell AP. Retrieval of land and sea surface temperature using NOAA-11 AVHRR data in north-eastern Brazil. International Journal of Remote Sensing,1994,15,1695-1712
    117.Friedl MA. Forward and inverse modeling of land surface energy balance using surface temperature measurements. Remote Sensing of Environment,2002,79, 344-354
    118.Gallo KP and Owen TW. Assessment of urban heat island:A multi-sensor perspective for the Dallas-Ft. Worth, USA region. Geocarto International,1998,13: 35-41
    119.Gedzelman SD, Austin S, Cermak R. Mesoscale aspects of the urban heat island around New York city. Theoretical and Applied Climatology,2003,75:29-42
    120.Hart MA and Sailor DJ. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor Appl Climatol, 2009,95:397-406
    121.Hassid S, Santamouris M, Papanikolaou N. The effect of the Athens heat island on air conditioning load. Energy and Buildings,2000,32(2):131-141
    122.Herbert JM and Herbert RD. Simulation of the effects o f canyon geometry on thermal climate in city canyons. Mathematics and Computers in Simulation,2002,59 (1/3):243-253
    123.Howard L. The Climate of London. London,1818
    124.Huang L, Li J, Zhao D. A fieldwork study on the diurnal changes of urban microclimate in four types of ground cover and urban heat island of Nanjing, China. Building and Environment,2008,43(1):7-17
    125.Imhoff ML, Zhang P, Wolfe RE, Bounoua L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment,2010, 114(3):504-513
    126.IPCC. Climate Change 2001:The Scientific Basis. Cambridge:Cambridge. University Press,2001
    127.Jaecobson MZ. Strong radiative heating due to tile mixing state of Black carbon in atmospheric aerosols. Nature,2001,409:695-697
    128.King VJ, Davis C. A case study of urban heat islands in the Carolinas Environmental Hazards,2007,7 (4):353-359
    129.King Vereda J, Cynthia D. Isolating and managing urban islands in selected southeastern cities,2002, www. Ute. Scsu. Edu/Research/Reports/2003/heat-island. htm
    130.Klysik K and Fortuniak K. Temporal and spatial characteristics of the urban heat island of Lodz, Poland. Atmospheric Environment,1999,33,3885-3895
    131.Kruger AC and Shongwe S. "Temperature trends in South Africa:1960-2003. " International Journal of Climatology,2004,24(15):1929-1945
    132.Kustas WP, Norman JM, Andersonb MC. Estimating subpixel surface temperatures and energy fluxes from the vegetation index radiometric temperature relationship. Remote Sensing of Environment,2003,85(4):429-440
    133.Kuttler W, Bariag AB, Robmann F. Study of the thermal strueture of a town in a narrow valley. Atmospheric Environment,1996,30(3):365-378
    134.Lemonsu A, Masson V. Simulation of a summer urban breeze over Paris. Boundary Layer Meteorology,2002,104(3):463-490
    135.Lo CP, Quattrochi DA and Luvall JC. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int J Remote Sens, 1997,18:287-304
    136.Lu D, Weng Q. Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sensing of Environment,2006,104(2):157-167
    137.Ma Y, Kuang YQ and Huang NS. Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+imagery. Int J Appl Earth Obs,2010,12:110-118
    138.Magee N, Curtis J, Wendler G. The urban heat island effect at Fairbankd, Alaska. Theoretical and Applied Climatology,1999,64:39-47
    139.Makoto Y, Robert D, Yoshitake K. The cooling effect of paddy fields on summer time air temperature in residential Tokyo, Japan. Landscape and Urban Planning, 2001,53(1/2/3/4):17-27
    140.Mallick J, Kant Y, Bharath BD. Estimation of land surface temperature over Delhi using Landsat and ETM+. J Indian Geophys Union,2008,12(3):131-140
    141.Masmoudi S and Mazouz S. Relation of geometry, vegetation and thermal comfort around buildings in urban settings. The case of hot arid regions. Energy and Bulldings,2004,36:710-719
    142.Montavez JP, Rodriguez A, Jimenez JI. A study of the urban heat island of Granada. International Journal of Climatology,2000,20,899-911
    143.Nonomura A, Kitahara M, Masuda T. Impact of land use and land cover changes on the ambient temperature in a middle scale city, Takamatsu, in Southwest Japan. J Environ Manage,2009,90:3297-3304
    144.Oke TR. The energetic basis of the urban heat island. Q J Roy Meteor Soc,1982,108: 1-24
    145.Oke TR. Boundary layer climates (second edition). London:Methuen and Co.,1987, 435
    146.Oke TR. The heat island characteristics of the urban boundary layer:Characteristics, causes and effects[C]. Proceedings of the NATO Advanced Study Institule on Wind Climate in Cities[A], Waldbronn, Germany,1993, Neterlands:Kluwer Academic, 1995,81-107
    147.Ottle C and Vidal MD. Estimation of land surface temperature with NOAA-9 data. Remote sensing of environement,1992,4:27-41
    148.Owen TW, Carlson TN and Gillies RR. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. In J Remote Sens,1998,19:1663-1681
    149.Prata AJ, Caselles V, Coll C, Sobrino JA and Ottle C. Thermal remote sensing of land surface temperature from satellites:Current status and future prospects. Remote Sensing Reviews,199,12,175-224
    150.Price JC. Assessment of the Urban Heat Island Effect through the Use of Satellite Data. Monthly Weather Review,1979,107(11):1554-1557
