用户名: 密码: 验证码:
耐温光纤布拉格光栅传感器涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大飞机上更多地使用碳纤维树脂基复合材料替代金属材料,可以减轻重量、提高续航能力、节省油耗。将光纤布拉格光栅(FBG:Fiber Bragg Grating)传感器埋入碳纤维树脂基复合材料中,对复合材料成型时的固化过程进行监测,控制固化过程参数,稳定复合材料的性能,在成型后,FBG传感器仍能存活于复合材料内部,对复合材料服役过程进行实时监测,及时得到复合材料的健康状况的信息,对大飞机的结构健康进行有效预警,是一件非常有意义的工作。但大飞机结构用树脂基复合材料需在高温和压力下成型,现有光纤光栅传感器涂层不耐高温,因此系统地了解FBG传感器埋入树脂基复合材料时,传感器涂层对传感器传感性能的影响,并在此基础上研究一种适合埋入热压罐成型的碳纤维复合材料耐高温光纤光栅涂层很有必要。
     本文首先对比了无涂层光栅和现有通用聚氨酯丙烯酸酯(PUA: polyurethane acrylate)涂层光栅传感器在200℃下加热1小时,结果显示,加热后无涂层和PUA涂层光纤的抗张强度变小,然后将两者埋入热压罐成型复合材料中,发现光纤截面经过高温和压力,PUA树脂熔融,使光纤与基体之间形成空洞。然后复合材料进行固化监测和力学性能测试的准确性的研究,结果表明,现有聚氨酯丙烯酸酯光栅涂层在常温下可提高FBG传感器的温度灵敏系数,但在高温下使用会降低传感器的稳定性,准确性低于无涂层光栅,高温成型冷却后,涂层损坏引起光栅失效,而无涂层光栅由于没有缓冲保护,也在材料失效之前失效,无法完整监测整个失效过程。
     在对现有光纤涂层和光栅二次涂覆涂层性能评价的基础上,本文设计了一种内层为化学镀镍层,外层为紫外光固化纳米二氧化硅/环氧丙烯酸酯(EA:Epoxy acrylate)/聚氨酯丙烯酸酯(纳米SiO2/EA/PUA)杂化材料的双涂层结构的FBG传感器涂层,用于提高FBG传感器在高温成型时复合材料中传感的灵敏度和使用性能。
     文中首先确定了光纤镀镍的预处理方法,然后对比了三种化学镀镍方式,采用盐基胶体钯浸泡,然后用20%NaOH解胶的无粗化镀镍方法进行化学镀覆,得到镀镍光栅在空气中加热,30℃至100℃的温度灵敏系数为8.914pm/K,在100℃至200℃的温度灵敏系数为10.167pm/K,应变灵敏系数为0.58nm/N,线性度为100%。
     在进行二次涂覆涂层外涂层的研制时,首先通过甲苯-2,4-二异氰酸酯(TDI:2,4-toluene diisocyanate)、聚丙二醇(PPG:Poly propylene glycol)与丙烯酸羟乙酯(HEA:Hydroxyethyl methacrylate)合成PUA预聚体,对由不同分子量PPG制备而成的PUA预聚体进行了性能评价,研究表明,PPG2000制备的PUA热稳定性最好,开始失重温度在280℃,玻璃化转变温度(Tg)为104℃;然后研究了PUA与EA的物理共混配比,通过硬度测试、固化度测试以及热失重分析(TGA:Thermal gravimetric analysis)分析,得到在光引发剂以及活性稀释剂不变的情况下,聚氨酯丙烯酸酯与环氧丙烯酸酯的质量比为2:1时,共混体系能表现出最优异的热稳定性能。最后采用溶胶-凝胶法制备二氧化硅颗粒,通过原位聚合制备纳米SiO2/EA/PUA杂化材料,研究了不同催化剂、不同硅烷偶联剂以及不同配比对杂化材料性能的影响。通过场发射扫描电镜(FESEM:Field emission scanning electron microscope)测试杂化体系中二氧化硅的分散情况,采用差热扫描量热法(DSC:Differential scanning calorimetry)、TGA来确定最佳的热稳定性能。研究表明,采用盐酸作为催化剂、KH-570硅烷偶联剂作为二氧化硅表面处理剂、正硅酸乙酯(TEOS:Tetraethyl orthosilicate):(PUA+EA)为0.4:1时,制备的杂化材料热稳定性最佳,耐温可达143.8℃。利用模型拟合法进行了SiO2/EA/PUA杂化材料紫外光固化动力学分析,分析表明SiO2/EA/PUA杂化材料紫外光固化时为一级反应,速率常数为0.09486,处于EA和PUA固化速率常数之间。
     论文最后将内层镀镍外层为纳米SiO2/EA/PUA杂化材料的双涂层涂覆于FBG传感器上,测量了传感器的基本性质、温度灵敏系数和应力灵敏系数,然后埋入复合材料中,监测热压罐成型碳纤维/环氧树脂复合材料的固化成型过程,结果表明自制双涂层FBG传感器可完整监测固化成型过程;随后监测了成型后复合材料的弯曲性能,结果表明双涂层FBG传感器可以完整监测复合材料弯曲直至材料失效的整个过程,而无涂层FBG和EA涂层FBG传感器在材料失效之前就已经失效。
Nowadays, many composite materials, instead of metal matierials, have been applied in large aircrafts for decreasing weight, improving endurance ability and saving energy. It is a significiant work that FBG (Fiber Bragg Grating) sensors to be embedded in the composites for monitoring the structural health of large aircraft curing and service process. However, under the molding step of resin-based composites used in large aircraft, the optical fiber should be suffered to high temperature and suitable pressure. Since most of the existing high temperature fiber grating coatings were used for civil engineering, they are not competent for aircraft. Therefore, it is necessary to develop a new kind of high temperature coating for embedded in resin-based carbon fiber, which are generally used for aircrafts.
