用户名: 密码: 验证码:
快速凝固及微合金化Sn-Zn系钎料改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Pb及其化合物由于对人类健康和环境具有毒害作用而被禁用。随着无铅化进程的日益深入,无铅钎料的开发和应用已经成为电子封装工业中的关键技术。Sn-Zn系合金熔点与材料成本低且具有优良的力学性能,被认为是能够替代传统Sn-Pb合金用于电子封装与互联的无铅钎料合金系之一。但是,由于Zn非常活泼,Sn-Zn系合金的润湿性、耐蚀与抗高温氧化性能较差且焊点具有脆化倾向。
     针对Sn-Zn系钎料合金所存在的问题,本文以共晶Sn-Zn无铅钎料作为参照物,研究了快速凝固及微合金化对Sn-Zn系钎料显微结构、合金特性、钎料/Cu界面行为及焊点力学性能的影响。
     研究表明,Sn-Zn钎料/Cu焊点界面紧靠Cu基板侧形成CuZn金属间化合物(IMC)层,CuZn IMC有与钎料中的Zn原子继续反应生成Cu_5Zn_8的趋势;Cu原子越过Sn-Zn钎料/Cu基板界面IMC层向钎料中的扩散与聚集呈现“脉动”形式,并在邻近结合面的钎料中形成粒状Cu_5Zn_8IMC;Sn-Zn钎料与Cu基板界面IMC主要表现为3种形貌:粗糙的界面Cu_5Zn_8IMC层、致密的Cu_5Zn_8胞状晶层、板状CuZn IMC层。
     合金微观分析表明,Sn-Zn钎料在本试验快速凝固条件下,初生β-Sn相快速生长与分枝形成网络状枝晶,Zn相的长大被抑制,呈尺寸为0.5~2μm的细小颗粒状被包覆于β-Sn枝晶中;与Sn-9Zn合金相比,0.1wt.%Cr的添加对基体组织的细化作用促进了快速凝固过程中Zn在Sn中的固溶,组织中β-Sn相枝晶更为均匀,颗粒状Zn相更为细小(尺寸基本上不大于1μm)且分布更为弥散;快速凝固态Sn-8Zn-3Bi合金中,Zn相以不规则的尺寸大致为2-4μm的细小条块状或颗粒状分布于Sn枝晶中,Bi均以过饱和固溶体形式存在于Sn相中。
     钎料熔化特性分析结果表明,经本文工艺条件下快速凝固制备后,Sn-Zn合金的熔点几乎无变化,Sn-9Zn-0.1Cr合金的熔点降低约9°C,而Sn-8Zn-3Bi合金由于Bi完全固溶在Sn中导致熔点反而升高了约7°C;与常态合金相比,处于热力学亚稳定状态的快速凝固态Sn-Zn系合金熔化区间均显著减小,在钎焊加热过程中结晶潜热的释放促进了钎料对基板的润湿与铺展。
     Sn-Zn/Cu界面IMC分析表明,快速凝固态钎料中细小的Zn相与析出相在钎焊过程中与基板元素间的反应均匀,避免了界面处粗大块状Cu_5Zn_8IMC的形成,能够促进钎焊时均匀界面反应层的形成,显著提高了焊点结合强度。
     150°C长时间时效会导致Sn-Zn/Cu焊点界面Cu-Zn化合物的分解,IMC层厚度表现为随时间的延长先增大而后减小的趋势,局部被破坏的界面区Cu基体处形成Cu_6Sn_5化合物;与常态钎料相比,使用快速凝固态Sn-Zn钎料所形成的较为均匀致密的界面IMC层在高温时效过程中较稳定。
     界面IMC生长动力学分析结果表明:适量合金元素Cr、Bi在Sn-9Zn合金中的添加能够抑制钎焊过程中界面Cu-Zn IMC的生长;本文试验条件下,钎焊温度为240°C时钎料/Cu基板钎焊过程中IMC生长速率常数k分别为:使用Sn-9Zn钎料时约为3.5,使用Sn-9Zn-0.1Cr或Sn-8Zn-3Bi钎料时均大致为2.8~3.1;不同初始工艺条件对两种状态钎料/Cu焊点界面IMC生长速率的影响无明显差异;不同状态钎料对焊点固态时效过程中界面IMC生长动力学的影响不明显。
     Sn-9Zn中添加0.1wt.%Cr后,钎料的铺展性能及钎料/Cu焊点结合强度明显改善,快速凝固态Sn-9Zn-0.1Cr钎料/Cu焊点界面IMC相对更为均匀,力学性能的提高更为显著;0.1wt.%Cr在Sn-9Zn中的添加能够减小钎料/Cu焊点固态时效过程中界面IMC的生长速率,对界面IMC在服役过程中的过度生长抑制作用明显。
     微量稀土(RE)元素在Sn-9Zn合金中的添加具有明显变质作用,添加量较多时合金中所形成的RE化合物在局部的聚集会导致性能下降;Sn-9Zn合金中添加0.1wt.%RE元素Nd时,界面组织的均匀细化有利于改善焊点力学性能。
     本课题的试验研究表明,快速凝固及微合金化技术在部分Sn-Zn系无铅钎料改性制备中的单一或复合应用,能够实现钎料/基板间在较低温度和/或较短时间工艺条件下即形成有效连接,能够抑制界面IMC的不利影响和改善接头组织与力学性能。本课题的研究拓宽了高性能Sn-Zn系无铅钎料的研究与应用范畴。
The development of lead-free solders has been an essential and urgent task in theelectronics packaging industry because of the restriction of lead use by legislations.Sn-Zn alloys, which have some advantages, such as relatively low melting point,cost-saving and superior mechanical property, is considered as one of candidates thatcould replace Pb-containing solders in microelectronic packaging and interconnects.However, because Zn element is quite active, Sn-Zn system solders have worse wettingand corrosion behavior. The high temperature oxidation resistance and embrittlementbehavior of the Sn-Zn alloys is also of low quality.
     The subject aims at the questions existing in Sn-Zn alloys and studies the effect ofrapid solidification process and/or micro-alloying on microstructure and characteristicsof solder alloys. The interface behavior of solder/Cu and the mechanical properties ofsoldering joints are also investigated. The as-solidified eutectic Sn-Zn solder isemployed as the reference system.
     The studies showed that a CuZn intermetallic compound (IMC) layer was formedpreferentially within the Cu substrate at the Sn-Zn/Cu interface and the Cu_5Zn_8IMCformed by the reaction of CuZn with Zn atoms diffused from the solder. The diffusionand aggregation of the Cu atoms which crossed the IMC layer into the solder presented“pulsation" in the form, and the granular Cu_5Zn_8IMCs were formed in the solder. TheIMC at the interface was present an appearance of three types: coarse IMC layer at theinterface, compact cellular Cu_5Zn_8layer, and tabular CuZn IMC layer.
