用户名: 密码: 验证码:
循环平稳声场的非共形面近场声全息理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声源识别技术是实现噪声控制的首要步骤,实现噪声源的可视化将会加深对声源的位置以及声场物理本质的理解。在众多的声成像技术中,近场声全息(Near field acoustic holography, NAH)以其极高的分辨率成为分析声场分布的重要选择。NAH方法通过在紧靠声源的全息测量面上测量声压,最大程度地保留了声场信息,从而实现高分辨率的声场重建。NAH技术已经由最初的仅适用于平面、圆柱面和球面等简单外形的声源,发展到适用于任意外形的声源。通过建立源面和全息面之间的空间变换关系,由全息面声压重建源面的声场,实现了声压分布,表面法向振速,声强向量场分布等。NAH技术在汽车NVH,噪声源定位,结构振动模态分析方面有很大的应用。NAH近三十年来深受国内外研究者的关注,发展很快,但是主要围绕平稳声场展开研究,对于非平稳声场的NAH研究鲜有涉及。
     在工程中,有一类特殊的非平稳信号——循环平稳(Cyclostationary)信号,例如内燃机、滚动轴承等旋转机械产生的辐射声场具有明显的循环平稳特性。随着对循环平稳信号的认识越来越深入,循环统计量理论已经开始应用于机械设备状态监测和故障诊断领域,目前研究的比较透彻的是二阶循环统计量。循环谱密度具有对循环平稳信号的解调能力,通过非线性变换和循环因子的共同作用,可以获取循环平稳信号中的周期成分,将调制信息直接解调到循环频率轴上。通过循环统计量理论分析,可以将循环平稳信号的信息可以同时表现在以频率和循环频率为变量的循环谱密度三维图上,并可以在合适的循环频率下获取剖面图,这将会提供比普通频谱更多的信息。
     用传统NAH技术分析循环平稳声场时,无法充分考虑和利用循环平稳信号的周期时变特征,将不可避免地忽视了某些频率成分上的能量随时间变化方面的信息。目前的研究工作,已将NAH方法应用到循环平稳场的研究,其主要工作成果是提出循环平稳近场声全息概念(CYNAH: Cyclostationary NAH),实现了平面循环平稳声源的全息重建,其全息图显示了声信号中反映系统特性的调制信息的能量分布状况。循环平稳信息的全息重建,对于了解声场形成的机理,揭示声源的物理特性有很大的帮助。在实际工程中,绝大多数的声源都不具有规则外形,为了能将该方法推广到能分析任意外形的声源,势必要结合新的方法使之能适应任意外形声源的要求。
     本文在平面CYNAH理论和循环平稳信号处理技术的基础上,结合边界元法、波叠加法和Helmholtz方程最小二乘法,发展了适合于任意外形声源的CYNAH方法。这三种方法使得CYNAH方法扩大了应用的声源范围,使之更加适合于工程实际。本文建立了三种不同类型的循环平稳声场近场声全息的变换理论和方法,研究了影响声场重建误差的主要因素,并进行了相应的实验研究。本文的研究工作得到了国家自然科学基金(批准号:No. 10674096)的资助。本文采用理论建模、数字仿真与实验研究相结合的研究路线,以二阶循环统计量作为声场重建的物理量,研究了适用于循环平稳声场这类特殊的非平稳声场的近场声全息理论,本文的主要内容如下:
     (1)综述近场声全息技术在国内外的研究现状及进展,按照NAH方法所基于的不同数值方法分类阐述。对全息面数据采集技术、重建算法研究及工程应用等方面的成果和存在的问题进行了总结。鉴于目前NAH技术多数是对于平稳声场的研究现状,在平面循环平稳近场声全息(Cyclostationary near field acoustic holography, CYNAH)技术上进一步提出适用于任意外形声源的CYNAH方法,并简要阐述了本文的选题背景与研究意义。
     (2)提出基于边界元法(BEM: Boundary Element method)的CYNAH方法,详细地推导了适用于循环平稳声源的改进Helmholz方程。和普通的边界元法NAH方法相比较,基于边界元法的CYNAH方法采用声压和法向速度的循环谱密度代替频谱和功率谱密度作为声场重建的物理量,CYNAH全息图反映了声场中各点声压和法向速度的循环谱密度分布;通过数值仿真,详细分析了重建过程中的影响因素,包括背景噪声、声源外形尺寸、全息面形状及其与重建面的相对位置等。
     (3)提出基于波叠加法(Wave Superposition Algorithm, WSA)的CYNAH方法,假设外部声场由声源内部的一系列循环平稳等效源激励产生,在获取了等效源和参考源的互循环谱密度后,就可以重建整个声场中任意位置和参考源之间的互循环谱密度,然后根据循环谱理论得到循环谱密度的空间分布。用数值仿真算例,分析了该方法的适用对象和影响重建的因素。
     (4)提出基于Helmholtz方程最小二乘法(Helmholtz Equation Least Square, HELS)的CYNAH方法,假设各阶分量的权重系数按循环平稳规律做变化。通过最小二乘法获取最佳的展开项数和权重系数循环谱密度,从而实现在整个声场中的循环谱密度重建,数值仿真算例验证了该方法的正确性并对影响因素作了对比分析。
     (5)将三种适用于任意外形声源的CYNAH方法以及影响重建的因素汇总在一起,比较三种方法的优劣,为方法的实际运用提供指导。
     (6)实验验证了循环平稳近场声全息技术的有关理论分析。实验在半消声室内完成,实验对象为一个矩形音箱和一个十二面体球声源,用循环平稳信号驱动扬声器发声,形成循环平稳声场。在声源附近布置位置固定的传声器,用二维数控扫描架完成了声压的步进扫描测量,用32通道数据采集系统记录声压信号,然后用三种方法分析同一声源,进行声场重建研究和对比分析,验证理论分析的结果。
Identification of the noise source is the first step of the noise control. Visualizing the acoustic field will offer more information for the location of the source and its physical mechanism. Among the different methods, nearfield acoustic holography (NAH) is one important tool for analyzing sound field due to its high resolution. The high resolution is obtained from the closely measuring that the sound field information is reserved ultimately in the sampling data including the evanescent wave. NAH method is developed to be suitable for the arbitrarily-shaped source from the simple geometries such as plane, cylinder and sphere. The sound field including the pressure, normal velocity and sound power is recon- structed after building the spatial transformation between the source and the hologram. NAH method is widely applied to the industry such as NVH analysis in the auto-mobile industry, locating noise sources, structure modal analysis. The progress of NAH methods attracts researchers’attention in the recent three decades. The most research on the NAH focused on the stationary sound field and the non-stationary sound field is involved less.
