用户名: 密码: 验证码:
缺氧在卵巢癌血管生成拟态形成中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌是女性生殖器官三大恶性肿瘤之一,死亡率居妇科恶性肿瘤首位,预后差。血管生成拟态(vasculogenic mimicry, VM)是大多数高度恶性肿瘤组织内普遍存在的一种功能性微循环形式,指具有可塑性的肿瘤细胞在没有内皮细胞参与的情况下,通过基质重塑和自身变形形成的微循环管道。血管生成拟态的存在也使传统的肿瘤抗血管治疗难以彻底阻断肿瘤血供,无法有效改善患者的生存率。VM是是肿瘤可塑性的一种表现,目前关于其诱导肿瘤细胞可塑性出现的分子机制仍不清楚。缺氧是肿瘤血管生成的主要诱导因素,且缺氧微环境普遍存在于快速增殖的实性肿瘤内,因而我们考虑缺氧也极可能是诱导肿瘤细胞可塑性,形成VM的重要因素之一。
     目的
     本研究旨在探讨缺氧微环境在肿瘤血管生成拟态形成中的作用,及缺氧促进肿瘤细胞形成VM的可能的分子机制。探究缺氧微环境下肿瘤细胞形成VM的分子机制有助于完善和发展VM理论;这对丰富肿瘤血管生成理论的研究具有重要意义,同时对临床抗肿瘤治疗提供了靶点。
     方法
     1)首先对前期实验中收集的来自天津医科大学附属肿瘤医院71例经手术切除且随访资料完整的卵巢癌临床标本进行HIF-1α、EMT表征蛋白E-cadherin、 vimentin及EMT调控蛋白Twist1、Snail、Slug及血管内皮相关蛋白VE-cadherin、FLT-1、FLK-1的免疫组织化学染色。重点观察HIF-1α与E-cadherin、vimentin及VM在同一例卵巢癌标本的连续性组织切片上的表达定位之间的关系。
     2)构建体外三维培养模型,观察是否缺氧微环境促进了VM的形成。细胞功能学实验方法探究缺氧与肿瘤细胞的迁移、侵袭和三维管道化形成能力之间的关系。
     3)应用RT-PCR、Western Blot、免疫荧光实验从蛋白和:mRNA水平检测E-cadherin, vimentin在缺氧与常氧环境下的表达情况,探究是否缺氧诱导肿瘤细胞发生了EMT,从而促进VM的形成。
     4) Western Blot检测VM形成关键蛋白VE-cadherin在常氧环境和缺氧环境下表达的差异。
     5)明胶酶谱法分析缺氧对基质金属蛋白酶MMP-2和MMP-9活性的影响。
     结果
     1)HIF-1α蛋白与血管生成拟态的形成有关71例卵巢癌中HIF-1α的阳性表达率为39.44%(28/71)。VM阳性组HIF-1α的阳性表达率为61.11%(11/18);VM阴性组HIF-1α的阳性表达率为32.08%(17/53)。 HIF-1α在VM阴性组和VM阳性组阳性表达率的差别具有统计学意义。HIF-1α蛋白定位于卵巢癌细胞的胞核内,呈棕黄色颗粒。HIF-1α阳性细胞簇在肿瘤浸润边缘、坏死区及新生血管的周围最为密集。
     2)体外三维培养证实缺氧促进了卵巢癌细胞血管生成拟态的形成,并增强了卵巢癌细胞的侵袭和迁移能力。
     Matrigel三维培养模型上发现与常氧组相比,缺氧组卵巢癌细胞形成VM的时间较早,结构较复杂。OVCAR3主要形成管状型血管生成拟态,SKOV3主要形成基质型血管生成拟态。Transwell小室体外侵袭实验发现给予CoCl2缺氧处理24小时后,与常氧组相比,缺氧组穿膜细胞数增多,统计结果显示差别具有统计学意义。迁移实验发现给予CoCl2缺氧处理24小时后,与常氧组相比,缺氧组迁移细胞数较多,差别具有统计学意义。缺氧处理48小时后卵巢癌SKOV3和OVCAR3细胞MMP-2活性比常氧状态高,进一步证明缺氧情况下卵巢癌的侵袭性增强。
     3)缺氧诱导EMT发生,是血管生成拟态形成的内在机制
     在同一例标本的连续性组织切片上分析VM阳性组与阴性组中HIF-1α与E-cadherin, vimentin的表达定位之间的关系,发现在61%(11/18)VM阳性组HIF-1α高表达时,vimentin也同时高表达,而E-cadherin低表达。而VM阴性组不存在这种对应关系,即在VM阴性组HIF-1α高表达时,没发现这种对应关系的存在。且Twist、Slug蛋白在VM阴性组和VM阳性组阳性表达率间的差别具有统计学意义,VM阳性组表达较高。表明缺氧、EMT及VM三者间存在密切关系。
     体外实验证实SKOV3、OVCAR3细胞在CoCl2缺氧48小时细胞均出现明显EMT样形态变化,转变成纤维母细胞样形态,出现多角伪足,细胞之间的粘附性降低,细胞核呈现团块状或固缩状结构。
     细胞免疫荧光、Westernblot及RT-PCR检测常氧环境下和缺氧环境下细胞的蛋白和mRNA表达证实缺氧环境下卵巢癌细胞SKOV3、OVCAR3中vimentin蛋白及1nRNA水平均上调表达,E-cadherin表达显著下调。以上结果进一步证实缺氧微环境下卵巢癌细胞通过发生EMT样可塑性转变,促进了血管生成拟态的形成。
     4)VM形成的关键蛋白VE-cadherin在缺氧微环境下表达升高在人卵巢癌石蜡标本上初步证实具有VM的卵巢癌高表达VE-cadherin蛋白,且体外Westernblot检测发现在缺氧微环境下,人卵巢癌细胞上调VM形成关键蛋白VE-cadherin的表达。
     结论
     1)缺氧诱导因子HIF-1α与血管生成拟态有关,促进了卵巢癌细胞血管生成拟态的形成。
     2)缺氧可诱导EMT发生,是血管生成拟态形成的内在机制之一。
     3)缺氧增强了卵巢癌细胞的侵袭和迁移性。
     4)缺氧促进了VM形成的关键蛋白VE-cadherin表达上调。