     Microstructure analysis of solder alloys showed that a netlike dendrite structure wasformed due to the rapid branch of β-Sn, the growth of Zn phases was suppressed anddistributed in β-Sn matrix in granular form with a size of0.5~2μm. By contrast to theas-solidified Sn-9Zn alloy, the addition of0.1wt.%Cr in Sn-9Zn alloy promoted thedissolution of Zn in Sn during the rapid solidification process. The microstructure of thesoldering seam was notably fined and the Zn phases were not distinctly greater than1μm. The Zn phases in rapidly solidified Sn-8Zn-3Bi presented granular or strip andblock pattern, with a size of2~4μm. Bi was completely dissolved in Sn and formedsupersaturated solid solution.
     The analysis results of melting characteristic of various solder alloys indicated thatthe melting temperatures of Sn-9Zn and Sn-6.5Zn were almost not changed after rapid solidification. By contrast to the as-solidified alloys, after rapid solidification, themelting point of the Sn-9Zn-0.1Cr alloy was lower by about9°C and the Sn-8Zn-3Bisolder was rise by about7°C. The pasty range of rapidly solidified alloys obviouslydecreased. The metastable phase in the rapidly solidified alloys could release the crystallatent heat during the soldering process and then promote the fusion of the solder.
     The analysis of IMC at the interface of Sn-Zn/Cu showed that the fine Zn phasesand precipitates in rapidly solidified solder promoted the homogeneity of the interfacialreaction. The Cu_5Zn_8intermetallics at the interface by using the rapidly solidifiedSn-9Zn alloy were finer and more uniform than that of the as-solidified Sn-9Zn alloy,and the tensile-shear strength of the joint was obviously improved.
     As aging time prolonged at150°C, the thickness of the IMC layer changed from anincrease to a reduction and the continuity and compactability of this layer was destroyeddue to the decomposition of the Cu-Zn IMC layer. A discontinuous layer of Cu6Sn5IMC was present within the Cu substrate near the decomposed region. By comparisonwith as-solidified solders, the compact and uniform IMC layer at the interface by use ofthe rapidly solidified solder was more stable during aging at150°C.
     The growth kinetics analysis of the interfacial IMC showed that the growth of IMCat the interface of solder/Cu during the soldering process could be suppressed due to asuitable addition of the elements Bi and Cr. In the tests, the growth rate constant k ofthe IMC at the interface of solder/Cu during soldering at240°C by using the Sn-9Znalloy and the Sn-9Zn-0.1Cr or Sn-8Zn-3Bi alloys was3.5,2.8~3.1, respectively. Theeffects of various initial process conditions on the growth rate were puny. The effects ofsolder state on the growth kinetics of the interfacial IMC during solid aging wereslightly.
     The addition of0.1wt.%Cr in Sn-9Zn, the wettability and the bonding strength ofsolder/Cu were improved obviously. The IMC layer became relatively uniform and thetensile-shear strengths of the joints using the rapidly solidified solder were markedlyhigher than those of the joints using the as-solidified solders. The former exhibited goodsolderability and excellent joint strength. Due to the addition of0.1wt.%Cr in Sn-9Zn,the growth rate of the IMC was decreased during the solid aging process and theexcessive growth of the IMC layer at the interface can be suppressed.
     The addition of minor rare earth (RE) elements in Sn-9Zn alloy has distinctmetamorphism, but the RE compounds could be formed due to the overmuch addition.The improved properties of the joints of the Cu/Sn-9Zn-0.1Nd/Cu might result from the formation of the uniform, fine-grained microstructure at the interface.
     Studies in this project show that a suitable application of the rapid solidificationtechnology and alloying method independently or simultaneously can significantlyimprove the combination property of the Sn-Zn system lead-free solders. Then, thesoldering process can complete in a shorter period of time or/and a lower temperaturecompared with the as-solidified solders and the joints are of high quality. The adverseeffect of the IMC at the interface on the microstructure and mechanical properties issuppressed. The research extends the fields of the study and application of Sn-Znlead-free solder alloys with high-performance.
引文
[1] Mulugeta Abtew, Guna Selvaduray. Lead-free Solders in Microelectronics[J]. MaterialsScience and Engineering: R: Reports.2000,27(5-6):95-141.
    [2]菅沼克昭.无铅焊接技术[M].宁晓山译.北京:科学出版社.2004,8-9.
    [3] Katsuaki Suganuma. Advances in lead-free electronics soldering[J]. Current Opinion inSolid State and Materials Science.2001,5(1):55-64.
    [4]上官东恺.无铅钎料互联及可靠性[M].刘建影,孙鹏译.北京:电子工业出版社.2008.
    [5] Hongtao Ma, Jeffrey C. Suhling. A review of mechanical properties of lead-free solders forelectronic packaging [J]. Journal of Materials Science,2009,44(5):1141-1158.
    [6] Lee NC. Getting ready for lead-free solders [J]. Soldering&Surface Mount Technology,1997,9(2):65-69.
    [7]宣大荣.无铅焊接微焊接技术分析与工艺设计[M].北京:电子工业出版社.2008.
    [8]刘永长,韦晨.Sn-Ag-Zn系无铅钎料[M].北京:科学出版社.2010,1-38.
    [9] K J R. Wassink, M M F Verguld. Manufacturing Techniques for Surface MountedAssemblies[M]. Electrochemical Publications Ltd.,1995, GB-Port Erin, British Isles, p.17.
    [10] J Zhao, Y Miyashita, Y Mutoh. Fatigue crack growth behavior of96.5Sn-3.5Ag lead-freesolder [J]. International Journal of Fatigue.2001,23(8):723-731.
    [11] K S Kim, S H Huh, K Suganuma. Effects of cooling speed on microstructure and tensileproperties of Sn-Ag-Cu alloys [J]. Materials Science and Engineering A,2002,333(1-2):106-114.
    [12] K S Kim, S H Huh, K Suganuma. Effects of intermetallic compounds on properties ofSn-Ag-Cu lead-free soldered joints [J]. Journal of Alloys and Compounds,2003,352(1-2)226-236.
    [13] K S Kim, S H Huh, K Suganuma. Effects of fourth alloying additive on microstructures andtensile properties of Sn-Ag-Cu alloy and joints with Cu [J]. Microelectronics Reliability.2003,43(2):259-26.
    [14] F X. Che, W H. Zhu, Edith S W Poh, X W Zhang, X R Zhang. The study of mechanicalproperties of Sn-Ag-Cu lead-free solders with different Ag contents and Ni doping underdifferent strain rates and temperatures [J]. Journal of Alloys and Compounds,2010,507(1):215-224.
    [15] D Q Yu, J Zhao, L Wang. Improvement on the microstructure stability, mechanical andwetting properties of Sn-Ag-Cu lead-free solder with the addition of rare earth elements [J].Journal of Alloys and Compounds,2004,376(1-2):170-175.
    [16] Ikuo Shohji, Tomohiro Yoshida, Takehiko Takahashi, Susumu Hioki. Tensile properties ofSn-Ag based lead-free solders and strain rate sensitivity [J]. Materials Science andEngineering A,2004,366(1):50-55.