     In the industry, there is a kind of non-stationary signal named cyclostationary signal whose cyclic statistics is with characteristics to decompose the carrier wave and modulation wave solely. The cyclostationary sound field excited by some machines is often observed in the industry, such as the internal combustion engines and rolling-bearings, especially when they run under ill conditions. The cyclic statistics theory has been utilized to detect machinery faults, and the main parameters are the second-order statistics which are researched deeply and understood relatively clearly. The periodical and modulation components can be decomposed by cyclostationary spectrum density (CSD) by nonlinear transform and cyclic factor. According to the cyclostatinary theories, the 3-dimensional graphics of the cyclostationary signal with the variance of the cyclic frequency and frequency, or its slice at the proper cyclic frequency, will supply the information of the modulation wave and carrier wave. The common spectrum analysis can’t realize the decomposition.
     Since the spectrum or PSD distribution of sound pressure displayed in the original NAH hologram can’t show the statistical information of sound energy varying with time, the conventional NAH is not suitable for cyclostationary sound field. The method named cyclostationary nearfield acoustic holography (CYNAN) is developed to analyze the cyclostationary sound field whose hologram shows the energy distribution of the modulation wave components at the appropriate cyclic frequency. The reconstruction of the cyclostation- ary sound by CYNAH will help understand the physical mechanism and sound field characteristics. Because the objects are limited to be planar or close to planar that is impossible for most cases in the industry, it is necessary to modify the planar CYNAH to adapt to the arbitrarily-shaped objects by combining with other numerical methods.
     There are three kinds of CYNAH methods are presented in this dissertation, combining with boundary element method (BEM), wave superposition algorithm (WSA) and Helmholtz equation least square (HELS), respectively. The second-order cyclic statistics is used as the variables for reconstruction of sound field in the place of the velocity or pressure in the common NAH. All of three methods can be used to analyze the sources with complicated profiles that are often encountered in practice. In the dissertation, their theories are derived and factors affecting the reconstruction accuracy are analyzed, the experiments are also described in details. The project in present dissertation is aided financially by National Natural Science Foundation of China (granted No. 10674096).
     The main contents of dissertation are as follows:
     (1) The progress of NAH is reviewed firstly. The NAH methods are described in classes due to their combined numerical methods. The techniques of hologram data sampling, reconstructed algorithm and engineering application are summarized. The non-stationary sound field is less concerned in the former research. CYNAH methods suitable for arbitrarily-shaped objects are advised on the basis of the planar CYNAH for both the academic and engineering viewpoints.
     (2) CYNAH method based on BEM is derived where the second-order cyclic statistics take the place of velocity and pressure as the variance. Comparing with the common BEM- based NAH, the reconstruction of the cyclostationary sound field by BEM-based CYNAH shows the velocity or pressure CSD distribution which will help to understand the characteristics of the sound field. The factors affecting the accuracy are analyzed by the numerical simulations.
     (3) WSA-based CYNAH is employed to reconstruct the cyclostationary sound field, which is assumed to be generated by a series of cyclostationary virtual sources inside of the objects. After the cross-CSDs between the virtual sources and the rigid reference are determined by an inverse procedure, the CSD at anywhere of the whole sound field can be calculated. Numerical simulations supply some guides for the application of WSA- based CYNAH to the objects such as spatial ratio, regularization, background noise, etc.
     (4) The third CYNAH method suitable for the objects with complicated profiles is related with the HELS method. The coefficients of every basis function are supposed to vary cyclostatioinarily with time. The optimal number of the basis functions and relative cross CSD vector between coefficients and rigid reference are obtained by least square method. Then the reconstruction of the CSD can be realized. Some numerical simulations are also done for understanding the HELS-based CYNAH.
     (5) The research on the comparison of these three CYNAH methods above whose objects are arbitrarily-shaped is carried out. The advantages and disadvantages of every method are concluded which are beneficial for researchers to choose the right one under different conditions.
     (6) The validities of the methods above are illustrated by experiments finished in an semi-anechoic chamber. The experiment objects are a cubic sound box and a dodecahedron loudspeaker. The objects are driven by the cyclostationary signal. A rigid reference microphone is set around the objects at a close distance and the signals on the hologram are scanning-sampled by a scanning equipment. All the three methods are applied to analyze the same objects and the comparison is done.