     Firstly, the heat-resistance performances of existing optical fiber coatings were evaluated in this thesis. The ordinary layers (PUA:polyurethane acrylate) coated optical fiber and uncoated optical fiber embedded in composite material were compared.The results show that after heated, the optical loss and flexible of fibes have no inficantly change, but the tensile strength decrease. Then FBG sensor coated with PUA(polyurethane acrylate) and FBG sensor without coating were embedded in the composites respectively.The accuracy of curing process and the mechine properties testing monitoring was studied. The results show that the FBG sensor coated with EA (Expoxy acrylate) has higher temperature sensitivity coefficient at normal atmospheric conditions, while it has lower stability and accuracy at high temperature. After the molding was complete, the coating was damaged, leading to the failure of sensors. FBG sensor without coating was damaged before the materials were failure because of the absence of protection buffers. As a result, the research of heat resistance FBG sensor coating is necessary.
     A new double layers FBG sensor coating was designed after evaluation of properties of the existing optical fiber coating and optical grating coating. The inner layer of the new coating was nickel plating, and the outer layer was nano-SiO2/PUA/EA hybrid material.This kind of coating could improve the sensitivity of FBG sensor and its performance during molding process at high temperature.
     First of all, the pretreatment methods of the fiber before nickel plating were determined. Then three kinds of electroless nickel plating method were compared. The best method was following:the fiber without coarsening was immersed in the colloid palladium.After that, it was treated with20%NaOH solution. Finally, it was chemical plated with nickel. It was found that the temperature sensitivity coefficient of nickel-plated FBG sensor was8.914pm/K from30℃to100℃, and10.167pm/K from100℃to200℃when the sensors were heat in the air. The strain sensitivity coefficient was0.58nm/N, and linear degree was100%.
     Secondly, preparation of the outer coating was studied. TDI (2,4-toluene diisocyanate), PPG (Poly propylene glycol) and HEA (Hydroxyethyl methacrylate) were used to synthesize PUA prepolymer. The performance of PUA prepolymer with different molecular weight of PPG was determined. The result indicated that PUA prepared with PPG2000showed best heat stability, which demonstrated starting weight loss at280℃under TG. The vitrification transition temperature (Tg) was104℃. Then the blend ratio of the polyurethane acrylate and polyurethane epoxy acrylate was studied. It was found that when the photoinitiator and reactive diluent were kept constant, and the quality of acrylic polyurethane and epoxy acrylate was2:1, blending system showed the most excellent thermal stability under hardness testing, curing degree test and TGA (Thermal gravimetric analysis).
     Silica particles were prepared via sol-gel method; nano silica epoxy acrylate/polyurethane acrylate hybrid materials were prepared via in-situ polymerization. Several catalysts, different silane coupling agents and their proportions on the properties of hybrid material were studied. The dispersion of silica in the hybrid system was determined by FESEM (field emission scanning electron microscopy) test, the thermal stability was determinded through DSC (Differential scanning calorimetry) and TGA. It showed that the hybrid materials (prepared with KH-570silane coupling agent as surface treatment agent, TEOS(Tetraethyl orthosilicate):(PUA+EA) was0.4:1) displayed best thermal stability, heat resistance was up to143.8℃when using hydrochloric acid as a catalyst. The UV curing kinetics of SiO2/EA/PUA hybrid materials were analyzed by model fitting, it showed that the UV curing of SiO2/EA/PUA hybrid materials was a first order reaction with a reaction constant of0.09486.
     Finally, the double layer coating with the nickel-plated inner layer and outer layer of SiO2/EA/PUA hybrid materials was coated on the grating portion of the FBG sensors, the basic properties, the temperature sensitivity coefficient and the stress sensitivity coefficient of the sensor were tested, which was then embedded in the composite so as to monitor the curing process of carbon fiber/epoxy composite during autoclave molding. The results showed that the double layer FBG sensor could monitor the whole molding process. The bend testing process was also monitored. The results showed the double layer coated grate could monitor the bending properties of composite more accurately than the uncoated or EA-coated FBG sensors. The FBG sensors without coating and coated EA were break down before failure of the materials.
引文
[1]Chris Red. Beyond the Concorde:Next-generation SSTs [J]. High-performance Composites. 2009. Jan.:30-36.
    [2]C.Thill, J.Etches, I.Bond, K.Potter and P.Weaver. Morphing Skins [J]. The Aeronautical Journal. March.2008.
    [3]Adriaan Beukers, Harald Bersee, Otto Bergsma.Future aircraft structures-from metal to composite structures[J]. Polymeric and Composite Materials. IMAST, Capri,2008.
    [4]Tim Edwards.Composite materials revolutionise aerospace engineering [J].Ingenia,2008, 36:24-28.
    [5]N Takeda, Y Okabe, T Mizutani.Damage detection in composites using optical fibre sensors, Proceedings of the Institution of Mechanical Engineers [J]. Journal of Aerospace Engineering,2007,221(4):497-508.