Epithelia ovarian cancer has the highest mortality rate of all gynecological malignancies, which reflects the fact that most patients are diagnosed with advanced cancer. Vasculogenic mimicry describes the ability of aggressive cancer cells to form vasculogenic-like networks in vitro in the absence of endothelial cells or fibroblasts, concomitant with their expressions of vascular cell-associated molecules. Vasculogenic mimicry has now been shown to occur in many different aggressive cancers including ovarian cancers.
     The hypoxic microenvironment of tumors results in changes in metabolism, angiogenesis and survival of the cells that are orchestrated by HIF-1α, and depending on tissue specificity. Hypoxia contributes to the progression of a variety of cancers by activating adaptive transcriptional programs that promote cell survival, motility and tumor angiogenesis. Given that HIF-1α has been found to be a crucial inducer contributing to tumor EMT, it is of great interest to examine the role of HIF-1α in VM formation in ovarian cancers. Although the importance of hypoxia and subsequent hypoxia-inducible factor-1α (HIF-1α) activation in tumor angiogenesis is well known, their role in the regulation of vasculogenic mimicry is unclear.
     Purpose:
     The study aims to investigate the effect of hypoxia on VM formation in ovarian cancer and to explore possible mechanism involved. Exploring the growth-promoting mechanisms of the tumor microenvironment will enhance our understanding of cancer biology and may identify new therapeutic approaches.
     Methods:
     1) Through the Tumor Tissue Bank of Tianjin Cancer Hospital,71ovarian cancer patients with detailed pathologic and clinical information were selected. Expression of HIF-1α protein was studied by immunohistochemistry in71specimens of epithelial ovarian cancers. To explore the potential mechanism, we examined the expressions of E-cadherin, vimentin, Twistl, Slug, Snail and VE-cadherin, FLT-1, FLK-1, and studied E-cadherin, vimentin topological correlation with HIF-la in VM-positive human ovarian cancers.
     2) A well-established model of Three-dimensional Matrigel culture in vitro was used to compare vasculogenic mimicry formation under hypoxia and normoxia using two ovarian cancer cell lines, SKOV3and OVCAR3. Transwell invasion assay and migration assay were performed to evaluate the effect of hypoxia on cell motility and invasion.
     3) The expression levels of HIF-la and E-cadherin, vimentin following hypoxia and normoxia were assessed using quantitative PCR and western blot. Immunofluorescence microscopy staining was performed to confirm the effect of hypoxia on the protein expressions of E-cadherin and vimentin.
     4) The expression levels of VE-cadherin following hypoxia and normoxia were assessed using western blot.