引文
[1]. Shewell J. R., Wolf E. Inverse diffraction and a new reciprocity theorem. J. Opt. Soc. Am,1968, 58(l): 1596
    [2]. Greece D. C. Use of acoustic holography for the Imaging of sources of radiated acoustic intensity. Journal of the Acoustical Society of America, 1969, 46(1): 44-45
    [3]. Sadayuki Ueha, Makoto Fujinami, et al. Imaging of acoustic radiation sources with acoustical holography. Optica Acta, 1976, 23(2): 107-114
    [4]. Williams E.G., Maynard J.D. and Skudrzyk E. Sound source reconstructions using a microphone array. Journal of the Acoustical Society of America. 1980, 68(1): 340-344
    [5]. Williams E. G. and Maynard J. D. Holographic imaging without wavelength resolution limit. Phys. Rev. Letts., 1980, 45: 554-557
    [6]. Williams E. G. and Maynard J. D. Numerical evaluation of the Rayleigh integral for planar radiators using the FFT. Journal of the Acoustical Society of America. 1982, 72(6): 2020-2030
    [7]. Williams E. G. Series expansion of the acoustic power radiated from planar sources. Journal of the Acoustical Society of America. 1983, 73(5): 1520-1524
    [8]. Williams E. G. Numerical evaluation of the radiation from unbaffled, finite plates using the FFT. Journal of the Acoustical Society of America. 1983, 74(1): 343-347
    [9]. Ochs R. L., Maynard J. D., Williams E. G. and Hughes W. J. Extreme nearfield of an acoustic diffraction grating. Journal of the Acoustical Society of America. 1983, 74(5): 1572-1576
    [10]. Maynard J.D. and Wlliams E.G. Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH. Journal of the Acoustical Society of America. 1985, 78(4): 1395-1413
    [11]. Veronesi W.A. and Maynard J.D. Nearfield acoustic holography (NAH): II. Holographic reconstruction algorithms and computer implementation. Journal of the Acoustical Society of America. 1987, 81(5): 1307-1322
    [12]. Williams E. G. and Maynard J. D. Generalized nearfield acoustical holography for cylindrical geometry: theory and experiment. Journal of the Acoustical Society of America. 1987, 81(2): 389-407
    [13]. Williams E. G., Houston B. H. and Bucaro J. A. Broadband near-field acoustical holography for vibrating cylinders. Journal of the Acoustical Society of America. 1989, 86(2): 674-679
    [14]. Williams E. G. Structural intensity in thin cylindrical shells. Journal of the Acoustical Society of America. 1991, 89(4): 1615-1622
    [15]. Sarkissian A., Gaumond C. F., Williams E. G. and Houston B. H. Reconstruction of the acoustic field over a limited surface area on a vibrating cylinder. Journal of the Acoustical Society of America. 1993, 93(1): 48-54
    [16]. Lee J. C. Spherical acoustical holography of low-frequency noise sources. Applied Acoustics. 1996, 48(1): 85-95
    [17]. Saijyou K. Data extrapolation method for near-field acoustic holography. Journal of the Acoustical Society of Japan (E) (English translation of Nippon Onkyo Gakkaishi). 1998, 19(1): 23-32
    [18]. Saijyou K. and Yoshikawa S. Accuracy improvement of reconstruction in near-field acoustical holography by applying data extrapolation method. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers. 1998, 37(5B): 3022-3027
    [19]. Saijyou K. and Yoshikawa S. Reduction methods of the reconstruction error for large-scaleimplementation of near-field acoustical holography. Journal of the Acoustical Society of America, 2001, 110 (4): 2007-2023
    [20]. Saijyou K. Regularization method for the application of k-space data extrapolation to near-field acoustical holography. Journal of the Acoustical Society of America. 2004, 116(1): 396-404
    [21]. Sarkissian A. Extension of measurement surface in near-field acoustic holography. Journal of the Acoustical Society of America, 2004, 115 (4): 1593-1596
    [22].徐亮,毕传兴,陈剑,陈心昭.基于波数域外推方法的近场声全息.机械工程学报, 2007, 43(9): 84-90
    [23]. Williams E. G., Houston B. H. and Herdic P. C. Fast fourier transform and singular value decomposition formulations for patch nearfield acoustical holography. Journal of the Acoustical Society of America. 2003, 114(3): 1322-1333
    [24]. Lee M. and Bolton J. S. Patch near-field acoustical holography in cylindrical geometry. Journal of the Acoustical Society of America. 2005, 118(6): 3721-3732
    [25]. Lee M. and Bolton J. S. A one-step patch near-field acoustical holography procedure. Journal of the Acoustical Society of America. 2007, 122(3): 1662-1670
    [26]. Bissinger G., Williams E. G. and Valdivia N. Violin f-hole contribution to far-field radiation via patch near-field acoustical holography. Journal of the Acoustical Society of America. 2007, 121(6): 3899-3906
    [27]. Hald J. Patch near-field acoustical holography using a statistically optimal method. Inter-Noise 2003, Jeju (Korea), 2003: 2203-2210
    [28]. Cho Y. T., Bolton J. S. and Hald J. Source visualization by using statistically optimized near-field acoustical holography in cylindrical coordinates. Journal of the Acoustical Society of America. 2005, 118(4): 2355-2364
    [29].李卫兵,陈剑,于飞,陈心昭.统计最优平面近场声全息对振动体的定位研究.农业机械学报, 2005, 36(10): 101-104
    [30].李卫兵,陈剑,于飞等.统计最优平面近场声全息原理与声场分离技术.物理学报, 2005, 54(3): 1253-1260
    [31].李卫兵,陈剑,于飞,陈心昭.统计最优柱面近场声全息.机械工程学报, 2005,41(4): 123-127
    [32].李卫兵,陈剑,于飞,陈心昭.统计最优球面近场声全息在噪声源识别中的应用.振动工程学报, 2004, 17(z2)
    [33]. Jacobsen F. and Jaud V. Statistically optimized near field acoustic holography using an array of pressure-velocity probes. Journal of the Acoustical Society of America. 2007, 121(3): 1550-1558
    [34]. Fleisicher H., and Axelrad U. Restoring an acoustic source from pressure data using Wiener filtering. Acoustica, 1986, v60: 172-175
    [35]. Williams E. G., Dardy H. D. and Fink R. G. Nearfield acoustical holography using an underwater, automated scanner. Journal of the Acoustical Society of America, 1985, 78 (2): 789-798
    [36]. Hald J. Reduction of spatial windowing effects in acoustical holography. Inter-Noise 94, Yokohama (Japan), August, 1994: 1887-1990
    [37].张德俊,夏献华等.近场声全息成像方法的研究.声学学报, 1992, 17(6): 436-445
    [38].张德俊,夏献华等.近场声全息成像对振动体及辐射体的成像.物理学进展, 1996, 16(3-4): 613-623
    [39]. Li J. F., Pascal J. C. and Carles C. A new k-space optimal filter for acoustic holography. Proceedings of 3rd International Congress on Air and Structure-Borne Sound and Vibration, Montreal, Canada, June, 1994: 1059-1066
    [40]. Kwon H. S. and Kim Y. H. Minimization of bias error due to windows in planar acoustic holography using a minimum error window. Journal of the Acoustical Society of America, 1995, 98: 2104-2111
    [41]. Bai M. S. R. Acoustical source characterization by using recursive Wiener filtering. Journal of the Acoustical Society of America, 1995, 97 (5): 2657-2663
    [42].李卫兵,陈剑等.波数域滤波迭代近场声全息.机械工程学报, 2004, 40(12): 14-19
    [43]. Hald J. STSF-a unique technique for scan-based near-field acoustic holography without restrictions on coherence. Brueel & Kjaer Technical Review, 1989(1): 1-50
    [44]. Ginn K. B. and Hald J. STSF-practical instrumentation and applications. Brueel & Kjaer Technical Review, 1989(2): 1-27
    [45]. Borgiotti G. V., Sarkissian A., Willians E. G., et al. Conformal generalized near-field acoustic holography for axisymmetric geometries. Journal of the Acoustical Society of America, 1990, 88(1): 199-209
    [46]. Sarkissian A. Near-field acoustic holography for an axisymmetric geomerty: A new formulation. Journal of the Acoustical Society of America, 1990, 88(1): 961-966 .