    [6]B.Benchekchou, N.S.Ferguson. The effect of embedded optical fibres on the fatigue behavior of composite plates [J]. Composite Structures,1998,41:113-120.
    [7]O. Frazao, C.A. Ramos, N.M.P. Pinto, et al.Simultaneous measurement of pressure and temperature using single mode optical fibres embedded in a hybrid composite laminated Composites [J].Science and Technology,2005,65:1756-1760.
    [8]L.G. Melin, K. Levin, S. Nilsson, et al. A study of the displacement field around embedded fibre optic sensors [J]. Composites,1999:1267-1275.
    [9]F. Jacquemin, S. Freour, R. Guillen.Analytical modeling of transient hygro-elastic stress concentration—Application to embedded optical fiber in a non-uniform transient strain field[J].Composites Science and Technology,2006,66:397-406.
    [10]Heng Ly, Mahmood Tabaddor, Charles Aloisio.Coating failure in the pull-out of a multiply-coated optical fiber[J]. Polymer Testing,2005,24:953-962.
    [11]Okabe, Y., Yashiro, S., Tsuji, R., et al... Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates [J]. Composites Part A:Applied Science and Manufacturing,2002,33(7):991-999.
    [12]Lin, C.L.Opto-Mechanical Applications of Microstructured Materials [D].France:Joseph Fourier University/National Taiwan University,2004.
    [13]Thomas Rossmanith. Technology development for multiple internal strain measurement in composite structures using embedded fiber optic sensors [M]. University of Maryland, College Park, Md.2000:1-288.
    [14]Yingdan Zhu, Chang Wang, Jihui Wang, Wei He, Guoqiang Gao and Jie Yu, Long-period Gratings in-situ Sensing for Flow Monitoring in Liquid Composite Molding[J]. Jounal of Materials Science & Technology.2005,21(2):234-238.
    [15]Aiqing Ni, Jihui Wang, Determination of the Micro Stress Field in Composite by Homogenization Method[J]. Journal of Wuhan University of Technology, Materials Science Edition,2006,21(1):114-117.
    [16]Giordano, M.,Laudati, A.,Nasser, J.,et al.Monitoring by a single fiber Bragg grating of the process induced chemo-physical transformations of a model thermoset[J].Sensors and Actuators A:Physical,2004,113(2):166-173.
    [17]D.A.Barber, P.Elbourn, J.Greuters, et al. A completely laser-based production method for fiber Bragg grating devices[J]. Optics & Laser Technology,2003,35:25-29.
    [18]贾宏志,李育林,忽满利.光纤光栅的制作方法[J].激光技术.2001,25(1):23-26.
    [19]苑立波,FhardaAnsari光纤光栅原理与应用(一)——光纤光栅原理[J].光通信技术.1998,22(1):70-78.
    [20]Chyrssou C.Theoretical analysis of tapering fused silica optical fibers using a carbon dioxide laser [J]. Opt Eng.1999,38:1645-1649.
    [21]Masahide Kuwabara, et al.Low loss metal coated optical fibers for heat resistant cables [J]. IWCS Proceedings.1991 (4):167-171.
    [22]Laifei Cheng, Yongdong Xu, Litong Zhang, Xiaowei Yin. Effect of coating defects on oxidation behavior of three dimensional C/SiC composites from room temperature to 1500 ℃[J] Journal of Materials Science,2002,37 (24):5339-5344.
    [23]Hung-Chien Lin, Sham-Tsong Shiue, Yi-Ming Chou. Effects of radio-frequency powers on the properties of carbon coatings on optical fibers prepared by plasma enhanced chemical vapor deposition [J]. Surface & Coatings Technology,2008.202 (22-23):5360-5363.
    [24]Craig A. Taylor, Wilson K.S. Chiu.Characterization of CVD carbon films for hermetic optical fiber coatings. Surface and Coatings Technology.2003,168:1-11.
    [25]Hung-Chien Lin,Sham-Tsong Shiue, Yu-Hang Cheng, Tsong-Jen Yang,Tung-Chuan Wu, Hung-Yi Lin. Characteristics of carbon coatings on optical fibers prepared by plasma enhanced chemical vapor deposition using different argon/methane ratios[J]. Carbon,2007, 45:2004-2010.
    [26]徐骏,黄玮石,王立斌.紫外光固化光纤内层涂覆材料的合成研究[J].涂料工业,2004,34(4):22-25.
    [27]Weizhi Wang, Kexun Cheng.Synthesis and characterization of ultraviolet light-curable resin for optical fiber coating[J]. European Polymer Journal,2003,39:1891-1897.
    [28]F.Masson,C.Decker,S.Andre b, X. Andrieu.UV-curable formulations for UV-transparent optical fiber coatings I. Acrylic resins[J]. Progress in Organic Coatings,2004,49:1-12.
    [29]邵洪峰等.传感用耐热光纤技术[J].光电子·激光,2004,15(suppl):251-253.
    [30]孙志雄,曹蓓蓓,何志雄.耐高温光纤及其紧套光纤的开发[C].第八届中国光电通信论坛会议论文集.
    [31]周红,乔学光,罗俊,王宏亮,霍汉平.偶联剂自组装对聚合物FBG压力传感器性能的影响[J].光电子·激光,2006,17(10):1181-1185.
    [32]马家举,徐国财,邢宏龙,江棂.光纤内层涂料的改性研究[J].山东科学,2000,13(4):29-31.