     5) Zymography assays were performed to detect the effect of hypoxia on the activity of MMP-2and MMP-9.
     Results:
     1) VM present in Ovarian Cancer associated with HIF-la expression. VM was detected in18out of71Ovarian Cancer samples (25%). HIF-1α nuclear expression could be detected in11of the18(61%) samples in the VM-positive group and in17of the53(32%) samples in the VM-negative group. HIF-1α protein expression was significant between the VM-positive group and the VM-negative group. A Kaplan-Meier survival analysis revealed that the patients with expression of HIF-la had a shorter survival period than those without HIF-la expression.
     2) Hypoxia facilitates invasiveness, migration, and VM formation of Ovarian Cancer cell
     We observed the emergence of more pipe-like structures and cellular plasticity in hypoxic group than normoxic group. We only observed simpler and less pipe-like structures in normoxic group than hypoxic group. Two different types (the patterned matrix type and the tubular type) of VM were observed in vitro under hypoxia. SKOV3cell lines formed looping patterns rich in extracellular matrix in3D cultures containing Matrigel,OVCAR3cell lines formed networks of tubular or sinusoidal channels.
     The invasive capacity of the ovarian cancer cells was significantly facilitated under hypoxia compared with that under normoxia in both SKOV3(P=0.000) and OVCAR3cells (P=0.000); an increase in cell migration was observed under hypoxic conditions SKOV3and OVCAR3cell lines compared with the control (P<0.05).
     Zymography assays were performed to detect the effect of hypoxia on the activity of MMP-2and MMP-9.
     3) Hypoxia leading to VM formation through inducing EMT
     The HIF-la expression was topologically correlated with loss of E-cadherin expression and up-regulated the expression of vimentin in11of the18VM-positive patients (61%). EMT-associated molecular Twist and Slug had higher expressions in VM-positive ovarian cancer samples than those in VM-negative ovarian cancer samples.
     In vitro experiments, we observed that ovarian cancer cell lines had morphological EMT-like changes (a more fibroblastoid morphology, a loss of cellular cohesiveness) after150μM CoCl2hypoxia for48hours. Messenger RNA (mRNA) and protein levels demonstrated induction of EMT after hypoxia, as shown by a shift in expression of epithelial markers (E-cadherin) to mesenchymal markers (vimentin).
     4) Hypoxic could induce tumor cells highexpression of VE-cadherin, promote the formation of VM. VE-cadherin is exclusively expressed by highly aggressive tumor cells and is critical in tumor VM.VM-associated molecular VE-cadherin had higher expressions in VM-positive ovarian cancer samples than those in VM-negative ovarian cancer samples. In vitro experiments,VM-related characterizing protein VE-cadherin was detected to be highly expressed under hypoxia.
     Conclusions:
     1) VM was associated with HIF-la expression in ovarian cancer, hypoxia promoted VM formation.
     2) Hypoxia inducing EMT was one of the mechanisms leading to VM formation.
     3) Hypoxia facilitated invasiveness, migration of ovarian cancer cell.
     4) Hypoxic could induce tumor cells highexpression of VE-cadherin, promote the formation of VM
引文
[1]Jemal, A., et al., Cancer statistics[J].CA Cancer J Clin,2003,53(1):5-26.
    [2]Eisenkop, S.M., R.L. Friedman, and N.M. Spirtos, The role of secondary cytoreductive surgery in the treatment of patients with recurrent epithelial ovarian carcinoma[J]. Cancer,2000.88(1):144-153.
    [3]Folkman, J., Tumor angiogenesis:therapeutic implications[J]. The New England journal of medicine,1971.285(21):1182-6.
    [4]Ricci-Vitiani, L., et al., Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells[J]. Nature,2011.477(7363):238-238.
    [5]Wang, R., et al., Glioblastoma stem-like cells give rise to tumour endothelium[J]. Nature,2010.468(7325):829-833.
    [6]Maniotis, A.J., et al., Vascular channel formation by human melanoma cells in vivo and in vitro:Vasculogenic mimicry[J]. American Journal of Pathology,1999. 155(3):739-752.
    [7]Folberg, R., M.J.C. Hendrix, and A.J. Maniotis, Vasculogenic mimicry and tumor angiogenesis[J]. American Journal of Pathology,2000.156(2):361-381.
    [8]McDonald, D.M., L. Munn, and R.K. Jain, Vasculogenic mimicry:How convincing, how novel, and how significant? [J]. American Journal of Pathology, 2000.156(2):383-388.