    [47].何元安,何祚镛.轴对称结构表面声场的非共形重建精度分析.声学学报, 2001, 26(5): 455-463
    [48]. Kwon H. S., Kim Y. H. Moving frame technique for planar acoustic holography. Journal of the Acoustical Society of America, 1998, 103(4): 1734-1741
    [49]. Park S. H., Kim Y. H. An improved moving frame acoustic holography for coherent band- limited noise. Journal of the Acoustical Society of America, 2000, 108(6): 2719-2728
    [50].杨殿阁,刘峰等.声全息方法识别汽车运动噪声.汽车工程, 2001, 23(5): 329-331
    [51].杨殿阁,郑四发,罗禹贡,连小珉,蒋孝煜.运动声源的声全息识别方法.声学学报, 2002, 27(4): 357-362
    [52]. Ruhala R. J. and Swanson D. C. Planar near-field acoustical holography in a moving medium. Journal of the Acoustical Society of America, 2002, 112 (2): 420-429
    [53].何元安,何祚镛.基于平面声全息的全空间场变换: I.原理与算法.声学学报, 2002, 27(6): 507-512
    [54].何元安,何祚镛.基于平面声全息的全空间场变换: II.水下大面积发射声基阵的近场声全息实验.声学学报, 2003, 28(1): 45-51
    [55].张德俊等.振动体及其辐射场的近场声全息试验研究.声学学报, 1995, 20(4): 250-255
    [56].蒋伟康,高田博,西择男.声近场综合试验解析技术及其在车外噪声分析中的应用.机械工程学报, 1998, 34(5): 77-84
    [57].程建政,张德君.编磬振动特性的声全息研究.声学学报, 2000, 25(1): 87-92
    [58]. Kim Y. J., Bolton J. S. and Kwon H. S. Partial sound field decomposition in multi-reference near-field acoustical holography by using optimally located virtual references. Journal of the Acoustical Society of America, 2004, 115 (4): 1641-1652
    [59]. Nam K. U. and Kim Y. H. A partial field decomposition algorithm and its examples for near-field acoustic holography. Journal of the Acoustical Society of America, 2004, 116 (1): 172-185
    [60]. Veronesi W. and Maynard J. Digital holographic reconstruction of sources with arbitrarily shaped surfaces. Journal of the Acoustical Society of America, 1989, 85(2): 588-598
    [61]. Bai M. R. S. Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries. J. Acoust. Soc. Am, 1992, 92 (1): 533-549
    [62]. Seybert A. F., Soenarko B., et al. An advanced computational method for radiation and scattering of acoustic waves in three dimensions. J.Acoust.Soc.Am, 1985, 77 (2): 362-368
    [63]. Schenk H. A. Improved integral formulation for acoustic radiation problem. J. Acoust. Soc. Am. 1968, v44: 41-58
    [64]. Burton A. J. and Miller G. F. The application of integral equation methods to the numerical solutions of some exterior boundary value problems. Proc. Roy. Soc. London, Series A, 1971, 323: 201-210
    [65]. Cerrolaza M. and Alarcon E. A bi-cubic transformation for numerical evaluation of the Cauchy principal value integrals in boundary methods. International Journal for Numerical Methods in Engineering. 1989, 28: 987-999
    [66]. Guiggiani M. and Gigante A. A general algorithm for multidimensional Cauchy principal integrals in the boundary element method. Transaction of ASME, Journal of Applied Mechanics. 1990, 57: 906-915
    [67]. Li H. B. Han G. M. and Mang H. A. A new method for evaluating integrals in stress analysis of solids by the direct boundary element method. International Journal for Numerical Methods in Engineering. 1985, 21: 2071-2098
    [68]. Zhang W. and Xu H. R. A general and effective way for evaluation the integrals with various orders of singularity in the direct boundary element method. International Journal for Numerical Methods in Engineering. 1989, 28: 2059-2064
    [69]. Aliabadi M. H., Hall W. S. and Phemister T. G. Tayler expression for singular kernels in the boundary element method. International Journal for Numerical Methods in Engineering. 1985, 21: 2221-2236
    [70]. Lean M. H. and Wexler A. Accurate numerical integration of singular boundary element kernels over boundary with curvature. International Journal for Numerical Methods in Engineering. 1985, 21: 211-228
    [71]. Koo B. U., Lee B. C. and Ih J. G. A non-singular boundary integral equation for acoustic problem. Journal of Sound and Vibration, 1996, 192: 263-279
    [72]. Kang S. C. and Ih J. G. On the accuracy of nearfield pressure predicted by the acoustic boundary element method. Journal of Sound and Vibration. 2000, 233(2): 353-358
    [73]. Kang S. C. and Ih J. G. Use of nonsingular boundary integral formulation for reducing errors due to near-field measurements in the boundary element method based near-field acoustic holography. Journal of the Acoustical Society of America. 2001, 109(4): 1320-1328
    [74].赵志高,黄其柏. Helmholtz声学边界积分方程中奇异积分的计算.工程数学学报, 2004, 21(5): 779-784
    [75]. Ciskowski R. D. and Brebbia C. A. Boundary element methods in acoustics. Computational Mechanics Publications, Sounthampton Boston. 1991
    [76]. Kirsch A. An introduction to the mathematical theory of inverse problems. Springer-Verlag, New York, 1996
    [77].刘继军.不适定问题的正则化方法及应用.科学出版社,北京. 2005
    [78]. Hansen P. C. Regularization tools: A Matlab package for analysis and solution of the discrete ill-posed problems. Version 3.1 for Matlab 6.0. 2001
    [79]. Kim G. and Lee B. 3-D sound source reconstruction and field reprediction using the Helmholtz integral equation. Journal of Sound and Vibration, 1990, 136: 245-261
    [80]. Photiadis D. The relationship of singular value decomposition to wave-vector filtering in sound radiation problems. J. Acoust. Soc. Am, 1990, 88: 1152-1159
    [81]. Borgiotti G. The power radiated by a vibrating body in an acoustic fluid and its determination from boundary measurements. J. Acoust. Soc. Am, 1990, 88: 1884-1893
