用户名: 密码: 验证码:
基于信号指纹的通信辐射源个体识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通信辐射源个体识别是近来通信对抗领域一个重要的研究课题,它主要根据各通信设备硬件差异在发射信号上所表现出来的区别于其它个体的特征,判别信号来自哪部通信设备,实现设备追踪,进而有针对性的对敌重要通信装备及其载体进行监视、电子干扰或者军事打击。不同于传统通信信号侦察中的调制模式识别研究,通信辐射源个体识别主要研究体现同类辐射源之间个体差异的信号指纹的分析提取技术。
     目前,国内外相关研究主要针对暂态通信信号中的开机信号、利用特征提取的分析方法实现辐射源个体识别。然而,利用暂态信号特征进行辐射源识别面临在非协作通信条件下对信号的捕捉、因暂态信号与噪声相似性带来的特征提取难度等诸多挑战;而且,这些方法大多通过仿真手段在较高信噪比和样本充足的条件下研究不同型号的通信辐射源识别问题。实际上,通信对抗环境中截获信号的信噪比往往较低,信号持续时间较短、样本数据不足,现有方法直接用于外场同类通信辐射源个体辨识时往往识别率较低。基于此,本文针对相同型号和工作模式不同通信辐射源的个体识别问题,对稳态通信信号的个体细微特征,即信号指纹的分析提取技术难点展开研究。
     本文研究了信号指纹的基本理论,从其产生机理出发,研究了通信设备在稳定工作状态下频率特性、调制参数特性以及杂散特性的个体差异,并从时域、频域、时频域和高阶谱等不同角度采用多种通信信号处理手段探索信号指纹特征的提取方法,建立了通信辐射源个体识别基本框架。文中提出了一系列具有理论及实用价值的算法,并全部通过外场实测电台数据验证了所提算法的优良性能。
     本文所做的工作主要包括以下几个方面:
     (1)研究了基于载频和码速率的信号指纹提取技术。给出了一种改进的相位拟合载频估计方法;并给出了一种基于STFT时频能量分布和小波变换的码速率估计方法,解决了非协作通信条件下调制信号的码速率估计精度问题。实验表明:载频和码速率估计结果可以作为信号指纹特征之一,并配合其它特征对电台个体进行识别。
     (2)研究了基于辐射源个体杂散输出成分的信号指纹提取技术。首先提出了一种基于正交分量重构的包络提取算法,并利用分形维数和Lempel-Ziv等复杂度特征提取个体信号的包络寄生调制特征;然后给出了利用个体信号Hilbert边缘谱对称性特征和HHT时频分布灰度图像抽取特征的细微差异进行辐射源识别的方法。实验表明:较低信噪比下信号个体的包络寄生调制特征和时频分布灰度图像抽取特征作为信号指纹参量对电台个体具有较好的聚类性能,而受载频估计精度影响,谱对称性特征对电台个体的可分离性不高。
     (3)研究了基于高阶谱的信号指纹提取方法。提出了一种矩形积分双谱(SIB)信号指纹特征分析方法,并利用局部线性嵌入(LLE)流形约简方法对高维SIB特征进行降维分析。实验表明:SIB较其它局部双谱特征用于个体信号的指纹分析具有一定的优越性,而且SIB约简特征具有较好的聚类性能和抗噪能力。
     (4)针对辐射源个体识别实际应用环境,设计了一种基于核距离测度的多类别SVM分类器(KDM-SVM)和一种基于D-S证据理论的组合分类器,并采用上述分类器,以不同角度提取的信号指纹特征参量集为分类依据进行了通信电台个体识别实验。实验结果表明:利用稳定工作状态下提取的信号指纹特征集进行电台个体识别可以获得良好的识别效果。
     本文的研究工作在一定程度上解决了在小样本、较低信噪比和变化信噪比条件下对实际同型号通信电台的个体识别问题,具有一定的理论意义和实际应用前景。
As a very important subject in the filed of military communications confrontation, in-dividual transmitter identification technique is able to identify individual equipment using the subtle features of individual transmitted signal resulting from differences in hardware, and then the transmitter tracking, targeted surveillance, electronic jamming or military at-tack to the enemy’s electronic equipment and their carriers can be enacted. Different from modulation mode identification, individual transmitter identification mainly researches the extraction of individual subtle features between transmitters with the same model.