    [9]Hendrix, M.J., et al., Vasculogenic mimicry and tumour-cell plasticity:lessons from melanoma[J]. Nat Rev Cancer,2003.3(6):411-21.
    [10]Chen, X., et al., Uveal melanoma cell staining for CD34 and assessment of tumor vascularity[J]. Investigative Ophthalmology & Visual Science,2002.43(8): 2533-2539.
    [11]Clarijs, R., et al., Presence of a fluid-conducting meshwork in xenografted cutaneous and primary human uveal melanoma[J]. Investigative Ophthalmology & Visual Science,2002.43(4):912-918.
    [12]Smetsers, T., et al., Localization and characterization of melanoma-associated glycosaminoglycans:Differential expression of chondroitin and heparan sulfate epitopes in melanoma[J]. Cancer Research,2003.63(11):2965-2970.
    [13]Folberg, R., et al., Modeling the behavior of uveal melanoma in the liver[J]. Investigative Ophthalmology & Visual Science,2007.48(7):2967-2974.
    [14]Burri, P.H., R. Hlushchuk, and V. Djonov, Intussusceptive angiogenesis:its emergence, its characteristics, and its significance[J]. Dev Dyn,2004.231(3): 474-88.
    [15]Dome, B., et al., Alternative vascularization mechanisms in cancer-Pathology and therapeutic implications[J]. American Journal of Pathology,2007.170(1): 1-15.
    [16]Sun, B., et al., Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma[J]. Oncol Rep,2006.16(4):693-8.
    [17]Shirakawa, K., et al., Inflammatory breast cancer:vasculogenic mimicry and its hemodynamics of an inflammatory breast cancer xenograft model[J]. Breast Cancer Res,2003.5(3):136-9.
    [18]Sood, A.K., et al., The clinical significance of tumor cell-lined vasculature in ovarian carcinoma-Implications for anti-vasculogenic therapy[J]. Cancer Biology & Therapy,2002.1(6):661-664.
    [19]Cai, X.S., et al., Tumor blood vessels formation in osteosarcoma:vasculogenesis mimicry[J]. Chinese Medical Journal,2004.117(1):94-98.
    [20]Sharma, N., et al., Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations:role in vasculogenic mimicry[J]. Prostate, 2002.50(3):189-201.
    [21]Semenza, G.L., HIF-1 and human disease:one highly involved factor[J]. Genes & Development,2000.14(16):1983-1991.
    [22]Comerford, K.M., et al., Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene[J]. Cancer Research,2002.62(12):3387-3394.
    [23]Nordgren, I.K. and A. Tavassoli, Targeting tumour angiogenesis with small molecule inhibitors of hypoxia inducible factor[J]. Chem Soc Rev,2011.40(8): 4307-17.
    [24]Nishi, H., et al., Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT) [J]. Molecular and Cellular Biology,2004.24(13):6076-6083.
    [25]Yatabe, N., et al., HIF-1-mediated activation of telomerase in cervical cancer cells[J]. Oncogene,2004.23(20):3708-3715.
    [26]Staller, P., et al., Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL[J]. Nature,2003.425(6955):307-311.
    [27]Koshiji, M., et al., HIF-1 alpha induces genetic instability by transcriptionally downregulating MutS alpha expression[J]. Molecular Cell,2005.17(6):793-S03.
    [28]Semenza, G.L., Expression of hypoxia-inducible factor 1:Mechanisms and consequences[J]. Biochemical Pharmacology,2000.59(1):47-53.
    [29]Hendrix, M.J.C., et al., Transendothelial function of human metastatic melanoma cells:Role of the microenvironment in cell-fate determination[J]. Cancer Research,2002.62(3):665-668.
    [30]Yao, L.-q., et al., Primary study of vasculogenic mimicry induced by hypoxia in epithelial ovarian carcinoma[J]. Zhonghua Fu Chan Ke Za Zhi,2005.40(10): 662-5.
    [31]Sun, B., et al., Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma[J]. Cancer Letters,2007. 249(2):188-197.
    [32]Jiang, J., Y.-l. Tang, and X.-h. Liang, EMT A new vision of hypoxia promoting cancer progression[J]. Cancer Biology & Therapy,2011.11(8):714-723.
    [33]Gort, E.H., et al., Hypoxic regulation of metastasis via hypoxia-inducible factors[J]. Current Molecular Medicine,2008.8(1):60-67.