    [82]. Borgiotti G. and Jones K. The determination of the acoustic far field of a radiating body in an acousticfluid from boundary measurements. J. Acoust. Soc. Am, 1993, 93: 2788-2797
    [83]. Kim B. K. and Ih J. G. Design of an optimal wave-vector filter for enhancing the resolution of reconstructed source field by near-field acoustical holography (NAH). Journal of the Acoustical Society of America. 2000, 107(6): 3289-3297
    [84]. Ih Jeong-Guon. Acoustic holography based on the inverse-BEM for the source identification of machinery noise. 14th international Congress on Sound and Vibration, 2007, Cairn, Australia
    [85]. Demoment G. Image reconstruction and restoration: overview of common estimation structures and problems. IEEE Transections, Acoustical Speech Signal Process. 1989, ASSP-37: 2024-2036
    [86]. Biemond J., Lagendijk R. L. And Mersereau R. M. Iterative methods for image deblurring. Proc. IEEE. 1990, 78: 856-883
    [87]. Wiiliams E. G. Regularization methods for near-field acoustical holography. Journal of the Acoustical Society of America. 2001, 110(4): 1976-1988
    [88]. Schuhmacher A., Hald J., Rasmussen K. B. and Hansen P. C. Sound source reconstruction using inverse boundary element calculations. Journal of the Acoustical Society of America. 2003, 113(1): 114-127
    [89]. Saijyou K. and Uchida H. Data extrapolation method for boundary element method-based near-field acoustical holography. Journal of the Acoustical Society of America. 2004, 115(2): 785-796
    [90]. Valdivia N. P., Williams E. G. and Herdic P. C. Approximations of inverse boundary element methods with partial measurements of the pressure field. Journal of the Acoustical Society of America. 2008, 123(1): 109-120
    [91]. Valdivia N. and Williams E. G. Krylov subspace iterative methods for boundary element method based near-field acoustic holography. Journal of the Acoustical Society of America. 2005, 117(2): 711-724
    [92]. Saijyou K. Measurement of structural intensity using boundary element method-based nearfield acoustical holography. Journal of the Acoustical Society of America. 2007, 121(6): 3493-3500
    [93]. Kim B. and Ih J. G. On the reconstruction of the vibro-acoustic field over the surface enclosing an interior space using the boundary element method. J. Acoust. Soc. Am, 1996, 100: 3003-3016
    [94]. Kim Y. K. and Kim Y. H. Holographic reconstruction of active sources and surface admittance in an enclosure. J. Acoust. Soc. Am, 1999, 105: 2377-2383
    [95]. Williams E. G., et al. Interior near-field acoustical holography in flight. J. Acoust. Soc. Am, 2000, 108 (4): 1451-1463
    [96].何祚镛.声学逆问题——声全息场变换技术及源特性判别.物理学进展, 1996, 16 (3): 600-612
    [97].暴雪梅,何祚镛.近场声全息方法研究目标散射场.哈尔滨工程大学学报. 1997, 18(5): 15-19
    [98]. Wang Z. and Wu S. F. Helmholtz equation-least-squares method for reconstructing the acoustic pressure field. Journal of the Acoustical Society of America. 1997, 102(4): 2020-2032
    [99]. Wu S. F. and Yu J. Reconstructing interior acoustic pressure fields via Helmholtz equation least-squares method. Journal of the Acoustical Society of America. 1998, 104(4): 2054
    [100]. Rayess N. and Wu S. F. Visualization of acoustic pressure radiation from complex vibrating structures. American Society of Mechanical Engineers, Noise Control and Acoustics Division (Publication) NCA. 1999, 26: 387-392
    [101]. Leach K. and Wu S. F. Visualization of sound radiation from a bowling ball. American Society of Mechanical Engineers, Noise Control and Acoustics Division (Publication) NCA. 1999, 26: 209-215
    [102]. Rayess N. and Wu S. F. Experimental validations of the HELS method for reconstructing acoustic radiation from a complex vibrating structure. Journal of the Acoustical Society of America. 2000, 107(6): 2955-2964
    [103]. Wu S. F., Rayess N. E. and Shiau M. M. Identification of complex noise sources using the HELS method. American Society of Mechanical Engineers, Noise Control and Acoustics Division (Publication) NCA. 2000, 27: 349-352
    [104]. Wu S. F. On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method. Journal of the Acoustical Society of America. 2000, 107(5 I): 2511-2522
    [105]. Wu S. F. and Zhao X. Combined Helmholtz equation-least squares method for reconstructing acoustic radiation from arbitrarily shaped objects. Journal of the Acoustical Society of America. 2002, 112(1): 179-188
    [106]. Semenova T. and Wu S. F. The Helmholtz equation least-squares method and Rayleigh hypothesis in near-field acoustical holography. Journal of the Acoustical Society of America. 2004, 115(4): 1632-1640
    [107]. Wu S. F. Hybrid near-field acoustic holography. Journal of the Acoustical Society of America. 2004, 115 (1): 207-217
    [108]. Zhao X. and Wu S. F. Reconstruction of vibro-acoustic fields using hybrid nearfield acoustic holography. Journal of Sound and Vibration. 2005, 282(3-5): 1183-1199
    [109]. Zhao X. and Wu S. F. Reconstruction of vibroacoustic fields in half-space by using hybrid near-field acoustical holography. Journal of the Acoustical Society of America. 2005, 117(2): 555-565
    [110]. Jeon I. Y. and Ih J. G. On the holographic reconstruction of vibroacoustic fields using equivalent sources and inverse boundary element method. Journal of the Acoustical Society of America. 2005, 118(6): 3473-3482