    [17] H Y Song, Q S Zhu, Z G Wang, J K Shang, M Lu. Effects of Zn addition on microstructureand tensile properties of Sn-1Ag-0.5Cu alloy [J]. Materials Science and Engineering: A,2010,527(6):1343-1350.
    [18]王要利,张柯柯,韩丽娟,温洪洪. Sn-2.5Ag-0.7Cu(0.1RE)/Cu焊点界面区微观组织与Cu6Sn5的生长动力学[J].中国有色金属学报,2009,19(4):708713.
    [19] Hwa-Teng Lee, Heng-Sheng Lin, Cheng-Shyan Lee, Po-Wei Chen. Reliability of Sn-Ag-Sblead-free solder joints [J]. Materials Science and Engineering: A,2005,407(1-2):36-44
    [20] Choi W K, Kim J H, Jeong S W, Lee H M. Interfacial microstructure and joint strength ofSn-3.5Ag-X(X=Cu, In, Ni) solder joint [J]. Journal of Materials Research,2002,17(1):43-51.
    [21]黄明亮,于大全,王来,王富岗. Sn-6Bi-2Ag(Cu,Sb)无铅钎料合金微观组织分析[J].中国有色金属学报,2002,12(3):486-490.
    [22] Huang M L, Wang L. Effects of Cu, Bi, and In on microstructure and tensile properties ofSn-Ag-X(Cu, Bi, In) solders. Metallurgical and Materials Transactions A-PhysicalMetallurgy and Material.2005,36A(a):1439-1446.
    [23] Chi-Won Hwang, Katsuaki Suganuma. Joint reliability and high temperature stability ofSn-Ag-Bi lead-free solder with Cu and Sn-Pb/Ni/Cu substrates [J]. Materials Science andEngineering A,2004,373(1-2):187-194.
    [24] Jingbo Wan, Yongchang Liu, Chen Wei, Zhiming Gao. Effect of the addition of In on themicrostructural formation of Sn-Ag-Zn lead-free solder [J]. Journal of Alloys andCompounds,2008,463(1-2):230-237.
    [25] Y Rosenthal, A Stern, S R Cohen, D Eliezer [J]. Nanoindentation measurements andmechanical testing of as-soldered and aged Sn-0.7Cu lead-free miniature joints, MaterialsScience and Engineering: A,2010,527(16-17):4014-4020.
    [26] John H L Pang, B S Xiong, T H Low. Low cycle fatigue study of lead free99.3Sn-0.7Cusolder alloy [J]. International Journal of Fatigue,2004,26(8):865-872.
    [27] Kazuhiro Nogita. Stabilisation of Cu6Sn5by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys.Intermetallics [J].2010,18(1):145-149.
    [28] Kazuhiro Nogita, Tetsuro Nishimura. Nickel-stabilized hexagonal (Cu, Ni)6Sn5in Sn-Cu-Nilead-free solder alloys [J]. Scripta Materialia,2008,59(2):191-194
    [29] Jung-Tang Huang, Pen-Shan Chao, Hou-Jun Hsu, Sheng-Hsiung Shih. A novel bumpingprocess for fine pitch Sn-Cu lead-free plating-based flip chip solder bumps [J]. MaterialsScience in Semiconductor Processing,2007,10(4-5):133-142.
    [30] Hui-Wei Miao, Jenq-Gong Duh. Microstructure evolution in Sn–Bi and Sn–Bi–Cu solderjoints under thermal aging [J]. Materials Chemistry and Physics,2001,71(3):255-271.
    [31] Chih-ming Chen, Chih-chieh Huang. Effects of silver doping on electromigration of eutecticSnBi solder [J]. Journal of Alloys and Compounds,2008,461(1-2):235-241.
    [32] J F Li, S H Mannan, M P Clode, K Chen, D C Whalley, C Liu, D A Hutt. Comparison ofinterfacial reactions of Ni and Ni–P in extended contact with liquid Sn–Bi-based solders [J].Acta Materialia,2007,55(2):737-752.
    [33] Ramani Mayappan, Zainal Arifin Ahmad. Effect of Bi addition on the activation energy forthe growth of Cu5Zn8intermetallic in the Sn-Zn lead-free solder[J]. Intermetallics.2010,18(4):730-735.
    [34] Peng Sun, Cristina Andersson, Xicheng Wei, Zhaonian Cheng, Dongkai Shangguan, JohanLiu, Study of interfacial reactions in Sn–3.5Ag–3.0Bi and Sn–8.0Zn–3.0Bi sandwichstructure solder joint with Ni(P)/Cu metallization on Cu substrate [J]. Journal of Alloys andCompounds,2007,437(1-2):169-179.
    [35] Jian Zhou, Yangshan Sun, Feng Xue. Properties of low melting point Sn-Zn-Bi solders[J],Journal of Alloys and Compounds,2005,397(1-2):260-264.
    [36] Yi-Da Tsai, Chi-Chang Hu, Chi-Cheng Lin, Electrodeposition of Sn–Bi lead-free solders:Effects of complex agents on the composition, adhesion, and dendrite formation [J].Electrochimica Acta,2007,53(4):2040-2047.
    [37] Suganuma K, Kim KS. Sn-Zn low temperature solder [J]. Journal of MareaialsScience-Materials in Electronics.2007,18(1-3):121-127.
    [38] Xiuqin Wei, Huizhen Huang, Lang Zhou, Meng Zhang, Xiaodong Liu. On the advantages ofusing a hypoeutectic Sn-Zn as lead-free solder material [J]. Materials Letters.2007,61(3):655-658.
    [39] Leonardo R Garcia, Wislei R Osorio, Leandro C Peixoto, Amauri Garcia. Mechanicalproperties of Sn-Zn lead-free solder alloys based on the microstructure array [J]. MaterialsCharacterization,2010,61(2):212-220.
    [40] Wei G Q, Huang Y L. Suppression of interfacial intermetallic compounds between Sn-9Znsolder and Cu-substrate by adding Cu-particles in the solder. Journal of MareaialsScience-Materials in Electronics.2012,23(1):130-135.
    [41] Zhang L, Xue S B, Gao L L, Sheng Z, Ye H, Xiao Z X, Zeng G, Yan Chen, Yu S L.Development of Sn–Zn lead-free solders bearing alloying elements [J]. Journal of MaterialsScience: Materials in Electronics,2010,21(1):1-15.
    [42]魏秀琴,黄惠珍,周浪,张萌.亚共晶Sn-Zn系合金无铅焊料的性能[J].中国有色金属学报.2006,16(12):1993-1998.
    [43] R Mahmudi, A R. Geranmayeh, H Noori, M Shahabi. Impression creep of hypoeutecticSn-Zn lead-free solder alloys [J]. Materials Science and Engineering: A.2008,491(1-2):110-116.