    [34]Cannito, S., et al., Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells. Carcinogenesis,2008.29(12): 2267-2278.
    [35]Sahlgren, C., et al., Notch signaling mediates hypoxia-induced tumor cell migration and invasion[J]. Proceedings of the National Academy of Sciences of the United States of America,2008.105(17):6392-6397.
    [36]Polyak, K. and R.A. Weinberg, Transitions between epithelial and mesenchymal states:acquisition of malignant and stem cell traits[J]. Nature Reviews Cancer, 2009.9(4):265-273.
    [37]Sood, A.K., et al., The paradoxical expression of maspin in ovarian carcinoma[J]. Clin Cancer Res,2002.8(9):2924-32.
    [38]Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression[J]. Nature Reviews Cancer,2002.2(6):442-454.
    [39]Thiery, J.P. and J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions[J]. Nat Rev Mol Cell Biol,2006.7(2):131-42.
    [40]Barbera, M.J., et al., Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells[J]. Oncogene,2004.23(44):7345-54.
    [41]Yang, J., et al., Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis [J]. Cell,2004.117(7):927-39.
    [42]Folberg, R., et al., Tumor cell plasticity in uveal melanoma:microenvironment directed dampening of the invasive and metastatic genotype and phenotype accompanies the generation of vasculogenic mimicry patterns[J]. Am J Pathol, 2006.169(4):1376-89.
    [43]Sood, A.K., et al., Molecular determinants of ovarian cancer plasticity[J]. American Journal of Pathology,2001.158(4):1279-1288.
    [44]Vukovic, V, et al., Hypoxia-inducible factor-1 alpha is an intrinsic marker for hypoxia in cervical cancer xenografts[J]. Cancer Research,2001.61(20): 7394-7398.
    [45]Folberg, R. and A.J. Maniotis, Vasculogenic mimicry[J]. APMIS,2004.112(7-8): 508-25.
    [46]Hendrix, M.J.C., et al., Expression and functional significance of VE-cadherin in aggressive human melanoma cells:Role in vasculogenic mimicry[J]. Proceedings of the National Academy of Sciences of the United States of America,2001. 98(14):8018-8023.
    [47]Heddleston, J.M., et al., Hypoxia inducible factors in cancer stem cells[J]. British Journal of Cancer,2010.102(5):789-795.
    [48]Yang, M.H., et al., Direct regulation of TWIST by HIF-1alpha promotes metastasis[J]. Nat Cell Biol,2008.10(3):295-305.
    [49]Yue, W.Y. and Z.P. Chen, Does vasculogenic mimicry exist in astrocytoma? [J]. Journal of Histochemistry & Cytochemistry,2005.53(8):997-1002.
    [50]Hess, A.R., et al., Phosphoinositide 3-kinase regulates membrane Type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry[J]. Cancer Res,2003.63(16):4757-62.
    [51]Sun, T., et al., Expression and functional significance of Twistl in hepatocellular carcinoma:its role in vasculogenic mimicry[J]. Hepatology,2010.51(2):545-56.
    [52]Woolard, J., et al., VEGF165b, an inhibitory vascular endothelial growth factor splice variant:mechanism of action, in vivo effect on angiogenesis and endogenous protein expression[J]. Cancer Res,2004.64(21):7822-35.
    [53]Lee, S., et al., Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors[J]. Journal of Cell Biology,2005. 169(4):681-691.
    [54]Christinger, H.W., et al., The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor receptor-1[J]. J Biol Chem,2004.279(11):10382-8.
    [55]Bachelder, R.E., M.A. Wendt, and A.M. Mercurio, Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4[J]. Cancer Res,2002.62(24):7203-6.
    [56]Dvorak, H.F., et al., Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis[J]. Am J Pathol,1995. 146(5):1029-39.
    [57]Ferrara, N., H.P. Gerber, and J. LeCouter, The biology of VEGF and its receptors[J]. Nat Med,2003.9(6):669-76.
    [58]Nangaku, M. and K.U. Eckardt, Hypoxia and the HIF system in kidney disease[J]. J Mol Med (Berl),2007.85(12):1325-30.
    [59]Ran, R., et al., Hypoxia preconditioning in the brain[J]. Dev Neurosci,2005. 27(2-4):87-92.
    [60]Yuan, Y., et al., Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha[J]. Journal of Biological Chemistry,2003.278(18): 15911-15916.