    [111]. Wu S. F., Lu H. and Bajwa M. S. Reconstruction of transient acoustic radiation from a sphere. Journal of the Acoustical Society of America. 2005, 117(4 I): 2065-2077
    [112]. Moondra M. S. and Wu S. F. Visualization of vehicle interior sound field using nearfield acoustical holography based on the Helmholtz-equation least-squares (HELS) method. Noise Control Engineering Journal. 2005, 53(4): 145-154
    [113]. Semenova T. and Wu S. F. On the choice of expansion functions in the Helmholtz equation least-squares method. Journal of the Acoustical Society of America. 2005, 117(2): 701-710
    [114]. Rayess N. An investigation in acoustical holography using the Helmholtz equation least-squares method. Doctoral dissertation, Wayne State University, 2001
    [115]. Koopmann Gary H., Song Limin, and Fahnline J. B. A method for computing acoustic fields based on the principle of wave superposition. J. Acoust. Soc. Am. 1989, 86(6), 2433-2438
    [116]. Song Limin, Koopmann Gary H., and Fahnline J. B. Numerical errors associated with the method of superposition for computing acoustic fields. J. Acoust. Soc. Am. 1991, 89(6): 2625-2633
    [117]. Song Limin, Koopmann Gary H., and Fahnline J. B. Active control of the acoustic radiation of a vibrating structure using a superposition formulation. J. Acoust. Soc. Am. 1991, 89(6): 2786-2792
    [118]. Fahnline J. B. and Koopmann Gary H. A numerical solution for the general radiation problem based on the combined methods of superposition and singular-value decomposition. J. Acoust. Soc. Am. 1991, 90(5): 2808-2819
    [119]. Jeans R. and Mathews I. C. The wave superposition method as a robust technique for computing acoustic fields. J. Acoust. Soc. Am. 1992, 92(2): 1156-1166
    [120]. Bobrovnitskii Y. I. and Tomilina T. M. General properties and fundamental errors of the method of equivalent sources. Acoust. Phys. 1995, 41: 649–660
    [121].向宇,黄玉盈.基于复数矢径的波叠加法解声辐射问题固体力学学报2004,25(1): 35-41
    [122].向宇, Koopmann G. H.基于波叠加原理的辐射声场的计算研究.武汉理工大学学报. 2005, 29(1):1-4
    [123]. Sarkissian A. Method of superposition applied to scattering from a target in shallow water. J. Acoust. Soc. Am. 1994, 95: 2340–2345
    [124].毕传兴,陈心昭,陈剑,周蓉.基于等效源法的近场声全息技术.中国科学(E辑), 2005, 35(5): 535-548
    [125].毕传兴,陈心昭,陈剑,于飞,李卫兵.多源混合声场全息重建和预测方法与实验.中国科学(G辑). 2005, 35(2): 184-200
    [126].李卫兵,陈剑,于飞,陈心昭.基于联合波叠加法的相干声场全息重建与预测理论.声学学报. 2006, 31(04): 334-341
    [127].李卫兵,陈剑,毕传兴,陈心昭.联合波叠加法的全息理论与实验研究.物理学报. 2006, 55(3): 1264-1270
    [128]. Sarkissian A. Method of superposition applied to patch near-field acoustic holography. J. Acoust. Soc. Am. 2005, 118(2): 671-678
    [129].毕传兴,陈心昭,徐亮,陈剑.基于等效源法的Patch近场声全息.中国科学(E辑), 2007, 37(9): 1205-1213
    [130].刘钊,陈心昭.结构声辐射分析的全特解场边界元法.振动工程学报, 1996, 9(4): 341~347
    [131].毕传兴,陈剑,周广林,陈心昭.分布源边界点法在声场全息重建和预测中的应用.机械工程学报, 2003, 39(8): 81~85
    [132]. Zhang S.Y. and Chen X. Z. The boundary point method for the calculation of exterior acoustic radiation. Journal of Sound and Vibration 1999, 228(4): 761-772
    [133].毕传兴,陈心昭,陈剑,等.正交球面波源边界点法及其在声全息中的应用.科学通报,2004,49(13), 1322-1331
    [134]. Bi C. X., Chen X. Z., Zhou R. and Chen J. Reconstruction and separation in a semi-free field by using the distributed source boundary point method-based nearfield acoustic holography. Journal of Vibration and Acoustics, Transactions of the ASME. 2007, 129(3): 323-329
    [135]. Wu Sean F. Comments on“The boundary point method for the calculation of exterior acoustic radiation”(by S.Y. Zhang and X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761–772). Journal of Sound and Vibration. 2006
    [136]. Chen X. Z. and Bi C. X. Reply to the comments on“The boundary point method for the calculation of exterior acoustic radiation”(by S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761–772). Journal of Sound and Vibration. 2006
    [137].毕传兴,陈心昭,周蓉,陈剑.球面波源叠加法与球面波源边界点法实现声全息的比较研究.科学通报. 2005, 50(6): 512-523
    [138]. Miller R. D., Moyer E. T., Huang H. and Uberall H. A comparison between the boundary element method and the wave superposition approach for the analysis of the scattered fields from rigid bodies and elastic shells. J. Acoust. Soc. Am. 1991, 89: 2185–2196
    [139]. Valdivia N. P. and Williams E. G. Study of the comparison of the methods of equivalent sources and boundary element methods for near-field acoustic holography. Journal of the Acoustical Society of America. 2006, 120(6): 3694-3705
    [140]. Hallman D. L. Bolton J. S. A comparison of multi-reference near-field acoustic holography procedures. Proceedings of the 23rd International Congress and Exposition on Noise Control Engineering, 1994, 929-934
    [141]. Kwon H. S., Kim Y. J. and Bolton J. S. Compensation for source non-stationary in multi-reference scan-based near-field acoustic holography. J. Acoust. Soc. Am, 2003, 113 (1): 360-368
    [142]. Loyau T. and Pascal J. C. Broadband acoustic holography reconstruction from acoustic intensity measurement I: principle of method. J. Acoust. Soc. Am, 1988, 84 (5): 1744-1750
    [143]. Mann J. A. III, Pascal J. C. Locating noise sources on an industrial air compressor using broadband acoustic holography from intensity measurement (BAHIM). Noise Control Engineering Journal. 1992, 39(1): 3-12