     Currently, the transient feature extraction using the boot signal is mainly researched for individual transmitter identification. However, transmitter identification based on tran-sient features faces some challenges, such as transient signal capture in non-cooperative communication environment and difficulties in feature extraction caused by similarity between transient signal and noise. Also, most methods work in higher signal-to-noise with sufficient samples, and mainly solve the problem of identifying transmitters with dif-ferent models. Actually, the received signals often have low SNR, and the seized signals have short duration, which results in insufficient samples. Thus, the recognition rate is low when using the existing methods. Therefore, this paper mainly researches the extraction technique of individual subtle features(signalprints) using the steady signal and aims at the problem of identifying individual transmitter with the same model.
     The basic theory of signalprints is researched. Based on signalprints mechanism, the characteristics of frequency, modulation parameters and stray output resulting from indi-vidual transmitter are researched, and methods for extracting signalprints are explored from different angles, such as time domain, frequency domain and high order spectra, etc. After that, an architecture of individual transmitter identification is established. The pro-posed algorithms are verified to be efficient using the measured radio data.
     The main areas in this paper are as follows.
     (1)The signalprints extraction based on carrier frequency and symbol rate is studied. An improved method of phase fitting is proposed to estimate the carrier frequency, and a method based on STFT time-frequency energy distribution and wavelet analysis is given for estimating the symbol rate of modulation signal in non-cooperative communication environment. Experimental results show that estimated frequency and symbol rate can be used as part of signalprints, and cooperate with other features for identifying individual transmitter.
     (2)The stray output of individual signal is used to extract signalprints. First, a method of orthogonal component reconstruction is presented for extracting signal envelop, and the fractal dimensions and Lempel-Ziv complexity are used to extract the spurious modulation features of signal envelop. Then the individual differences of Hilbert edge spectrum sym-metry parameter and Hilbert Huang Transform time-frequency distribution(HHT-TFD) grayed image are studied for classifying. Experiments show that complexity features of envelop and HHT-TFD grayed image have better separability in lower SNR, whereas spectrum symmetry features perform worse as affected by the estimation accuracy of car-rier frequency.
     (3)The high order spectrum is used to extract signalprints. The square integrated bis-pectra(SIB) are proposed, and an improved local linear embedded method is used to re-duce dimension of SIB features. Studies show that SIB features are superior to the other local bispectra when extracting signalprints, and the low-dimensional SIB features have good performance of clustering and noise suppresion.
     (4)Aimed at actual applications of transmitter identication, a multi-class SVM classi-fier based on kernel distance measurement and a combination classifier based on D-S evi-dence theory are proposed for verifying the effectiveness of signalprints extracted from different angles. Experiments show that the feature set of signalprints extracted from steady signal can achieve high recognition rate for measured radio data.
     This paper solves the problem of identifying individual transmitter with the same model under the conditions of small samples, lower and variant SNR to some extent. The research has some theoretical and practical application prospects.
引文
[1]张贤达.现代信号处理[M].北京:清华大学出版社, 1994