    [44] Chen X, Li M, Ren XX, Hu AM, Mao DL. Effect of small additions of alloying elements onthe properties of Sn-Zn eutectic alloy [J]. Journal of Electronic Materials.2006,35(9):1734-1739.
    [45] M N Islam, Y C Chan, M J Rizvi, W Jillek. Investigations of interfacial reactions of Sn-Znbased and Sn-Ag-Cu lead-free solder alloys as replacement for Sn-Pb solder [J]. Journal ofAlloys and Compounds.2005,400(1-2):136-144.
    [46]张习敏,胡强,徐骏,宋德军. Sn-Zn系钎料研究及应用现状[J].电子工艺技术,2005,26(5):273-277.
    [47] A A El-Daly, Y Swilem, A E Hammad. Creep properties of Sn-Sb based lead-free solderalloys [J]. Journal of Alloys and Compounds,2009,471(1-2):98-104.
    [48] R Mahmudi, A R Geranmayeh, A Rezaee-Bazzaz. Impression creep behavior of lead-freeSn-5Sb solder alloy, Materials Science and Engineering: A,2007,448(1-2):287-293.
    [49] R Mahmudi, A R Geranmayeh, M Bakherad, M Allami. Indentation creep study of lead-freeSn-5%Sb solder alloy [J]. Materials Science and Engineering: A,2007,457(1-2):173-179.
    [50] Yeh M S. Evaluation of the mechanical properties of a ternary Sn-20In-2.8Ag solder [J].Journal of Electronic Materials.2002,31(9):953-956.
    [51] S Vaynman, M.E Fine. Development of fluxes for lead-free solders containing zinc [J].Scripta Materialia,1999,41(12):1269-1271.
    [52]黄起森,魏秀琴,朱君秋,周浪.锡锌合金无铅电子钎料有机活化松香助焊剂[J].电子工艺技术,2006,27(1):44-46.
    [53]徐冬霞,雷永平,张冰冰,祝蕾,夏志东,史耀武,郭福.锡锌系无铅钎料用免清洗助焊剂的润湿性评价[J].功能材料,2008,39(4):701-704.
    [54]孙福林,张宇航,蔡志红,胡泽宇,朱火清.新型无卤素免清洗助焊剂的研制[J].材料研究与应用,2011,5(1):49-52.
    [55] Young-Sun Kim, Keun-Soo Kim, Chi-Won Hwang, Katsuaki Suganuma. Effect ofcomposition and cooling rate on microstructure and tensile properties of Sn-Zn-Bi alloys [J],Journal of Alloys and Compounds,2003,352(1-2):237-245.
    [56] Vianco P T, Rejent J A. Properties of ternary Sn-Ag-Bi solder alloys: Part I-Thermalproperties and microstructural analysis [J]. Journal of Electronic Materials.1999,28(10):1127-1137.
    [57] Vianco P T, Rejent J A. Properties of ternary Sn-Ag-Bi solder allays: Part II-Wettability andmechanical properties analyses [J]. Journal of Electronic Materials.1999,28(10):1138-1143.
    [58] He M, Acoff V L. Effect of bi on the interfacial reaction between Sn-3.7Ag-xBi solders andcu [J]. Journal of Electronic Materials.2008,37(3):288-299.
    [59] He Min, Ekpenuma Sylvester N, Acoff Viola L. Microstructure and creep deformation ofSn-Ag-Cu-Bi/Cu solder joints [J]. Journal of Electronic Materials.2008,37(3):300-306.
    [60] L L Duan, D Q Yu, S Q Han, H T Ma, L Wang. Microstructural evolution of Sn-9Zn-3Bisolder/Cu joint during long-term aging at170℃[J]. Journal of Alloys and Compounds,2004,381(1-2):202-207.
    [61] D Q Yu, H P Xie, L Wang. Investigation of interfacial microstructure and wetting property ofnewly developed Sn-Zn-Cu solders with Cu substrate [J]. Journal of Alloys and Compounds.2004,385(1-2):119-125.
    [62]王来,马海涛,谢海平,于大全. Sn-Zn-Cu/Cu界面反应及剪切强度[J].大连理工大学学报,2005,45(5):663-667.
    [63]张富文,刘静,杨福宝,胡强,贺会军,朱学新,徐骏,石力开.新型Sn-Ag-Cu-Cr无铅焊料合金的研究[J].电子元件与材料,2005,24(11):45-48.
    [64] Xi Chen, Anmin Hu, Ming Li, Dali Mao. Effect of a trace of Cr on intermetallic compoundlayer for tin-zinc lead-free solder joint during aging [J]. Journal of Alloys and Compounds.2009,470(1-2):429-433.
    [65] Xi Chen, Anmin Hu, Ming Li, Dali Mao. Study on the properties of Sn-9Zn-xCr lead-freesolder [J]. Journal of Alloys and Compounds.2008,460(1-2):478-484.
    [66] Jin Hu, Anmin Hu, Ming Li, Dali Mao. Depressing effect of0.1wt.%Cr addition intoSn-9Zn solder alloy on the intermetallic growth with Cu substrate during isothermal aging[J]. Materials Characterization.2010,61(3):355-361.
    [67] F Guo, S Choi, K N Subramanian, T R Bieler, J P Lucas, A Achari, M Paruchuri. Evaluationof creep behavior of near-eutectic Sn-Ag solders containing small amount of alloy additions[J]. Materials Science and Engineering: A,2003,351(1-2):190-199.
    [68] Kim K S, Huh S H, Suganuma K. Effects of fourth alloying additive on microstructures andtensile properties of Sn-Ag-Cu alloy and joints with Cu [J]. Microelectronics Reliability,2003,43(2):259-267.
    [69] Lijuan Liu, Wei Zhou, Baoling Li, Ping Wu. Interfacial reactions between Sn-8Zn-3Bi-xNilead-free solders and Cu substrate during isothermal aging [J]. Materials Chemistry andPhysics,2010,123(2-3):629-633.
    [70] Wan J B, Liu Y C, Wei C, Gao Z M, Ma C S. Effect of Al content on the formation ofintermetallic compounds in Sn-Ag-Zn lead-free solder [J]. Journal of Materials Science:Materials in Electronics,2008,19(3):247-253.
    [71] Chia-Wei Huang, Kwang-Lung Lin. Morphology of intermetallic compounds formedbetween lead-free Sn-Zn based solders and Cu substrates [J]. Journal of Electronic Materials,2006,35(12):2135-2141.
    [72]陈文学,薛松柏,王慧,胡玉华. Sn-9Zn-xAl无铅钎料润湿性能[J].焊接学报,2008,29(8):37-40.
    [73] Moo-Chin Wang, Shan-Pu Yu, Tao-Chih Chang, Min-Hsiung Hon. Formation andmorphology of the intermetallic compounds formed at the91Sn-8.55Zn-0.45Al lead-freesolder alloy/Cu interface [J]. Journal of Alloys and Compounds,2005,389(1-2):133-139.