    [33]申克静.耐热性紫外光固化光纤涂料的制备[D].长春:长春理工大学,2006.
    [34]冯启蒙,刘绒.紫外光固化光纤保护涂料的增韧性研究[J].西安工业大学学报.2008,28(1):36-39.
    [35]J. Shiue, M.J. Matthewson, P.R. Stupak, V.V. Rondinella. Effects of silica nanoparticle addition to the secondary coating of dual-coated optical fibers [J]. Acta Materialia,2006,54: 2631-2636.
    [36]储九荣,温序铭,孙会刚等.气相二氧化硅对紫外光固化光纤涂料性能的影响[J].硅酸盐学报,2001,29(3):291-294.
    [37]竺逸年.涂层添加物对光纤疲劳和老化的改进[J].光通信研究,1996,,77.55-57.
    [38]李彬,刘艳,谭中伟,简水生.一种简易的光纤光栅涂覆装置[J].光学技术,2006,32(4):571-573.
    [39]周洋溢译.林金吕校.光纤一次涂覆的新方法.译自APPI-Opt.1981,20(14):2412-2419.
    [40]龚丽,谢浩,刘娇蛟.影响光纤涂层固化度的几个冈素的讨论[J].光纤与电缆及其应用技术,2003.(1):34-35.
    [41]陈苗翔.用锥形杯嘴控制光纤涂层厚度[J].光通信技术,1992,16(4):269-272.
    [42]张博明,冷劲松,杜善义等.智能复合材料中光纤与基体的相容性研究[J].功能材料,1998.29(3):240-245.
    [43]Sham-Tsong Shiue and K.-Y.Chen. Design of double-coated optical fibers to minimize mechanical strip forces[J]. Journal of Lightwave Technology,1997,15(9):1669-1674.
    [44]Sham-Tsong Shiue. Tensile-force-induced delamination of polymeric coatings in tightly jacketed double-coated optical fibers [J]. Materials Chemistry and Physics,1998,56(1): 91-95.
    [45]黄方平.光纤初次涂层模量测试方法[C].全国第十次光纤通信暨第十一届集成光学学术会议(OFCIO'2001)论文集,2001年.
    [46]石晓东.关于光纤涂层特性的研究[J].光通信技术,1996,20(3):237-239.
    [47]蔡青,闻鸥,陈荣声,李勤.光纤复合材料用光纤涂料性能研究[J].中国纺织大学学报,1998,24(2):26-29.
    [48]李智忠,王鑫,杨华勇等.光纤光栅二次涂敷封装温度特性的研究[J].光电子·激光,2006,17(10):1191-1195.
    [49]潘丰,李军.光纤涂层固化技术及其影响[C].全国第二届光纤光缆用材料技术研讨会.
    [50]蔡春平,高秀敏.光纤涂料对光纤衰减的影响[J].应用光学,2001,22(3):20-24.
    [51]高秀敏,蔡春平.光纤涂料特性及其对光纤强度的影响[J].应用光学,2000,21(2):31-36.
    [52]宁四平,刘昆,雎喜风.涂层缺陷对光纤衰减性能的影响[C].全国第二届光纤光缆用材料技术研讨会.
    [53]钱新伟,刘德明,王瑞春.涂覆模具设计对光纤涂层同心度的影响[J].激光与光电子学进展,2010,47,022203:1-4.
    [54]Georgieva J, Armyanov S, Electroless deposition and some properties of Ni-Cu-P and Ni-Sn-P coatings[J]. Journal of Solid State Electrochemistry,2007(11):869-876.
    [55]Maheswari R U, Mononobe S, Ohtsu M. Deducing structural variations of the apex of probes used in near-field optical microscopy through simultaneous measurement of shear force and evanescent intensity[J]. Appl. Optics,1996,35(34):6740-6743.
    [56]Griscom D L, Golant K M, Tomashuk A L et al. γ-radiation resistance of aluminum coated all-silica optical fibers fabricated using different types of silica in the core[J].Appl. Phys. Lett.,1996,69(3):322-324.
    [57]Bnbel G M, Krause J T,Bickta B J et al. Mechanical reliability of metallized optical fiber for hermetic tenninations[J].Journal of Lightwave Technology,1989,7(10):1488-1493.
    [58]Filas W R Constance A, Jankoski. Electroless metallization of optical fiber for hermetic packaging.US patent,5380559[P].
    [59]Sham-Tsong Shiue, Chia-Hao Yang, Rong-Shian Chu, Tsong-Jen Yang.Effect of the coating thickness and roughness on the mechanical strength and thermally induced stress voids in nickel-coated optical fibers prepared by electroless plating method [J].Thin Solid Films,2005,485:169-175.
    [60]Stefan Sandlin, Tuomo Kinnunen, Jaakko Ramo, Mika Sillanpaa.A simple method for metal re-coating of optical fibre Bragg gratings[J]. Surface & Coatings Technology,2006, 201:3061-3065.
    [61]迟兰洲,张声峰,何为.石英光纤表面镀镍钴合金工艺研究[J].电镀与涂饰,1998,17(4):7-15.
    [62]杨春.一种光纤表面化学镀膜方法的研究[J].仪器仪表学报,1999,20(4):408-410.
    [63]旷戈.光纤表面金属化工艺的研究[J].电镀与环保,2004,24(2):32-34.