    [2]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社, 1998
    [3]张贤达,保铮.通信信号处理[M].北京:国防工业出版社, 2000
    [4]梁百川.信息战与信息国防[J].电子对抗, 1996, 4:43-47
    [5]王心福.从局部战争看电子战的作用[J].电子对抗技术, 1999, 14(4):39-45
    [6]韩春久.通信对抗战术的发展趋势[J].电子对抗技术, 2003, l8(1):10-13
    [7]杨景曙,竺小松,张巨泉,祁建清.通信对抗装备的发展及关键技术[J].电子对抗技术, 2003, 18(1):3-9
    [8]邓军.未来战争中通信对抗的发展趋势[J].科技成果纵横, 2002, 6:21-22
    [9] Maggi. W, Polese. P. Integrated Broadband Communications Development and Implementation Strategies[J]. Electronics & Communication Engineering Journal, 2003, 5(5):315-320
    [10] Jajszczylk, A. What is the Future of Telecommunications Network[J]. IEEE Com-munications Magazine, 1999, 37(6):12-20
    [11] Shiliang Sun, Changshui Zhang. Assessing Features for Electroencephalographic Signal Categorization[A]. IEEE ICASSP’05[C], 2005, 5: 417-420
    [12] SK Goumas, ME Zervakis, GS Stavrakakis. Classification of Washing Machines Vibration Signals Using Discrete Wavelet Analysis for Feature Extraction[J]. IEEE Trans. On Instrumentation & Measurement, 2002, 51: 497-508
    [13] D Sternlicht, W Lernonds, R Dikeman, M Ericksen. Detection and classification of buried objects with an adaptiveacoustic mine-hunting system[A]. IEEE MTS Con-ference and Exhibition01[C], 2001, 1:212-219
    [14] M. Duarte, Y. H. Hu. Vehicle Classification in Distributed Sensor Networks[J]. Journal of Parallel and Distributed Computing, 2004, 64(7):826-838
    [15]戚世权,姜秋喜.电子战数字接收机及其信号处理[J].航天电子对抗, 1994, 4: 47-50
    [16] H. Choe, C.E. Poole, A.M. Yu. Novel Identification of Intercepted Signals from Unknown Radio Transmitters[A]. Proceedings of SPIE, the International Society for Optical Engineering[C], 1995, 2491:504-516
    [17] K. Ellis, N. Serinken. Characteristics of Radio Transmitter Fingerprints[J]. Radio Science, 2001, 36:585-597
    [18] D. Shaw, W. Kinsner. Multifractal Modelling of Radio Transmitter Transients for Classification[A]. IEEE Proceedings of ICCPC’97[C], 1997:306–312
    [19] O. Ureten, N. Serinken. Detection of Radio Transmitter Turn-on Transients[J]. Electronic Letters, 1999, 35:1996-1997
    [20] D. Fox. Bayesian Filtering for Location Estimation[J]. IEEE Pervasive Computing, 2003, 2(3):24-33
    [21] O. Ureten, Serinken. Bayesian Detection of Wi-Fi Transmitter RF Fingerprints[J]. Electronic Letters, 2005, 41(6):373-374
    [22] O.Ureten,Serinken. Bayesian Detection of Radio Transmitter Turn-on Tran-sients[A]. IEEE Proceeding of NSIP99[C], 1999:830-834
    [23] Yufei Huang, PM. Djuric. Bayesian Detection of Transient Signals in Colored Noise[A]. IEEE Proceeding of ICASSP’00[C], 2000:725-728
    [24] Ralph D. Hippenstiel, Yalcin Payal. Wavelet Based Transmitter Identification[A]. IEEE Proceedings of ISSPA’96[C], 1996:740-743
    [25] Toonstra, J., Kinsner, W. A Radio Transmitter Fingerprinting System ODO-1[A]. IEEE Proceedings of ICECE’96[C], 1996, 1:60-63
    [26] J.Toonsfra, W. Kinsner. Transient Analysis and Genetic Algorithms for Classifica-tion[A]. IEEE Proceedings of WESCANEX’95[C], 1995:432-437
    [27] J. Hall, M. Barbeau, E. Kranakis. Detection of Transient in Radio Frequency Fin-gerprinting using Phase Characteristics of Signals[A]. IEEE Proceedings of WOC’03[C], 2003:13-18
    [28] J. Hall, M. Barbeau, E. Kranakis. Enhancing Intrusion Detection in Wireless Net-works Using Radio Frequency Fingerprinting[A]. IEEE Proceedings of ICCIIT04[C], 2004:22-24
    [29] J. Hall, M. Barbeau, E. Kranakis. Detecting Rogue Devices in Bluetooth Networks Using Radio Frequency Fingerprinting[A]. International Conference on Commu-nications and Computer Networks, CCN’06[C], 2006:1-6
    [30] Dominguez L., Paez Borrallo. A General Approach to the Automatic Classification of Radio Communication Signals[J], Signal Processing, 1991, 22:239-250
    [31] Sun, L., Kinsner, W. Fractal Segmentation of Signal from Noise for Radio Trans-mitter Fingerprinting[A]. IEEE Conference on Electrical and Computer Engineer-ing[C]. 1998, 2:561-564