    [74] Udit Surya Mohanty, Kwang-Lung Lin. Effect of Al on the electrochemical corrosionbehaviour of Pb free Sn-8.5Zn-0.5Ag-XAl-0.5Ga solder in3.5%NaCl solution [J].Applied Surface Science,2006,252(16):5907-5916.
    [75]卢斌,栗慧,王娟辉,张宇航.添加微量稀土元素对Sn-Ag-Cu系无铅焊料性能的影响[J].稀有金属与硬质合金,2007,35(1):27-30.
    [76] Zhigang Chen, Yaowu Shi, Zhidong Xia, Yanfu Yan. Properties of lead-free solder SnAgCucontaining minute amounts of rare earth [J]. Journal of Electronic Materials,2003,32(4):235-243.
    [77]吕娟,赵麦群,王秀春,康晶.微量RE和Al对Sn-9Zn焊料组织与性能的影响[J].电子元件与材料,2009,28(8):39-42.
    [78]马鑫,钱乙余,Yoshida F.镧对Cu_6Sn_5长大驱动力及焊点可靠性的影响[J].中国稀土学报,2001,19(4):354-356.
    [79]吴敏.镧对Sn3.5Ag0.5Cu钎料组织性能影响[J].电子元件与材料,2008,27(2):39-41.
    [80]薛松柏,刘琳,代永峰,姚立华.微量稀土元素铈对Sn-Ag-Cu无铅钎料物理性能和焊点抗拉强度的影响[J].焊接学报,2005,26(10):23-26.
    [81] C M L Wu, D Q Yu, C M T Law, L Wang. Properties of lead-free solder alloys with rareearth element additions [J]. Materials Science and Engineering: R: Reports,2004,44(1):1-44.
    [82]吴京淆,杨建国,方洪渊.复合钎料的特点及研究现状[J].焊接.2002,12:10-14.
    [83]刘晓英. Sn基复合无铅钎料的研究[D].博士学位论文,大连,大连理工大学,2010.
    [84] Subramanian KN, Bieler TR, Lucas JP. Microstructural engineering of solders. Journal ofElectronic Materials.1999,28(11):1176-1183.
    [85] Choi S, Bieler T R, Lucas J P, Subramanian K N. Characterization of the growth ofintermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their compositesolders on Cu substrate during isothermal long-term aging [J]. Journal of ElectronicMaterials.1999,28(11):1209-1215.
    [86]闫焉服,陈拂晓,朱锦洪,张柯柯. Ag颗粒含量对SnCu基复合钎料性能的影响[J].材料研究学报,2007,21(1):102-105..
    [87]何鹏,安晶,马鑫,陈胜,钱乙余,林铁松.含碳纳米管的Sn-58Bi钎料的制备及其钎焊性[J].焊接学报,2011,32(9):9-12.
    [88]聂京凯,郭福,郑菡晶,邰枫,夏志东. Ni颗粒增强无铅复合钎料中IMC形态之演变[J].电子元件与材料,2007,26(9):43-46.
    [89]卫国强,况敏,杨永强. Cu颗粒增强的Sn-9Zn复合钎料/Cu钎焊接头界面反应[J].焊接学报,2007,28(5):105-108.
    [90]黄惠珍,廖福平,魏秀琴,周浪.添加铜对Sn-9Zn无铅钎料性能的影响[J].焊接学报,2009,30(6):30-33.
    [91]沈宁福.凝固理论进展与快速凝固[J].金属学报,1996(7):673-684.
    [92] Lavernia E J, Srivatsan T S. The rapid solidification processing of materials: science,principles, technology, advances, and applications [J]. Journal of Materials Science,2010,45(2):287-325.
    [93]陈光,傅恒志.非平衡凝固新型金属材料[M].北京:机械工业出版社,2004,66-120.
    [94] Jones H. A perspective on the development of rapid solidification and nonequilibriumprocessing and its future [J]. Mater Sci Eng-A2001;304-306:11-9.
    [95]石保庆.钎焊技术发展动向[J].焊接技术,1998(1):37-38.
    [96]俞伟元,陈学定,路文江等.快速凝固钎焊薄带[J].焊接技术,2006,3(6):35-36.
    [97]刘城.快速凝固技术的应用与发展[J].广东有色金属学报,2005,15(4):58-61.
    [98]邹家生,许志荣,初雅杰等.非晶态焊接材料的特性及其应用[J].材料导报,2004,18:37-41
    [99]范洪波,曹福洋,蒋祖龄,李庆春.铝基非晶态合金的制备方法及性能[J].材料导报,1997,11(2):13-17.
    [100] Yu H. A fluid mechanics model of the planar flow melt spinning process under low Reynoldsnumber conditions[J]. Metal Trans,1987,18B:557.
    [101] Murty Y V, Adler R P I. High-speed casting of metallic foils by the double-roller quenchingtechnique [J]. J Mater Sci,1982,17(7):1945-1954.
    [102]陈明安,卓利,张新明. Al-12.6%Si薄带双辊快速凝固成形试验研究[J].材料工程,1999,(4):32-35.
    [103] Boulby K, Wood J V. Steel particulate made by rapid solidification process[J]. Powder Metal,1986,29(1):33.
    [104] Gaspar T, Hackman L E, Scott S W, et al. Direct cast of titanium alloy strip by melt overflowin processing of structural metals by rapid soldification [J]. A SM International,1987,247.
    [105] R Mahmudi, A R Geranmayeh, H Noori, N Jahangiri, H Khanbareh. Effect of cooling rate onthe room-temperature impression: creep of lead-free Sn-9Zn and Sn-8Zn-3Bi solders [J].Materials Science and Engineering: A,2008,487(1-2):20-25.
    [106] C Wei, Y C Liu, Y J Han, J B Wan, K Yang. Microstructures of eutectic Sn-Ag-Zn soldersolidified with different cooling rates [J]. Journal of Alloys and Compounds,2008,464(1-2):301-305.
    [107]赵国际,张柯柯,王要利,祝要民.快速凝固Sn2.5Ag0.7Cu钎料合金凝固组织特征[J].金属热处理.2009,34(6):60-63.
    [108]俞伟元,陈学定,路文江,王艳红.非晶铜磷钎料升温过程中的组织演变[J].稀有金属材料与工程,2009,38(9)1626-1629.
    [109]赵国际,张柯柯,罗键.快速凝固Sn2.5Ag0.7Cu钎料中金属间化合物形态及对焊点性能的影响.中国有色金属学报.2010,20(10):2025-2031.
    [110]李天文,郭万林,淮军锋.镍基钎料钎焊GH586高温合金[J].材料工程,2010,(10)48-52.
    [111] J Shen, Y C Chan, S Y Liu. Growth mechanism of bulk Ag3Sn intermetallic compounds inSn-Ag solder during solidification [J]. Intermetallics,2008,16(9):1142-1148.
    [112]赵国际,张柯柯,韩丽娟,张鑫.快速凝固态Sn2.5Ag0.7Cu钎料钎焊接头的组织显微组织.机械工程材料.2009,33(9):44-46.