    [61]Lin, A.Y., et al., Comparing vasculogenic mimicry with endothelial cell-lined vessels:techniques for 3D reconstruction and quantitative analysis of tissue components from archival paraffin blocks[J]. Appl Immunohistochem Mol Morphol,2007.15(1):113-9.
    [62]Vartanian, A. and A.Y. Baryshnikov, Crosstalk between apoptosis and antioxidants in melanoma vasculogenic mimicry[J]. Adv Exp Med Biol,2007. 601:145-53.
    [63]Zhao, J., et al., Three-dimensional cell culture and histology of vasculogenic mimicry in hepatocellular carcinoma[J]. Ai Zheng,2007.26(2):123-6.
    [64]Crabtree, B. and V. Subramanian, Behavior of endothelial cells on Matrigel and development of a method for a rapid and reproducible in vitro angiogenesis assay[J]. In Vitro Cell Dev Biol Anim,2007.43(2):87-94.
    [65]Skovseth, D.K., A.M. Kuchler, and G. Haraldsen, The HUVEC/Matrigel assay: an in vivo assay of human angiogenesis suitable for drug validation[J]. Methods Mol Biol,2007.360:253-68.
    [66]Stieger, S.M., et al., Ultrasound assessment of angiogenesis in a matrigel model in rats[J]. Ultrasound Med Biol,2006.32(5):673-81.
    [67]Baker, J.H., et al., Vascular-specific quantification in an in vivo Matrigel chamber angiogenesis assay[J]. Microvasc Res,2006.71(2):69-75.
    [68]Malinda, K.M., In vivo matrigel migration and angiogenesis assays[J]. Methods Mol Med,2003.78:329-35.
    [69]Akhtar, N., E.B. Dickerson, and R. Auerbach, The sponge/Matrigel angiogenesis assay[J]. Angiogenesis,2002.5(1-2):75-80.
    [70]Wang, J.Y., et al., Functional significance of VEGF-a in human ovarian carcinoma:role in vasculogenic mimicry[J]. Cancer Biol Ther,2008.7(5): 758-66.
    [71]Huang, S.P., et al., Cyclooxygenase-2 increases hypoxia-inducible factor-1 and vascular endothelial growth factor to promote angiogenesis in gastric carcinoma[J]. J Biomed Sci,2005.12(1):229-41.
    [72]Ikebe, T., et al., NF-kappaB involvement in tumor-stroma interaction of squamous cell carcinoma[J]. Oral Oncol,2004.40(10):1048-56.
    [73]Tang, Y., et al., Tumor-stroma interaction:positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN[J]. Mol Cancer Res,2004.2(2):73-80.
    [74]Miyamoto, H., et al., Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins[J]. Pancreas,2004.28(1):p.38-44.
    [75]Copple, B.L., Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-beta-dependent mechanisms[J]. Liver International,2010.30(5):669-682.
    [76]Zhang, S., D. Zhang, and B. Sun, Vasculogenic mimicry:current status and future prospects[J]. Cancer Lett,2007.254(2):157-64.
    [77]Hendrix, M.J., et al., Molecular plasticity of human melanoma cells[J]. Oncogene, 2003.22(20):3070-5.
    [78]Seftor, E.A., et al., Molecular determinants of human uveal melanoma invasion and metastasis[J]. Clinical & Experimental Metastasis,2002.19(3):233-246.
    [79]Seftor, E.A., et al., Expression of multiple molecular phenotypes by aggressive melanoma tumor cells:role in vasculogenic mimicry[J]. Crit Rev Oncol Hematol, 2002.44(1):17-27.
    [80]Sood, A.K., et al., Functional role of matrix metalloproteinases in ovarian tumor cell plasticity[J]. American Journal of Obstetrics and Gynecology,2004.190(4): 899-909.
    [81]Greenburg, G. and E.D. Hay, Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J]. The Journal of cell biology,1982.95(1):333-9.
    [82]Thompson, E.W. and E.D. Williams, EMT and MET in carcinoma--clinical observations, regulatory pathways and new models[J]. Clin Exp Metastasis,2008. 25(6):591-2.
    [83]Yang, J. and R.A. Weinberg, Epithelial-mesenchymal transition:at the crossroads of development and tumor metastasis[J]. Dev Cell,2008.14(6):818-29.
    [84]Radisky, D.C., P.A. Kenny, and M.J. Bissell, Fibrosis and cancer:do myofibroblasts come also from epithelial cells via EMT? [J]. J Cell Biochem, 2007.101(4):830-9.