    151.Pu R, Gong P, Michishita R and Sasagawa T. Assessment ofmulti-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sens Environ,2006, 104:211-225
    152.Radeloff Volker C, Hagen Alice E, Voss Paulr. Exploring the Spatial Relationship Between census and Land-Cover Data. Society and Natural Resources,2000,13: 599-609
    153.Rao PK. Remote sensing of urban heat islands from an environmental satellite. Bull Am Meteorol Soc,1972,53:647-648
    154.Ridd MK. Exploring a V-I-S (vegetation-impervious-surface-soil) model for urban ecosystem analysis through remote sensing:comparative anatomy for cities. Int J Remote Sens,1995,16 (12):2165-2185
    155.Sailor DJ, Akbari RH. Measured impact of neighborhood tree cover on microclimate, 1992
    156.Saitoh TS, Shimada T, Hohi H. Modeling and simulation of the Tokyo urban heat island. Atmospheric Environment,1996,30(20):3431-3442
    157.Sajjad S, Hussain HB, Ahmed Khan M. "On rising temperature trends of Karachi in Pakistan." Climatic Change,2009,96(4):539-547
    158.Shepherd JM, Pierce H, Negri AJ. Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J Appl Meteor, 2002,41:689-701
    159.Shudo H, Sugiyama J, Yokoo N. A study on temperature distribution influenced by various land uses [J]. Energy and Buildings,1997,26(2):199-205
    160.Sobrino J A, Jimene-Munoz J C, Paolini L. Land surface temperature retrieval from LANDSAT TM5. Remote Sensing of Environment,2004,90(4):434-440
    161. Song C, Woodcock CE, Soto KC, Lenney MP and Macomber SA. Classification and Change Detection Using Landsat TM Data:When and How to Correct Atmopheric Effects? Remoto Sensiong of Environment,2001,75:230-244
    162.Steinecke K. Urban climatological studies in the Reykjavik subarctic environment, Iceland. Atmospheric Environment,1999,33,4157-4162
    163.Streutker DR. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens Environ,2003,85:282-289
    164.Sugita M, Brutsaert W. Comparison of land surface temperatures derived from satellite observations with ground truth during FIFE [J]. International Journal of Remote Sensing,1993,14:1659-1676
    165.Sukopp H. Urban ecology-scientific and practical aspects. In:Breuste J, Feldmann H O Uhlmann Eds Urban Ecology, Berlin:Springer-Verlag,1998,3-16
    166.Taha H. High-albedo materials for reducing building cooling energy use. Lawrence Berkeley National Laboratory Report,1992, No.31721 UC-350:71
    167.Tan KC, Lim HS, MatJafri MZ and Abdullah H. Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environ Earth Sc,2010,60:1509-1521
    168.Toby N, Carlson S, Arthur T. The impact of land use land cover changes due to urbanization on surface microclimate and hydrology:a satellite perspective. Global and Planetary Change,2000,25(1/2):49-65
    169.Unger J, Sumeghy Z, Zoboki J. Temperature cross-section features in an urban area. Atmospheric Research,2001,58 (2):117-127
    170.Van De Griend AA and Owe M. On the relationship between thermal emissivity and the normalized difference vegetation index for nature surfaces. Int J Remote sensing, 1993,14(6):1119-1131
    171.Voogt JA and Oke TR. Thermal remote sensing of urban areas. Remote Sens Environ, 2003,86:370-384
    172.Weng Q. A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing,2001,22(10):1999-2014
    173.Weng QH. Environmental impact of land use and land cover change in the Zhujiang Delta, China:An analysis using an integrated GIS, remote sensing, and spatial modeling approach [J]. Journal of Environmental Management,2002,64(3):73-284
    174.Weng Q. Fraetal analysis of satellite-deteeted urban heat island effect. Photogrammetric Engineering and Remote Sensing,2003,69(5):555-566
    175.Weng Q, Lu DS and Schubring J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens Environ,2004,89: 467-483
    176.Weng QH and Lu DS. A sub-Pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States. International Journal of Applied Earth observation and Geoinformation,2008,10(1):68-83
    177.Wilson C. The Dictionary of Demography, Oxford,1986:225
    178.Wong NH, Yu C. Study of green areas and urban heat island in a tropical city. Habitat International 29 (2005):547-558
    179.Wong NH. Study of green areas and urban heat island in a tropical city. Habitat International,29(3):547-55
    180.Wu C and Murray AT. Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of Environment,2003,84(4):493-50
    181.Wu C. Normalized spectral mixture analysis for monitoring urban composition using ETM+imagery. Remote sensing of Environment,2004,93(4):480-492
    182.Xian G and Crane M. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sens Environ,2006,104:147-156
    183.Xiao RB, OuYang ZY, Zheng H, Li WF, Schienke EW and Wang XK. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J Environ Sci,2007,19:250-256
    184.Xu Y, Qin Z and Lv J. Comparative analysis of urban heat island and associated land cover change based in Suzhou city using landsat data. Proceedings of IITA-GRS 2008, Shanghai, China
    185.Yuan F and Bauer ME. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ,2007,106:375-386
    186.Zhang YS, Odeh Inakwu OA and Han CF. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int J Appl Earth Obs,2009,11 (4):256-264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700