    [113] G. Saad, A Fawzy, E Shawky. Effect of Ag addition on the creep characteristics of Sn-8.8wt%Zn solder alloy [J]. Journal of Alloys and Compounds.2009,479(1-2):844-850.
    [114] Tao-Chih Chang, Moo-Chin Wang, Min-Hsiung Hon. Morphology and adhesion strength ofthe Sn-9Zn-3.5Ag/Cu interface after aging [J]. Journal of Crystal Growth,2004,263(1-4):223-231.
    [115] Jae-Ean Lee, Keun-Soo Kim, Masahiro Inoue, Junxiang Jiang, Katsuaki Suganuma. Effectsof Ag and Cu addition on microstructural properties and oxidation resistance of Sn-Zneutectic alloy [J]. Journal of Alloys and Compounds.2008,454(1-2):310-320.
    [116] Tao-Chih Chang, Moo-Chin Wang, Min-Hsiung Hon. Effect of Ag addition on the structuresof intermetallic compounds and the adhesion strength of the Sn-9Zn-xAg/Cu interface [J].Journal of Crystal Growth,2003,252(1-2):391-400.
    [117] Wenxue Chen, Songbai Xue, Hui Wang, Jianxin Wang, Zongjie Han, Lili Gao. Effects of Agon microstructures, wettabilities of Sn–9Zn–xAg solders as well as mechanical properties ofsoldered joints [J]. Journal of Materials Science: Materials in Electronics,2010,21(5):461-467.
    [118]黄惠珍,黄起森,彭曙,周浪.添加Ag对Sn-9Zn无铅钎料合金性能的影响[J].特种铸造及有色合金,2006,26(3)179-181.
    [119]吴文云,邱小明,殷世强,孙大谦,李明高. Bi、Ag对Sn-Zn无铅钎料性能与组织的影响[J].中国有色金属学报,2006,16(1):158-163.
    [120]李晓燕,雷永平,夏志东,史耀武. Ag含量对Sn-Zn-Ag无铅钎料腐蚀性能的影响[J].电子工艺技术,2006,27(2):70-72.
    [121] A A El-Daly, Y Swilem, M H Makled, M.G. El-Shaarawy, A M Abdraboh. Thermal andmechanical properties of Sn-Zn-Bi lead-free solder alloys [J]. Journal of Alloys andCompounds.2009,484(1-2):134-142.
    [122] Jenn-Ming Song, Truan-Sheng Lui, Yea-Luen Chang, Li-Hui Chen. Compositional effects onthe microstructure and vibration fracture properties of Sn-Zn-Bi alloys [J]. Journal of Alloysand Compounds.2005,403(1-2):191-196.
    [123]周健,孙扬善,薛烽.低熔点Sn-Zn-Bi无铅钎料的组织和性能[J].金属学报,2005,41(7):743-749.
    [124]吴敏,刘政军,.(Sn-9Zn)-xBi钎料组织性能研究[J].电子元件与材料,2011,30(2):32-35.
    [125]樊志罡,马海涛,王来. Cu对Sn-9Zn无铅钎料电化学腐蚀性能的影响[J].中国有色金属学报,2007,17(8):1302-1306.
    [126]赵宁,王建辉,潘学民,马海涛,王来,. Cu含量对Sn基无铅钎料组织、界面反应影响[J].大连理工大学学报,2008,48(5):661-667.
    [127] Asit Kumar Gain, Y C Chan, Winco K.C. Yung. Effect of nano Ni additions on the structureand properties of Sn-9Zn and Sn-Zn-3Bi solders in Au/Ni/Cu ball grid array packages [J].Materials Science and Engineering: B,2009,162(2):92-98.
    [128] Kwang-Lung Lin, Hui-Min Hsu. Sn-Zn-Al Pb-free solder-An inherent barrier solder for Cucontact [J]. Journal of Electronic Materials,2001,30(9):1068-1072.
    [129] Hu Yucai, Cao Fengjing, Li Fangxiao, Ni Guangchun, Cui Xicheng. Researchprogress on lead-free solders [J]. Reviews on Advanced Materials Science.29(2):150-155.
    [130]王慧,薛松柏,韩宗杰,王俭辛. Sn-Zn系无铅钎料的研究现状及发展趋势[J].焊接,2007,(2):31-35.
    [131]刘文胜,罗莉,马运柱.稀土元素对无铅钎料微观结构及性能的影响[J].电子元件与材料,2011,30(4):71-74.
    [132] Fu Guo, Mengke Zhao, Zhidong Xia, Yongping Lei, Xiaoyan Li, Yaowu Shi. Lead-freesolders with rare earth additions [J]. JOM Journal of the Minerals, Metals and MaterialsSociety,2009,61(6):39-44.
    [133]周迎春,潘清林,李文斌,梁文杰,何运斌,李运春,路聪阁. La对Sn-Ag-Cu无铅钎料与铜钎焊接头金属间化合物的影响[J].中国有色金属学报,2008,18(9):1651-1657.
    [134] Hsiu-Jen Lin and Tung-Han Chuang. Effects of Ce and La Additions on the microstructureand mechanical properties of Sn-9Zn solder joints [J].Journal of Electronic Materials,2010,39(2):200-208.
    [135] L Wang, D Q Yu, J Zhao, M L Huang. Improvement of wettability and tensile property inSn-Ag-RE lead-free solder alloy [J]. Materials Letters,2002,56(6):1039-1042.
    [136] C M L Wu, Y W Wong. Rare-earth additions to lead-free electronic solders [J]. Journal ofMaterials Science: Materials in Electronics,2007,18(1-3):77-91.
    [137] R Mahmudi, A R Geranmayeh, B Zahiri, M H Marvasti. Effect of rare earth elementadditions on the impression creep of Sn–9Zn solder alloy [J]. Journal of Materials Science:Materials in Electronics,2010,21(1):58-64.
    [138]周健,付晓琴,孙扬善,丁克俭. Sn-Zn-Bi-(P,Nd)无铅钎料的微观组织及性能[J].焊接学报,2009,30(9):45-48.
    [139] Yu-hua Hu, Song-bai Xue, Hui Wang, Huan Ye, Zheng-xiang Xiao,Li-li Gao. Effects of rareearth element Nd on the solderability and microstructure of Sn–Zn lead-free solder [J].Journal of Materials Science: Materials in Electronics,2011,22(5):481-487.
    [140]薛鹏,薛松柏,沈以赴,叶焕,肖正香. Sn-9Zn-xPr钎料钎焊性能及显微组织[J].焊接学报,2011,32(8):53-56.
    [141] Zhengxiang Xiao, Songbai Xue, Yuhua Hu, Huan Ye, Lili Gao, Hui Wang. Properties andmicrostructure of Sn-9Zn lead-free solder alloy bearing Pr [J]. J Mater Sci: Mater Electron,2011,22:659–665
    [142]王炜,江素华,戎瑞芬,王珺,汪荣昌,顾志光.无铅焊料Sn-9Zn-xLa的制备及性能[J].复旦学报(自然科学版),2008,47(3):403-407.