    [144]. Williams E. G., Houston B. H. and Bucaro J. A. Broadband nearfield acoustical holography for vibrating cylinders. J. Acoust. Soc. Am, 1989, 85 (2): 674-679
    [145].何元安,何祚镛,姜军.基于声强测量的近场声全息及其在水下声源辐射分析中的应用.声学学报. 1996, 21(4): 297-305
    [146].何祚镛,何元安,王曼.近场声全息技术应用有关物理问题研究.声学学报. 2007, 32(2): 137-143
    [147]. Xue W. F., Chen J., et al. Sound sources identification for machine acoustic signals based on combined wave superposition method. Acta Acustica United with Acustica. 2006, 92: 45-50
    [148]. Hald J. Combined NAH and beamforming using the same microphone array. Sound and Vibration. 2004, 38(12): 18-27
    [149]. Hansen T. B. Spherical expansion of time-domain acoustic fields: Application to near field scanning. J. Acoust. Soc. Am, 1995, 98 (2): 1204-1215
    [150]. Dumont N A, de Olivcira R. The hybrid boundary element method applied to time-dependent problems. In: Brebbia C, Rencis J, editors. Fluid flow and computational aspects, Boundary elements XV. 1. London: Computational Mechanics Publications, 1993. p. 363-76
    [151]. Gaul L. and Wenzel W. Acoustic calculations with the hybrid boundary element method in time domain. Engineering Analysis with Boundary Elements. 2001, 25: 259-265
    [152]. Rizos D.C. and Zhou S. An advanced direct time domain BEM for 3-D wave propagation in acoustic media. Journal of Sound and Vibration. 2006, 293: 196–212
    [153]. Stepanishen P. R. and Chen H. W. Acoustic time-independent loading on elastic shell of revolution using internal source density and singular value decomposition method. J. Acoust. Soc. Am, 1996, 99 (4): 1913-1923
    [154]. Hald J. Time domain acoustical holography. Proceedings - International Conference on Noise Control Engineering, Newport Beach, CA, USA, 1995, v2,pp:1349
    [155]. Hald J. and Saemann E. U. Transient sound field mapping. Proceedings - National Conference on Noise Control Engineering, Ypsilanti, MI, USA, 1998,pp:661-664
    [156]. Chauray J. L. and Beguet B. Acoustic holography in non-stationary conditions. Leuven, Belgium, 1998,pp:1245-1251
    [157].张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社, 1998
    [158].姜鸣,陈进,秦恺,汪慰军.一阶循环矩分析在旋转机械振动信号分析中的应用.振动工程学报, 2001, 14(4): 424-428
    [159]. Gardner W. A. Exploitation of spectral redundancy in cyclostationary signals. IEEE On. SP Magazine. 1991, 8(2): 14-36
    [160]. Roberts R. S., Brown W. A., Loomis H. H. Computationally efficient algorithms for cyclic spectral analysis. IEEE Signal Processing Magazine. 1991, 8(2): 38-49
    [161]. Brown W. A., Loomis H., etc. Digital implementations of spectral correlation analyzers. IEEE Transactions on Signal Processing. 1993, 41(2): 703-720
    [162]. Sadler B. M., Dandawate A. V. Nonparametric estimation of the cyclic cross spectrum. IEEE Transactions on Information Theory. 1998, 44(1): 351-358
    [163]. Tontiruttananon C., Tugnait J. K. Parametric identification of closed-loop linear systems usingcyclic-spectral analysis. Proceedings of the 1998 American Control Conference, Philadelphia, PA USA, 1998, 3597-3601
    [164]. Tontiruttananon C., Tugnait J. K. Identification of closed-loop linear systems via cyclic spectral analysis given noisy input-output time-domain data. IEEE Transactions on Automatic Control, 2001, 46(2): 258-275
    [165]. Gardner W. A., Spooner C. M. Higher order cyclostationarity, cyclic cumulants, and cyclic polyspectra, In Processing Int. Symp. Inform. Theory, Application. (Honolulu), November 27-30, 1990: 355~358
    [166]. Spooner C. M., Gardner W. A. An overview of the theory of higher order cyclosationarity, In Processing Workshop Nonstationary Stochastic Processes and Their Application, A.G. Miamee, Ed. Singapore: World Scientific, 1992: 110~125
    [167]. Anderson J., Giannakis G. B. and Swam A. Harmonic retrieval using higher-order statistics: A deterministic formulation, IEEE Trans. on Signal Processing, 1995, 43(8): 1880~1889
    [168].梁应敞,王树勋,戴逸松,噪声中的谐波恢复研究现状,电子科学学刊, 1995, 17(4): 404~411
    [169]. Ha K., Kim H. M. A new phase determination method for non-minimum phase MA systems, Signal Processing Magazine, 1996, 55(1): 55~64
    [170].毛用才,保铮,多个具有非零均值复乘性噪声的复谐波信号循环估计量的性能分析.电子科学学刊, 1999, 21(3): 289~295
    [171]. Giannakis G.B., Zhou G. Harmonics in multiplicative and additive noise: Parameter estimation using cyclic statistics. IEEE Trans. on Signal Processing, 1995, 43(9): 2217-2221
    [172]. Cherreuil A., Loubation P. MIMO blind second-order equalization method and conjugate cyclosationarity. IEEE Trans. on Signal Processing, 1999, 47(2): 572~578
    [173]. Wylie M.P., Roy S.. Virtual array processing using wideband cyclostationary signals. 1995 Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA USA, 1995, 506-510
    [174].汪仪林,殷勤业,金梁,姚敏立.信号的循环平稳特性在电子对抗中的应用.现代引信, 1998, 1: 14-18
    [175]. Gershman A. B., Amin M. G. Wideband Direction-of-Arrival estimation of multiple chirp signals using spatial time-frequency distribution. IEEE Signal Processing Letters, 2000, 7(6): 152~155
    [176].金梁,殷勤业,蒋伯峰.宽带谱相关时空DOA矩阵方法.通信学报, 2001, 22 (7):26-31
    [177]. Antoni J., Daniere J., Guillet F., Badaoui M. Blind separation and identification of cyclostationary processes. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. 2002, vol. 3, 3077-3080