    [64]李小甫.石英玻璃光纤表面化学镀镍[J].光学与光电技术,2003,1(2):33-35.
    [65]Lo Y L,Kuo C P.Packaging a Fiber Bragg Grating with Metal Coating for an Athermal Design[J] Journal of Lightwave Technology,2003,21(5):1377-1383.
    [66]李小甫.石英玻璃光纤表面化学镀镍磷合金工艺[J].化工学报,2005,56(1):126-129.
    [67]申人升.FBG的金属化封装及其传感领域的应用技术研究[D].大连:大连理工大学,2008.
    [68]宋路发.光纤布拉格光栅金属化保护及温度传感特性[D].南昌:南昌大学,2007.
    [69]徐海鹏.石英光纤光栅表面化学镀镍及其传感特性研究[D].武汉:武汉理工大学,2007.
    [70]卫云鸽.石英光纤化学镀镍技术研究[D].成都:电子科技大学,2000.
    [71]姜德生,徐海鹏,李小甫.适用于高温的石英光纤表面金属化的研究[J].武汉理工大学学报,2008(4):1-4.
    [72]彭仁翔.激光去除光纤涂覆层的研究[D].武汉:武汉理工大学.2005.
    [73]双涂层光纤应变传感器的理论与实验研究.杨军,刘志海,裴雅鹏,苑立波.光子学报,2006.Vol.35(6):842-844.
    [74]Ansari F, Yuan L.B. Mechanics of bond and interface shear transfer in optical fiber sensors.J Eng Mech,1998.124(4):385-394.
    [75]Butter C D, Hucker G B. [J].Applied Optics,1978,17(18):2867-2869.
    [76]石翔,徐冬梅,匡敏,张可达.紫外光固化聚氨酯丙烯酸酯树脂的合成及流变行为研究[J].高分子材料科学与工程,2003,(1):19-23.
    [77]张洁,张可达.紫外光固化聚氨酯丙烯酸酯树脂的流变行为[J].功能高分子学报,2000(6):13-16.
    [78]Y. H. Lin, K. H. Liao, N. K. Chou, S. S. Wang, S. H. Chu, K. H. Hsieh. UV-curable low-surface-energy fluorinated poly (urethane-acrylate)s for biomedical applications[J]. European Polymer Journal,2008(44):2927-2931.
    [79]赵建国,陈乐培.影响光固化聚氨酯丙烯酸酯合成反应进程的冈素探讨[J].聚氨酯工业,2007,(2):22-26.
    [80]肖文清,涂伟萍.光固化超支聚氨酯丙烯酸酯的合成及其固化膜性能[J].高等化学工程学报,2009,(2):23-26.
    [81]陈志明,尹辉军.UV固化脂肪族聚氨酯丙烯酸酯合成动力学研究[J].涂料工业,2004,(4):34-37.
    [82]韩仕甸,金养智.紫外光固化水性聚酯型聚氨酯丙烯酸酯的合成及性能[J].北京化工大学学报,2001(4):28-31.
    [83]瞿金清,沈慧芳,陈焕钦.蓖麻油聚氨酯-丙烯酸酯复合乳液的合成[J].化工学报,2005(1):56-59.
    [84]李成文,张晨,杜中杰,励杭泉.三乙烯基封端有机硅改性聚氨酯预聚物的合成与光间化性能表征[J].高分子材料科学与工程,2007(5):23-26.
    [85]N. Levy, P. E. Massey. Effects of Composition and Polymerization Mechanism on the Mechanical Properties of UV-Cured Crosslinked Polymer [J]. Polymer Engineering and Science.1981,21:7-15.
    [86]Xilei Chen, Yuan Hu, Lei Song and Weiyi Xing. Thermal properties and combustion behaviors of UV-cured phosphate triacrylate/star poly (urethane acrylate) oligomer blends [J]. Polymer for advanced technologies,2008,19:393-398.
    [87]S. Simic, B. Dunjic et al. Synthesis and characterization of interpenetrating polymer networks with hyperbranched polymers through thermal-UV dual curing [J]. Progress in Organic Coatings,2008,63:43-51.
    [88]Mi-Hee Park, Wonbong Jang et al. Synthesis and Charaterization of New Functional Poly (urethane-imide) Crosslinked Networks [J]. Journal of Applied Polymer Science. 2006,100:113-119.
    [89]M. P. J. Peeters.17O-NMR of Sol-Gel Processes of TEOS and TMOS [J]. Journal of sol-gel science and technology.1998,13:71-82.
    [90]G. Philipp and H. Schmidt. The reactivity of TiO2 and ZrO2 in organically modified silicates [J]. Journal of Non-Crystalline Solids,1986,82:31-39.
    [91]Fayna Mammeri, Laurence Rozes, Eric Le Bourhis and Clement Sanchez. Elaboration and mechanical characterization of nanocomposites thin films:Part Ⅱ. Correlation between structure and mechanical properties of SiO2-PMMA hybrid materials [J]. Journal of the European Ceramic Society.2006,26:267-272.
    [92]霍玉秋,闫玉涛,翟玉春.纳米SiO2润滑油添加剂的摩擦学性能研究[J].材料导报,2004,18:101-104.
    [93]李小红,李庆华,张治军,党鸿辛,刘维民.一种可反应性纳米Si02的制备和表征及其摩擦损性能研究[J].摩擦学学报,2005,25:499-503.