    [85]Wahab, N.A. and R.M. Mason, A critical look at growth factors and epithelial-to-mesenchymal transition in the adult kidney. Interrelationships between growth factors that regulate EMT in the adult kidney[J]. Nephron Exp Nephrol,2006.104(4):e129-34.
    [86]Kasai, H., et al., TGF-betal induces human alveolar epithelial to mesenchymal cell transition (EMT) [J]. Respir Res,2005.6:56.
    [87]Parmar, K., et al., Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia[J]. Proc Natl Acad Sci U S A,2007.104(13): 5431-6.
    [88]Kryczek, I.et al., CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers[J]. Cancer Res,2005.65(2): 465-72.
    [89]Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell,2008.133(4):704-715.
    [90]Su, M., et al., Plasticity of ovarian cancer cell SKOV3ip and vasculogenic mimicry in vivo[J]. International Journal of Gynecological Cancer,2008.18(3): 476-486.
    [91]Hendrix, M.J., et al., Expression and functional significance of VE-cadherin in aggressive human melanoma cells:role in vasculogenic mimicry[J]. Proc Natl Acad Sci U S A,2001.98(14):8018-23.
    [92]Bonitsis, N., et al., The role of cadherin/catenin complex in malignant melanoma[J]. Experimental oncology,2006.28(3):187-93.
    [93]Hess, A.R., et al., VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway:implications for vasculogenic mimicry[J]. Cancer Biol Ther,2006.5(2):228-33.
    [94]D'Amico, T.A., et al., Predicting the sites of metastases from lung cancer using molecular biologic markers[J]. Ann Thorac Surg,2001.72(4):1144-8.
    [95]Kollet, O., et al., HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34(+) stem cell recruitment to the liver[J]. Journal of Clinical Investigation, 2003.112(2):160-169.
    [96]Hao, X.S., et al.Correlation between the expression of collgen Ⅳ, VEGF and vasculogenic mimicry[J]. Zhonghua Zhong Liu Za Zhi,2003.25(6):524-6.
    [1]Maxwell PH, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth[J].PNAS,1997, 94(15):8104-8109.
    [2]Gassmann M, Chilov D, & Wenger RH. Regulation of the hypoxia-inducible factor-1 alpha-ARNT is not necessary for hypoxic induction of HIF-1 alpha in the nucleus[J].Oxygen Sensing:Molecule to Man, Advances in Experimental Medicine and Biology,2000,475:87-99.
    [3]Sharp FR & Bernaudin M HIf1 and oxygen sensing in the brain[J]. Nature Reviews Neuroscience,2004,5(6):437-448.
    [4]Lau KW, Tian YM, Raval RR, Ratcliffe PJ,& Pugh CW. Target gene selectivity of hypoxia-inducible factor-alpha in renal cancer cells is conveyed by post-DNA-binding mechanisms[J]. British Journal of Cancer,2007,96(8):1284-1292.
    [5]Maynard MA, et al.Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 uhiquitin ligase complex[J]. Journal of Biological Chemistry,2003,278(13):11032-11040.
    [6]Semenza GL. HIF-1 and tumor progression:pathophysiology and therapeutics[J]. Trends in Molecular Medicine,2002,8(4):S62-S67.
    [7]Boast K, et al.Characterization of physiologically regulated vectors for the treatment of ischemic disease[J]. Human Gene Therapy,1999,10(13):2197-2208.
    [8]Comerford KM, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene[J]. Cancer Research,2002,62(12):3387-3394.
    [9]Semenza GL.Expression of hypoxia-inducible factor 1:Mechanisms and consequences[J]. Biochemical Pharmacology,2000,59(1):47-53.
    [10]Kallio PJ, Wilson WJ, O'Brien S, Makino Y, & Poellinger L.Regulation of the hypoxia-inducible transcription factor 1 alpha by the ubiquitin-proteasome pathway[J]. Journal of Biological Chemistry,1999,274(10):6519-6525.
    [11]Kimura H, et al. Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide:control of hypoxia-inducible factor-1 activity by nitric oxide[J]. Blood,2000,95(1):189-197.
    [12]Ravi R, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1 alpha[J]. Genes & Development,2000,14(1):34-44.
    [13]Yu F, White SB, Zhao Q, & Lee FS. Dynamic, site-specific interaction of hypoxia-inducible factor-1 alpha with the von Hippel-Lindau tumor suppressor protein[J]. Cancer Research,2001,61(10):4136-4142.