    [178].赵菊敏,李灯熬,李静,等.基于循环平稳理论的盲均衡算法的研究弹箭与制导学报2007, 27(1): 334-336
    [179]. Lyridis D. V., Perakis A. N., Parsons M. G. Structural reliability analysis of marine diesel engine shafting systems: an equivalent stationary process approach to the level crossing problem. Journal of Ship Research, 1994, 38(3): 253-258
    [180]. Vokurka K. Exploitation of vibration and noise signals cyclostationarity in condition based maintenance. Proceedings - National Conference on Noise Control Engineering, 1997, 1: 337-340
    [181]. Mccormick A. C., Nandi A. K. Cyclostationarity in rotating machine vibrations. Mechanical Systems & Signal Processing, 1998, 12(2): 225-242
    [182]. Lake D. E. Tracking fundamental frequency for synchronous mechanical diagnostic signal processing. IEEE Signal Processing Workshop on Statistical Signal and Array Processing, SSAP, 1998: 200-203
    [183]. Goerlich J., Brueckner D., etc. Signal analysis using spectral correlation measurement. ConferenceRecord-IEEE Instrumentation and Measurement Technology Conference, v 2, 1998, p 1313-1318
    [184].陈进.信号处理在机械设备故障诊断中的应用.振动与冲击, 1999, 18(4): 84-87
    [185]. Capdessus C., Sidahmed M., Lacounme J. L. Cyclostationary processes: application in gear faults early diagnosis. Mechanical Systems and Signal Processing, 2000, 14(3): 371-385
    [186]. Jha A., Nikolaidis E., Ganqadharan S. Vibration of dynamic systems under cyclostationary excitations. AIAA Journal, 2000, 38(12): 2284-2291
    [187]. Randall R. B., Antoni J., Chobsaard S. Comparison of cyclostationary and envelope analysis in the diagnostics of rolling element bearings. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing– Proceedings, 2000, 6: 3882-3885
    [188].陈进,姜鸣.高阶循环统计量理论在机械故障诊断中的应用.振动工程学报, 2001, 14(2): 125-134
    [189].秦恺,陈进,姜鸣,陈春梅.一种滚动轴承故障特征提取的新方法-谱相关密度.振动与冲击, 2001, 20(1): 34-39
    [190]. Randall R. B., Antoni J., Chobsaard S. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals. Mechanical Systems and Signal Processing, 2001, 15(5): 945-962
    [191]. Antoniadis I., Glossiotis G. Cyclostationary analysis of rolling-element bearing vibration signals. Journal of Sound and Vibration, 2001, 248(5): 829-845
    [192]. Antoni J., Randall R. B. Differential diagnosis of gear and bearing faults. Journal of Vibration and Acoustics, Transactions of the ASME, 2002, 124(2): 165-171
    [193]. Antoni J., Daniere J., Randall R. B. Effective vibration analysis of IC engines using cyclostationarity. Part II - New results on the reconstruction of the cylinder pressures. Journal of Sound and Vibration, 2002, 257(2): 839-856
    [194]. Antoni J., Daniere J., Guillet F. Effective vibration analysis of IC engines using cyclostationarity. Part I - A methodology for condition monitoring. Journal of Sound and Vibration, 2002, 257(5): 815-837
    [195].李力,屈梁生.二阶循环统计量在机械故障诊断中的应用.西安交通大学学报, 2002, 36(9): 943-94
    [196].王峰,屈梁生.小波-循环谱密度法在旋转机械故障诊断中的应用.机械设备工程, 2002, 6: 38-39
    [197].杨龙兴,贾民平,许飞云,钟秉林.旋转机械故障的循环平稳度诊断,东南大学学报, 2003, 33(4): 438-441
    [198].杨龙兴,贾民平,许飞云,钟秉林.齿轮裂纹故障的循环矩诊断.中国机械工程, 2003, 14(9): 1621-1623
    [199].陈仲生,杨拥民,胡茑庆,沈国际.二阶循环平稳分析在转子早期碰摩故障识别中的应用.机械科学与技术, 2004, 23(2): 221-223
    [200]. Antoni J., Bonnardot F., Raad A., Badaoui M. E. Cyclostationary modelling of rotating machine vibration signals. Mechanical Systems and Signal Processing, 2004, 18(6): 1285-1314
    [201]. Dandawate A. V. and Giannakis G. B. Statistical tests for presence of cyclostationarity, IEEE Transaction on Signal Processing, 42 (1994), pp.2355-2369.
    [202]. Yeund G. K., Gardner W. A. Search efficient methods of detection of cyclosationary signals, IEEE Transactions on Signal Processing, 44 (1996), pp.1214-1223.
    [203].张克南,徐光华,谢里阳等.应用循环平稳方法分离电机系统故障.振动、测试与诊断, 2006, 26(2): 87-91
    [204].陈仲生,杨拥民,胡政,沈国际.基于循环平稳时间序列的齿轮裂纹故障早期检测.航空动力学报, 2005, 20(1): 154-158
    [205].周福昌.基于循环平稳信号处理的滚动轴承故障诊断方法研究[博士学位论文].上海交通大学, 2006
    [206].何俊,陈进,毕果,周福昌.循环平稳度解调频原理分析及其在齿轮故障诊断中的应用上海交通大学学报2007, 41(11): 1862-1866
    [207].万泉,蒋伟康.循环平稳声场近场声全息理论与实验研究.声学学报. 2005, 30(4): 379-384
    [208]. Wan Q. and Jiang W. K. Near field acoustic holography (NAH) theory for cyclostationary sound field and its application. Journal of Sound and Vibration. 2006, 290(3-5): 956-967
    [209].万泉,蒋伟康.用于循环平稳信号分析的偏相干方法.机械工程学报. 2005, 41(7): 174-179
    [210]. Wan Q. and Jiang W. K. Near field acoustic holography for cyclostationary sound field and its partial source decomposition procedure. Journal of Vibration and Acoustics, Transactions of the ASME. 2005, 127(6): 542-546
    [211].万泉.循环平稳声场的近场声全息理论与实验研究.博士论文,上海交通大学, 2005
    [212]. Banerjee P. K., Butterfield R. Boundary element methods in engineering science. McGraw-Hill Book Company, UK. 1981 [工程科学中的边界元法.冯振兴,李正秀,陶维本译,国防工业出版社,1988]
    [213].何元安.大型水下结构近场声全息的理论与实验研究.博士论文,哈尔滨工程大学, 2001
    [214]. Wilton D. T. A clarification of nonexistence problems with the superposition method. Journal of the Acoustical Society of America. 1993, 94(3): 1676-1680
    [215]. Wu S F, Rayess N, Zhao X. Visualization of acoustic radiation from a vibrating bowling ball.Journal of the Acoustical Society of America, 2001, 109(6):277l- 2779.
    [216].雷宣扬,陈进,张桂才,陈少林。基于Helmholtz方程最小二乘法的声场重构。上海交通大学学报,2006, 40(1):129-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700