    [94]付晏彬,胡巧玲,俞晓薇,朱永群.光活性预聚体-聚醚聚氨酯丙烯酸酯的合成与表征[J],科技通报,1997(5):13-16.
    [95]Fenfen Bao, Weifang Shi. Synthesis and properties of hyperbranced polyurethane acrylate used for UV curing coatings [J]. Progress in Organic Coatings,2010,68:334-339.
    [96]R. K. Soni, Meenu Teotia, Krishna Dutt. Studies on Synthesis and Characterization of a Novel Acrylic Aromatic Amide Oligomer of Aminolysed Endproducts Generated from Pet Waste with Hydrazine Monohydrate and Its Photocuring with Acrylate Monomers [J]. Journal of Applied Polymer Science.2010,118:638-644.
    [97]余宗萍.聚醚类芳香族聚氨酯丙烯酸酯合成工艺的研究[J].探索研究,2005(1):43-46.
    [98]Yohn Wiley, N-levy.PE-Masy PoLym [J]. Eng Sci,1981(7):406-415.
    [99]袁慧雅,王志明,曾兆华,杨建文,陈用烈.聚氨酯丙烯酸酯光固化反应动力学的研究[J],热固性树脂,2001(3):16-19.
    [100]申辉,王久芬.聚氨酯丙烯酸酯/环氧丙烯酸酯分散体系的制备[J].应用化工,2005(1):34-37.
    [101]侣庆法,范晓东.环氧丙烯酸酯/聚氨酯丙烯酸酯共混体系的紫外光固化及力学性能的研究[J].西北工业大学学报,2004(2):22-25.
    [102]Eun-Hee Kim, Woo-Ram Lee et al. Characterization of waterborne polyurethane for ecofriendly functional floor plate [J]. Progress in Organic Coatings.2010,68:130-137.
    [103]张楷亮,王立新,王芳,任丽.酸酐固化环氧树脂-有机蒙脱土纳米复合材料的制备及性能研究[J].复合材料学报,2004(1):21-24.
    [104]Jianwen Xu, Wenmin Pang, Wenfang Shi. Synthesis of UV-curable organic-inorganic hybrid urethane acrylates and properties of cured films [J]. Thin Solid Films,2006, 514:69-75.
    [105]周重光,李桂芝,宋洁.SiO2/聚碳酸酯纳米相复合材料的制备与性能[J].高分子材料科学与工程,2000(2):16-20.
    [106]Yung-Hoe Han, Alan Taylor, Kevin M. Knowles. Scratch resistance and adherence of novel organic-inorganic hybrid coatings on metallic and nonmetallic substrates [J]. Surface & Coatings Technology.2009,203:2871-2878.
    [107]F. M. A. Margaca, I. M. Miranda et al. Small angle neutron scattering study of silica gels: influence of pH [J]. Journal of Non-Crystalline Solids,1999,258:70-75.
    [108]Lan-Young Hong, Young-Seok Cho, Dong-Pyo Kim. Effect of Component Ratios on the Performance of UV Curing Organic/Inorganic Coating [J]. Journal of Industrial Engineering Chemistry,2005(2):275-281.
    [109]S-M. Lai, C-K. Wang, H-F. Shen. Properties and Preparation of Thermoplastic Polyurethane/Silica Hybrid Using Sol-Gel Process [J]. Journal of Applied Polymer Science. 2005,97:1316-1324.
    [110]Caroline Sow, Bernard Riedl, Pierre Blanchet. UV-waterborne polyurethane-acrylate nanocomposite coatings containing alumina and silica nanoparticles for wood:mechanical, optical, and thermal properties assessment [J]. Journal of Coating Technology Research. 2010,14:23-27.
    [111]Yi-Ding Shen, Yan-Na Zhao, Xiao-Rui Li. Polyacrylate/silica hybrids prepared by emulsifier-free emulsion polymerization and the sol-gel process[J]. Polymer Bulletin. 2009,63:687-691.
    [112]Anna Di Gianni, Roberta Bongiovanni et al. UV-cured coatings based on waterborne resins and SiO2 nanoparticles [J]. Journal of Coating Technology Research, 2009(2):177-182.
    [113]刘石军,张力,石光.紫外固化杂化材料制备及偶联剂影响研究[J].广东化工,2008(3):35-38.
    [114]张玲,曾兆华,杨建文,陈用烈.溶胶-凝胶法制备光固化聚氨酯丙烯酸酯杂化材料的研究[J].功能高分子学报,2004(3):17-21.
    [115]Caroline Sow, Benard Riedl, Pierre Blanchet. Kinetic studies of UV-waterborne nanocomposite formulations with nanoalumina and nanoslica [J]. Progress in Organic Coatings.2010,67:188-193.
    [116]Guoxin Jiang, Seiji Maeda et al. All solid-state lithium-polymer battery using poly (urethane acrylate)/nano-SiO2 composite electrolytes [J]. Journal of Power Sources. 2005,141:143-148.
    [117]蔡星,李宝芳,罗英武.硅烷偶联剂对光固化PUA/SiO2杂化涂层的改性研究[J].高校化学工程学报,2008(2):22-25.
    [118]张玲,曾兆华,杨建文,陈用烈.盐酸含量对光固化聚氨酯丙烯酸酯/Si02杂化材料结构和性能的影响[J].功能高分子学报,2003(4):16-19.
    [119]蔡星,李宝芳Sol-Gel法制备光固化纳米复合涂料的应用性能[J].浙江化工,2006(9):37-41.