    [14]Jiang BH, et al.Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor[J]. Cell Growth & Differentiation,2001,12(7):363-369.
    [15]Feldser D, et al. Reciprocal positive regulation of hypoxia-inducible factor 1 alpha and insulin-like growth factor 2[J]. Cancer Research,1999,59(16): 3915-3918.
    [16]Zhong H, et al. Overexpression of hypoxia-inducible factor 1 alpha in common human cancers and their metastases[J].Cancer Research,1999,59(22):5830-5835.
    [17]Costa A, et al. Re:Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis[J].Journal of the National Cancer Institute,2001,93(15):1175-1177.
    [18]Semenza GL. HIF-1 and human disease:one highly involved factor[J]. Genes & Development,2000,14(16):1983-1991.
    [19]Birner P, et al. Overexpression of hypoxia-inducible factor 1 alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer[J]. Cancer Research,2000,60(17):4693-4696.
    [20]Semenza GL Targeting HIF-1 for cancer therapy[J].Nat Rev Cancer,2003,3(10): 721-732.
    [21]Gerber HP, Condorelli F, Park J, & Ferrara N Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia[J].The Journal of biological chemistry,1997,272(38):23659-23667.
    [22]Ke J, et al. Up-regulation of vascular endothelial growth factor in synovial fibroblasts from human temporomandibular joint by hypoxia[J]. Journal of Oral Pathology & Medicine,2007,36(5):290-296.
    [23]Polyak K & Weinberg RA.Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits[J]. Nature Reviews Cancer,2009, 9(4):265-273.
    [24]Nordgren IK & Tavassoli A.Targeting tumour angiogenesis with small molecule inhibitors of hypoxia inducible factor[J]. Chemical Society Reviews,2011,40(8): 4307-4317.
    [25]Hopfl G, et al. Rescue of hypoxia-inducible factor-1 alpha-deficient tumor growth by wild-type cells is independent of vascular endothelial growth factor[J]. Cancer Research,2002,62(10):2962-2970.
    [26]Yoshida D, Kim K, Noha M, & Teramoto A. Anti-apoptotic action by hypoxia inducible factor 1-alpha in human pituitary adenoma cell line, HP-75 in hypoxic condition[J]. Journal of Neuro-Oncology,2006,78(3):217-225.
    [27]Zhou J, Schmid T, Schnitzer S, & Brune B. Tumor hypoxia and cancer progression[J]. Cancer Lett,2006,237(1):10-21.
    [28]Dong Z, et al. Up-regulation of apoptosis inhibitory protein IAP-2 by hypoxia-HIF-1-independent mechanisms[J].Journal of Biological Chemistry,2001,276 (22):18702-18709.
    [29]Heddleston JM, et al. Hypoxia inducible factors in cancer stem cells[J]. British Journal of Cancer,2010,102(5):789-795.
    [30]Covello KL, et al. HIF-2 alpha regulates Oct-4:effects of hypoxia on stem cell function, embryonic development, and tumor growth[J]. Genes & Development, 2006,20(5):557-570.
    [31]McCord AM, et al. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro[J]. Molecular Cancer Research,2009,7(6):987-987.
    [32]Bao S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor[J]. Cancer Research,2006,66(16):7843-7848.
    [33]Krishnamurthy P, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme[J]. Journal of Biological Chemistry,2004,279(23):24218-24225.
    [34]Yeo EJ, et al. YGI:A potential anticancer drug targeting hypoxia-inducible factor l[J]. Journal of the National Cancer Institute,2003,95(7):516-525.
    [35]Isaacs JS, et al.Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway[J]. Journal of Biological Chemistry,2002,277(33):29936-29944.
    [36]Mabjeesh NJ, et al.2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF[J]. Cancer Cell,2003,3(4):363-375.
    [37]Mandriota SJ, et al. HIF activation identifies early lesions in VHL kidneys: Evidence for site-specific tumor suppressor function in the nephron[J]. Cancer Cell,2002,1(5):459-468.
    [38]Zagzag D, et al. Expression of hypoxia-inducible factor 1 alpha in brain tumors: association with angiogenesis, invasion, and progression[J].Cancer,2000,88(11): 2606-2618.
    [39]Aebersold DM, et al. Expression of hypoxia-inducible factor-1alpha:a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer[J]. Cancer Res,2001,61(7):2911-2916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700