    [143]于大全,赵杰,王来.稀土元素对Sn-9Zn合金润湿性的影响[J].中国有色金属学报,2003,13(4):1001-1006.
    [144] WenXue Chen, SongBai Xue, Hui Wang. Wetting properties and interfacial microstructuresof Sn-Zn-xGa solders on Cu substrate [J]. Materials&Design,2010,31(4):2196-2200.
    [145] Nai-Shuo Liu, Kwang-Lung Lin. Evolution of interfacial morphology of Sn-8.5Zn-0.5Ag-0.1Al-xGa/Cu system during isothermal aging [J]. Journal of Alloys andCompounds.2008,456(1-2):466-473.
    [146] Shuo-Hong Wang, Tsung-Shune Chin, Ching-Feng Yang, Sinn-Wen Chen, Chin-TzuanChuang. Pb-free solder-alloy based on Sn-Zn-Bi with the addition of germanium [J]. Journalof Alloys and Compounds.2010,497(1-2):428-431.
    [147]周健,孙扬善,薛烽. In对Sn-8Zn-3Bi无铅钎料润湿性的影响[J].稀有金属材料与工程,2006,35(4)613-616.
    [148]方伊莉,周健,薛烽,孙扬善. Sn-8Zn-3Bi-P焊料的高温氧化行为及其对性能的影响[J].焊接学报,2008,29(8):89-92.
    [149]王秀治.非晶态钎料箔带的研究[J],上海钢研,1991(04):76-85.
    [150]高琪,谷丰,赵明霞.快速凝固Sn-Ag-Sb钎料提高钎焊接头致密性机理[J].焊接.2001(3):25-27.
    [151]张国栋,俞伟元,路文江等.快凝锡基软钎料的浸润性研究[J].甘肃工业大学学报.1999,25(4):7-10.
    [152]沈骏,高后秀,刘永长等.冷却速度对Sn-Ag无铅焊料微观组织和机械性能的影响[J].功能材料,2005,1(36).
    [153] V G Shepelevich, O V Gusakova. Structure and properties of rapidly solidified Sn-Zn foils[J]. Inorganic Materials,2008,44(5):485–489.
    [154] O V Gusakova, V G Shepelevich. Structure and Properties of Rapidly Solidified Foils ofAlloys of Sn–Zn–Bi System[J]. Inorganic Materials: Applied Research,2010,1(4):344–349.
    [155]路文江,俞伟元,陈学定等.非晶态合金钎料的制备[J].甘肃工业大学学报,1998,24(2),13-15.
    [156]李刚,路文江,俞伟元等.非晶新型代银钎料的制备及性能研究[J].兰州理工大学学报,2004,30(5),67-68.
    [157] A S Zuruzi1, C Chiu1, S K Lahiri1, K N Tu. Roughness evolution of Cu6Sn5intermetallicduring soldering [J]. Journal of Applied Physics.1999,86(9):4916-4921.
    [158] D Q Yu, L Wang. The growth and roughness evolution of intermetallic compounds ofSn-Ag-Cu/Cu interface during soldering reaction [J]. Journal of Alloys and Compounds.2008,458(1-2):542-547.
    [159] Trivedi R, Kurz W. Dendritic growth. International Materials Reviews,1994,39(2):49-74.
    [160] Baricco M. Thermodynamics of nonequilibrium materials [J]. Key Engineering Materials,1995,103:1-20.
    [161] Aziz M J. Model for solute redistribution during rapid solidification [J]. Journal of AppliedPhysics,53(2):1158-1168.
    [162] C M L Wu, C M T Law, D Q Yu, L Wang. The wettability and microstructure of Sn-Zn-REalloys [J]. Journal of Electronic Materials,2003,32(2):63-69.
    [163] Wu CML, Yu DQ, Law CMT, Wang L. The properties of Sn-9Zn lead-free solder alloysdoped with trace rare earth elements [J]. Journal of Electronic Materials,2002,31(9):921-927.
    [164]胡壮麒,宋启洪,张海峰,刘正.亚稳金属材料[M].北京:科学出版社,2006:7-8.
    [165] Mustafa Kamal, Tarek El-Ashram, Microcreep of rapidly solidified Sn-0.7wt.%Cu-Insolder alloys [J]. Materials Science and Engineering: A,2007,456(1-2):1-4.
    [166] R M Shalaby. Effect of rapid solidification on mechanical properties of a lead free Sn-3.5Agsolder [J]. Journal of Alloys and Compounds,2010,505(1):113-117.
    [167]刘丽琴,张忠明,徐春杰,郭学锋.深过冷Cu-20%Pb亚偏晶合金凝固组织的细化机制[J].金属学报,2007,43(11):1138-1144.
    [168]许志宏,王乐珊.无机热化学数据库[M].北京:科学出版社,1987,141-143.
    [169]陈锋,杨章远,温浩,许志宏.计算金属间化合物热力学性质的新方法[J].物理化学学报,1997,13(8):712-715.
    [170]林宪杰,许和允,殷保华,吴义芳,邵军.物理化学[M].北京:科学出版社,2010:466-477.
    [171] Lee H M, Yoon S W, Lee B J. Thermodynamic prediction of interface phases at Cu/solderjoints [J]. Journal of Electronic Materials,1998,27(11):1161-1166.
    [172]劳邦盛,高苏,张启运.固-液金属界面上金属间化合物的非平衡生长[J].物理化学学报.2001,17(5):453-456.
    [173]袁晓光,刘彦学,王怡嵩,黄宏军.镁合金表面冷喷涂铝合金的界面扩散行为[J].焊接学报,2007,28(11):9-12.
    [174] Katsuaki Suganuma, Toshikazu Murata, Hiroji Noguchi, Yoshitaka Toyoda. Heat Resistanceof Sn-9Zn Solder/Cu Interface with or without Coating [J]. J Mater Res,2000,15(5):884-891.
    [175] Matt Schaefer, Raymond A Fournelle, Jin Liang. Theory for intermetallic phase growthbetween cu and liquid Sn-Pb solder based on grain boundary diffusion control [J]. Journal ofElectronic Materials.1998,27(11):1167-1176.
    [176] P T Vianco, A C Kilgo, R Grant. Intermetallic compound layer growth by solid statereactions between58Bi-42Sn solder and copper [J]. Journal of Electronic Materials.1995,24(10):1493-1505.
    [177] Jeong-Won Yoon, Seung-Boo Jung. Effect of isothermal aging on intermetallic compoundlayer growth at the interface between Sn-3.5Ag-0.75Cu solder and Cu substrate [J]. Journalof Materials Science.2004,39(13):4211-4217.
    [178] Dae-Gon Kim, Chang-Youl Lee, Seung-Boo Jung. Interfacial reactions and intermetalliccompound growth between indium and copper [J]. Journal of Materials Science: Materials inElectronics.2004,15(2):95-98.