    [120]马文飙,朱惟德,沈立峰.二氧化硅对丙烯酸树脂溶液触变性的影响[J].涂料工业,1994(2):5-8.
    [121]Zhigang Yu, Zhaobin Zhang et al. Surface Analysis of Coating Based on Novel Water-Diluted Fluorinated Polymer/Silica Hybrids [J]. Applied in Polymer Technology, 2002(4):21-24.
    [122]Ju Young Kim, Suresh Mulmi et al. Preparation of organic-inorganic nanocomposite membrane using a reactive polymeric dispersant and compatibilizer:Proton and methanol transport with respect to nano-phase separated structure [J]. Journal of Membrane Science. 2006,283:172-177.
    [123]Ju Young Kim, Young Hwan Ohn et al. Fabricaiton of Inorganic/Polymer Nanocomposite Membranes Containing Very High Slica Content via In Situ Surface Grafting Reaction and Reactive Dispersion of Silica Nanoparticles:Proton Conduction, Water Uptake, and Oxidative Stability[J]. Journal of Applied Polymer Science.2011,119:2002-2007.
    [124]Sevim Karatas, Nilhan Kayaman-Apohan et al. Synthesis and characterization of UV-curable phosphorus containing hybrid materials prepared by sol-gel technique[J]. Polymer Advanced Technologies,2011,22:567-571.
    [125]Yudong Zhang, Sang Ho Lee et al. Phenolic Resin/Octa(aminophenyl)-T8-Polyhedral Oligomeric Silsesquioxane (POSS) Hybrid Nanocomposites:Synthesis, Morphology, Thermal and Mechanical Properties[J]. Journal of Inorganic and Organometallic Polymers and Materials,2007(1):15-19.
    [126]Guo-An Wang, Cheng-Chien Wang, Chuh-Yung Chen. Preparation and Characterization of Layered Double Hydroxides-PMMA Nanocomposites by Solution Polymerization [J]. Journal of Inorganic and Organometallic Polymers and Materials,2005(2):15-19.
    [127]Dongmei Wu, Fengxian Qiu et al. Preparation, Characterization, and Properties of Environmentally Friendly Waterborne Poly (urethane acrylate)/Slica Hybrids [J]. Journal of Applied Polymer Science,2011,119:1683-1688.
    [128]Hui Zhang, Longcheng Tang et al. Wear-resistant and transparent acrylate-based coating with highly filled nanosilica particles [J]. Tribology International.2010,43:83-89.
    [129]Hideki Sugimoto, Eiji Nakanishi. Preparation and properties of urethane acrylate-epoxy interpenetrating polymer networks containing silica nanoparticles [J]. Polymer Bulletin, 2006,57:975-981.
    [130]Ling Zhang, Zhaohua Zeng et al. Characterization and properties of UV-curable polyurethane acrylate/silica hybrid materials prepared by the sol-gel process [J]. Polymer International,2004,53:1431-1435.
    [131]In-Seok OH, No-Hyung Park, Kyung-Do SUH. Mechanical and Surface Hardness Properties of Ultraviolet-Cured Polyurethane Acrylate Anionomer/Silica Composite Film [J]. Journal of Applied Polymer Science,2000,75:968-972.
    [132]Nilhan Kayaman Apohan, Sevim Karatas et al. In situ formed silica nanofiber reinforced UV-curable phenylphosphine oxide containing coatings [J]. Journal of Sol-Gel Thechnology, 2008,46:87.
    [133]Junzheng Wang, Ayae Sugawara et al. Preparation of Anisotropic Silica Nanoparticles via Controlled Assembly of Presynthesized Sphercal Seeds [J]. Langmui,2010,23:26-31.
    [134]Chin-Lung Chiang, Chen-Chi M. Ma. Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol-gel method [J]. European Polymer Journal,2002,38:2219-2225.
    [135]P. Bosch, F. Del. Monte et al. Photopolymerization of Hydroxyethylmethacrylate in the Formation of Organic-Inorganic Hybrid Sol-Gel Matrices [J]. Journal of Polymer Science: Part A:Polymer Chemistry,1996,34:3289-3295.
    [136]S. Frings, H. A. Meinema et al. Organic-inorganic hybrid coatings for coil coating application based on polyesters and tetraethoxysilane [J]. Progress in Organic Coatings. 1998,33:126-133.
    [137]L. Mascia, A. Kioul. Influence of siloxane composition and morphology on properties of polyimide-silica hybrids [J]. Polymer,1995,19:36-42.
    [138]S. Oprea. Properties of polymer networks prepared by blending polyester urethane acrylate with acrylated epoxidized soybean oil [J]. Journal of Material Science.2010, 45:1315-1324.
    [139]白晨艳,马家举,江棂.UV固化光纤涂料的研制[J].热固性树脂,2003(5):18-22.
    [140]Chia-Wei Chang, Kun-Tsung Lu. Epoxy Acrylate UV/PU Dual-Cured Wood Coatings [J]. Journal of Applied Polymer Science.2010,115:2197-2204.
    [141]Tierui Zhang, Qiao Zhang et al. A self-Templated Route to Hollow Silica Microspheres [J]. Journal of Physical Chemistry.2009,113:3168-3174.
    [142]Werner Stober, Arthur Fink. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range [J]. Journal of Colloid and Interface Science.1968,26:62-69.