    [32] O.H.Tekbas, O. Ureten, N. Serinken. Improvement of Transmitter Identification System for Low SNR Transients[J]. Electronics Letters, 2004:182-183
    [33] O.H.Tekbas, N. Serinken. Transmitter Fingerprinting from Turn-on Transients[A]. NATO Set Panel Symposium on Passive and LPI Radio Frequency Sensors[C], 2001:1-4
    [34] O.H.Tekbas, O. Ureten. An Experimental Performance Evaluation of a Novel Ra-dio-transmitter Identification System Under Diverse Environmental Conditions[J].Canada Journal of Electronical Computing Engineering, 2004, 29(3):203-209
    [35] N. Serinken, O. Ureten. Generalised Dimension Characterisation of Radio Trans-mitter Turn-on Transients[J]. Electronics Letters, 2000, 36(12):1064-1066
    [36] Cohen L. Time-Frequency Distributions:A Review[A]. Proceeding of IEEE 1989[C], 1989, 77(7):941-981
    [37] Christophe De Luigi, Claude Jauffret. Estimation and Classification of FM Signals using Time Frequency Transforms[J]. IEEE Trans. On Aerospace and Electronic Systems, 2005, 41(2):421-437
    [38] Gillespie W., Atlas E. Optimizing Time-Frequency Kernels for Classification[J]. IEEE Trans. on Signal Processiing. 2001, 49(3): 485-496
    [39] Norden E. Huang, Zheng Shen, Steven R. Long. The Empirical Mode Decomposi-tion and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J], Proceedings of the Royal Society of London, A, 1998, 454:903-995
    [40] Lee J.S, Lee C.H., Kim J.O., Nam S.W. Classification of Power Quality Distur-bances using Orthogonal Polynomial Approximation and Bispectra[J]. Electronics Letters,1997, 33(18):1522-1524
    [41] S.Yang, Z.S.Li. Classification of Ship Radiated Signals via Chaotic Features[J]. Electronics Letter, 2003, 39(4):395-397
    [42] Yang, S., Nonlinear Signal Classification using Geometric Statistical Features in State Space[J]. Electronics Letters, 2004, 40(12):780- 781
    [43] O.Besson, P. Stoica. Two Subspace-based Methods for Frequency Estimation of Sinusoidal Signals with Random Amplitude[A]. IEE Proceedings of Radar, Sonar and Navigation[C], 1997, 144(4):169-176
    [44] A.A.Beex, S.Peijun. A Time-varying Prony Method for Instantaneous Frequency Estimation at Low SNR[A]. IEEE Proceedings of ISCAS’99[C], 1999, 3:5-8
    [45] S.M. Kay, A.K. Shaw. Frequency Estimation by Principal Component AR Spectral Estimation Method without Eigendecomposition[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1988, 36(1):95-101
    [46] H.K. Kwok, D.L. Jones. Instantaneous Frequency Estimation Using an Adaptive Short-time Fourier Transform[J]. IEEE Trans. on Signal Processing, 2000, 48(10): 2964-2972
    [47] B.Boashash, L.B. White. Instantaneous Frequency Estimation and Automatic Time-varying Filtering[A]. IEEE Proceedings of ICASSP’90[C], 1990, 3:1221-1224
    [48] S. Tretter. Estimating the Frequency of a Noisy Sinusoid by Linear Regression[J]. IEEE Trans. on Information Theory, 1985(31):832-835
    [49] Benxiong Huang, Zhengguang Xu, Shuhua Xu. A Highly Accurate Method for Pa-rameter Estimation[A]. IEEE Proceedings of MILCOM’05[C], 2005, 1:56-58
    [50] Zhidong Zhao, Min Pan, Yuquan Chen. Instantaneous Freqwuency Estimate for Non-stationary Signal[A]. Proceedings of the 5th World Congress on Intelligent Control and Automation[C], 2004:3641-3643
    [51] Shuhua Xu, Huang Benxiong. A Novel Method for Estimating the Instantaneous Parameters of Radio Transmitter Signals[A]. IEEE Proceedings of ISSPA’07[C], 2007
    [52] Tugnait J K. Detection of non-Gaussian Signals using Integrated Polyspectrum[J]. IEEE Trans. on Signal Processing, 1994, 42 (12): 3137-3149
    [53] Chandran V, Elgar S L. Pattern Recognition using Invariants Defined from Higher Order Spectra to One-dimensional Inputs[J]. IEEE Trans. on Signal Processing, 1993, 41 (1):205-212
    [54] Liao XJ, Bao Z. Circularly Integrated Bispectra: Novel Shift Invariant Features for High Resolution Radar Target Recognition[J]. Elecronics Letters, 1998, 34(19): 1879-1880