    [179] Suganuma K, Niihara K, Shoutoku T, Nakamura Y. Wetting and interface microstructurebetween Sn-Zn binary alloys and Cu [J]. Journal of Materials Research.1998,13(10):2859-2865.
    [180] S Bader, W Gust, H Hieber. Rapid formation of intermetallic compounds interdiffusion inthe Cu Sn and Ni S n systems [J]. Acta Metallurgica et Materialia,1995,43(1):329-337.
    [181] Yujing Wu, Jennifer A Sees, Cyrus Pouraghabagher, L Ann Foster, James L Marshall,Elizabeth G Jacobs,Russell F Pinizzotto. The formation and growth of intermetallics incomposite solder [J]. Journal of Electronic Materials,1993,22(7):769-777.
    [182] F Bartels, J W Morris, G Dalke, W Gust. Intermetallic phase formation in thin solid-liquiddiffusion couples [J]. Journal of Electronic Materials,1994,23(8):787-790.
    [183] B FDyson, T R Anthony, D Turnbull. Interstitial diffusion of copper in Tin [J]. Journal ofApplied Physics.1967,38:3408-3409.
    [184] F H Huang, H B Huntington. Diffusion of Sb124, Cd109, Sn113, and Zn65in tin [J].Physical Review B,1974,9(4):1479–1488.
    [185] K Suganuma, K Niihara, T Shoutoku, Y Nakamura. Wetting and interface microstructurebetween Sn–Zn binary alloys and Cu [J]. Journal of Materials Research,1998,13:2859-2865.
    [186] Wang J Y, Lin C F, Chen C M. Retarding the Cu5Zn8phase fracture at the Sn-9wt.%Zn/Cuinterface [J]. Scripta Mater,2011,64(7):633-636.
    [187]任晓雪,李明,毛大立.合金元素对Sn-Zn基无铅钎料高温抗氧化性的影响[J].电子元件与材料,2004,23(11):40-44.
    [188]肖盈盈,周健,薛烽,孙扬善,张文典. Sn-Zn系无铅焊料研究和亟待解决的问题[J].电子与封装,2006,6(4):10-14.
    [189] Hwang C W, Kim K S, Suganuma K. Interfaces in lead-free soldering [J]. J Electron Mater2003,32:1249-56.
    [190]虞觉奇,陈明安,高香山.快速凝固A1-Si基钎料性能的研究[J].焊接学报,1994,15(2):68-73.
    [191]俞伟元,陈学定,路文江.快速凝固Al-Si-Cu基钎料的性能[J].焊接学报,2004,25(2):69-72.
    [192]徐锦锋,张晓存,党波,戴卫刚. Ag-Cu-Sn三元合金钎料的快速凝固组织与性能[J].焊接学报,2011,32(2):85-88.
    [193] Kamal M, Goda E S. Effect of Rapid Solidification on structure and properties of somelead-free solder alloys [J]. Materials and Manufacturing Proccesses,2006;21:736-40.
    [194] Yang W, Liu F, Wang H F, Lu B P, Yang G C. Non-equilibrium transformation kinetics andprimary grain size distribution in the rapid solidification of Fe-B hypereutectic alloy [J]. JAlloy Compd,2011,509:2903-2908.
    [195] Ramani Mayappan, Ahmad Badri Ismail, Zainal Arifin Ahmad, Tadashi Ariga, Luay BakirHussain. The effect of crosshead speed on the joint strength between Sn-Zn-Bi lead-freesolders and Cu substrate [J]. Journal of Alloys and Compounds,2007,436(1-2):112-117.
    [196] R Mahmudi, A R Geranmayeh, H Noori, H Khanbareh, N Jahangiri. A comparison ofimpression, indentation and impression-relaxation creep of lead-free Sn–9Zn andSn–8Zn–3Bi solders at room temperature [J]. Journal of Materials Science: Materials inElectronics,2009,20(4):312-318.
    [197] Jie Chen, Jun Shen, Dong Min, Changfei Peng. Influence of minor Bi additions on theinterfacial morphology between Sn–Zn–xBi solders and a Cu layer [J]. Journal of MaterialsScience: Materials in Electronics,2009,20(11):1112-1117.
    [198] Ching-Feng Yang, Sinn-Wen Chen, Kuan-Hsien Wu, Tsung-Shune Chin. Interfacial reactionsof Sn-8wt.%Zn-3wt.%Bi solder with Cu, Ag, and Ni substrates [J]. Journal of ElectronicMaterials,2007,36(11):1524-1530.
    [199] Jian Zhou, Dan Huang, Yi-Li Fang, Feng Xue. Investigation on properties of Sn-8Zn-3Bilead-free solder by Nd addition [J]. Journal of Alloys and Compounds,2009,480:903-907.
    [200] M.A. Dudek, N. Chawla. Oxidation Behavior of Rare-Earth-Containing Pb-Free Solders.Journal of Electronic Materials,2009,38(2):210-220.
    [201] Yu-hua Hu, Song-bai Xue, Huan Ye, Zheng-xiang Xiao, Li-li Gao, Guang Zeng. Reliabilitystudies of Sn–9Zn/Cu and Sn–9Zn–0.06Nd/Cu joints with aging treatment [J]. Materials&Design,2012,34(2):768-775.
    [202] Ainissa G Ramirez, Hareesh Mavoori, Sungho Jin. Bonding nature of rare-earth-containinglead-free solders. Applied Physics Letters.2002,80(3):398-400.
    [203] Yu D Q, Zhao J, Wang L. Improvement on the microstructure stability mechanical wettingproperties of Sn-Ag-Cu lead-free solder with the addition of rare earth elements [J]. Journalof Alloys and Compounds,2004,376(1-2):170-175.
    [204] Wenxing Dong, Yaowu Shi, Zhidong Xia, Yongping Lei, Fu Guo. Effects of Trace Amountsof Rare Earth Additions on Microstructure and Properties of Sn-Bi-Based Solder Alloy [J].Journal of Electronic Materials,2008,37(7):982-991.
    [205] Hu Y H, Xue S B, Wang H, Ye H. Effects of rare earth element Nd on the solderabilitymicrostructure of Sn-Zn lead-free solder [J]. Journal of Materials Science: Materials inElectronics,2011,22(5):481-487.
    [206] Tung-Han Chuang, Shiu-Fang Yen. Abnormal growth of tin whiskers in a Sn3Ag0.5Cu0.5Cesolder ball grid array package [J]. Journal of Electronic Materials,2006,35(8):1621-1627.
    [207] Tung-Han Chuang, Hsing-Fei Wu. Effects of Ce Addition on the Microstructure andMechanical Properties of Sn-58Bi Solder Joints [J]. Journal of Electronic Materials,2011,40(1):71-77.
    [208] Hu Hao, Guangchen Xu, Yonglun Song, Yaowu Shi, Fu Guo. A Model for Rapid TinWhisker Growth on the Surface of ErSn3Phase [J]. Journal of Electronic Materials,2012,41(2):184-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700