    [143]G. H. Bogush, M. A. Tracy, C. F. Zukoskiiv. Preparation of monodisperse silica particles: control of size and mass fraction [J]. Journal of Non-Crystalline Solids,1988,104:95-103.
    [144]Eoin Murray, Philip Born, Anika Weber, Tobias Kraus. Synthesis of Monodisperse Silica Nanoparticles Dispersable in Non-Polar Solvents [J]. Advanced Engineering Materials, 2010(5):12-18.
    [145]Kota Sreenivasa Rao, Khalil El-Hami et al. A novel method for synthesis of silica nanoparticles [J]. Journal of Colloid and Interface Science,2005,289:125-134.
    [146]Cesar R. Silva, Claudio Airoldi. Acid and Base Catalysts in the Hybrid Silica Sol-Gel Process [J]. Journal of Colloid and Interface Science,1997,195:381-386.
    [147]Michele Marini, Behzad Pourabbas et al...Functionally modified core-shell silica nanoparticles by one-pot synthesis [J]. Colloid and Surfaces A,2008,317:473-479.
    [148]Gy. Tolnai, F. Csempesz et al. Preparation and Characterization of Surface-Modified Silica-Nanoparticles [J]. Langmuir,2001,17:2683-2689.
    [149]Sung Kyoo Park, Ki Do Kim, Hee Taik Kim. Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles [J]. Colloid and Surfaces A,2002,197:7-16.
    [150]Jianjun Guo, Xuehui Liu et al. Size-controllable synthesis of monodispersed colloidal silica nanoparticles via hydrolysis of elemental silicon [J]. Journal of Colloid and Interface Science,2008,326:138-145.
    [151]Xiaoqing Gao, Jiang He, Li Deng, Haining Cao. Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles [J]. Optical Materials, 2009(3):1715-1721.
    [152]Lizhong Jiang, Qiushuang Gao, et al. Synthesis and characterization of stimuli-responsive poly (acrylic acid) grafted silica nanoparticles [J].Smart Materials and Structures,2007, 16:2169-2176.
    [153]Huijuan Zhang, Jun Wu et al. Facile Synthesis of Monodisperse Microspheres and Gigantic Hollow Shell of Mesoporous Silica in Mixed Water-Ethanol Solvents [J]. Langmuir,2007,23:1107-1114.
    [154]张彤,吴文健,胡碧茹.高官能度水性聚氨酯丙烯酸酯/纳米SiO2杂化材料的制备及性能[J].国防科技大学学报,2010(1):32-35.
    [155]No-Hyung Park, Kyung-Do Suh. Organic-Inorganic Microhybrid Materials via a Novel Emulsion Mixing Method [J]. Journal of Applied Polymer Science,1999,71:1597-1603.
    [156]Gabriela Bonilla, Martina Martinez et al. Ternary interpenetrating networks of polyurethane poly (methyl methacrylate)-silica:Preparation by the sol-gel process and characterization of films [J]. European Polymer Journal,2006,42:2977-2983.
    [157]Shao-Ming Fang, Li-Ming Zhou et al. Preparation and Characterization of Nanocomposite Material Based on Polyurethane Acrylate [J]. Macromonomer,2009,30:731-739.
    [158]Yung-Hoe Han, Alan Taylor et al. Sol-gel-derived organic-inorganic hybrid materials [J]. Journal of Non-Crystalline Solids,2007,353:313-321.
    [159]Hao Yu, Qiaolong Yuan et al. Preparation of an Ultraviolet-Curable Water-Borne Poly (urethane acrylate)/Silica Dispersion and Properties of Its Hybrid Film [J]. Journal of Applied Polymer Science,2004,94:1347-1351.
    [160]E. Amerio, M. Sangermao et al. Preparation and characterization of hybrid nanocomposite coatings by photopolymerization and sol-gel process [J]. Polymer.2005,46:11241-11248.
    [161]Kun Xu, Shuxue Zhou, Limin Wu. Effect of highly dispersible zirconia nanoparticles on the properties of UV-curable poly (urethane-acrylate) coatings [J]. Journal of Materials Science.2209,44:1613-1619.
    [162]Colema, M.M., Skrovanek, D.J., Howe, S.E.andPainter, P.C. [J].Macromol.1985(18):299-312.
    [163]Liu F S, Zho u S X, You B, et al. Kinetic study o n the U V induced photo polymerization of epox y acrylate/TiO2 nano composites by FTIR spectroscopy [J]. Appl Polym Sci,2006, 99(6):3281-3288.
    [164]Vinnik R M, Roznyatov sky V A. Kinetic met ho d by using calorimetry to mechanism of epoxy amine cure reaction [J].J Therm Anal Calorim,2006,85(2):455-464.
    [165]Vyazov kin S. Thermal analysis [J]. Anal Chem,2006,78(20):7351-7362.
    [166]Vyazov kin S. Thermal analysis [J]. Anal Chem,2006,78(12):3875-3886.
    [167]Vyazov kin S. Thermal analysis [J]. Anal Chem,2008,80(12):4301-4311.
    [168]张春玲,牟建新,于文志等.含联苯结构环氧树脂体系固化反应动力学研究[J].高等学校化学学报,2004,25(10):1937-1940.
    [169]Vy azo vkin S, Sbirr azzuo li N. Isoconversional kinetic analysis o f thermally stimulated pro cesses in po lymers [J]. Macromo 1 Rapid Comm,2006,27(18):1515-1524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700