    [55] Xian-Da Zhang, Yu Shi, Zheng Bao. A New Feature Vector Using Selected Bis-pectra for Signal Classification With Application in Radar Target Recognition[J]. IEEE Trans. on Signal Processing, 2001, 49(9):1875-1885
    [56]马君国,肖怀铁,李保国.基于局部围线积分双谱的空间目标识别算法[J].系统工程与电子技术,2005, 27(8):1490-1493
    [57]王伦文,王铭三,杨俊安等.电台“指纹”特征初探[J].计算机与网络, 2001,10:29-30
    [58]王伦文,钟子发. 2FSK信号“指纹”特征的研究[J].电讯技术, 2003,3:45-48
    [59]王若冰,张硕,何修邦.改进BP神经网络在电台指纹识别中的应用[J].电子对抗,2006,2:6-11
    [60]蔡忠伟.通信信号指纹识别技术研究[J].无线电工程, 2004,1:46-49
    [61] Therrien C W. Application of Feature Extraction to Radar Signature Classi-fication[A]. Proceedings of the 20rd International Pattern Recognition Sympo-sium[C], 1974:125-132
    [62] Perdriau B. Modulation Domain Offers a New View of Radar Performance[A]. IEEE Proceedings of MSN’90[C], 1990:27-43
    [63] Kenneth I. Talbot,Paul R. Duley, Martin H. Hyatt. Specific Emitter Identification and Verification[J], Tech. Review Journal, 2003:114-133
    [64]魏东升,巫胜洪.雷达信号脉内细微特征的研究[J].舰船科学技术, 1994,3:23-30
    [65]赵拥军,黄洁.雷达信号细微特征时频分析法[J].现代雷达, 2003,12:26-28
    [66]杨春华,陆志宏.雷达侦察系统细微特征分析[J].舰船电子对抗, 2004,4:16-20
    [67]刘刚.雷达指纹分析的基本理论探讨[J].电子对抗, 2002, 6: 1-6
    [68] X. Li, A. G O. Yeh. Principal Component Analysis of Stacked Multi-temporal Im-ages for the Monitoring of Rapid Urban Expansion in the Pearl River Delta[J]. In-ternational Journal of Remote Sensing, 1998, 19(8):1501-1518
    [69] R. E. Roger. A Fast Way to Compute the Noise-adjusted Principal Components Transform[J]. IEEE Trans. on Geoscience and Remote Sensing, 1994, 32(6):1194-1196
    [70] C. Gordon. A Generalization of the Maximum Noise Fraction Transform[J]. IEEE Trans. on Geoscience and Remote Sensing, 2000, 38(1):608-610
    [71] S-S. Chiang, C.-I. Chang, I. W. Ginsberg. Unsupervised Hyperspectral Image Analysis using Independent Component Analysis[A]. IEEE Proceedings of IGARSS'00[C], 2000:3136-3138
    [72] J. M. P. Nascimento,J. M. B. Dias. Does Independent Component Analysis Play a Role in Unmixing Hyperspectral Data?[J]. IEEE Trans. on Geoscience and Remote Sensing, 2005, 43(1):175-187
    [73] R. A. Fisher. The Use of Multiple Measurements in Taxonomic Problems[J]. An-nual of Eugenics, 1936, 7:179-188
    [74] C. R. Rao. The Utilization of Multiple Measurements in Problems of Biological Classification[J]. Journal of the Royal Statistical Society(Series B, Methodo-logical), 1948, 10:159-203
    [75] A. R. Webb,王萍等译.统计模式识别[M].北京:电子工业出版社, 2004
    [76] L.-F. Chen, H.-Y M. Liao, M.-T. Ko. A New LDA-based Face Recognition Sys-tem which can Solve the Small Sample Size Problem[J]. Pattern Recognition, 2000, 33(10):1713-1726
    [77] R. Huang, Q. Liu, H. Lu. Solving the Small Sample Size Problem of LDA[A]. IEEE Proceedings of ICPR’02[C], 2002, 3:29-32
    [78] J. H Friedman, J. W. Tukey. A Projection Pursuit Algorithm for Ecploratory Data Analysis[J]. IEEE Trans. on Computers, 1974, 23(9):881-889
    [79] L. O. Jimenez. D. A Landgrebe. Hyperspectral Data Analysis and Supervised Fea-ture Reduction via Projection Pursuit[J]. IEEE Trans. on Geoscience and Remote Sensing, 2000, 37(6):2653-2667
    [80] A. Ifarraguerri, C.-I, Chang. Unsupervised Hyperspectral Image Analysis with Pro-jection Pursuit[J]. IEEE Trans. on Geoscience and Remote Sensing, 2000, 38(6):2529-2538
    [81] Tenenbaum J, Silva D, Langford J. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000, 290 (5500): 2319 - 2323
    [82] Roweis S, Saul L. Nonlinear Dimensionality Reduction by Locally Linear Embed-ding[J]. Science, 2000, 290 (5500): 2323 - 2326
    [83] B. Scholkopf, A. SmoIa, K.R. Muller. Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J]. Neural Computation, 1998, 10(5):1299-1319
    [84]孔锐,施泽生,郭立.利用组合核函数提高核主分量分析的性能[J].中国图象图形学报, 2004, 9(1):40-45
    [85] S. Mika, G RatsCh, Weston. Fisher Discriminant Analysis with Kernels[A]. Pro-ceedings of IEEE Workshop on Networks for Signal Processing[M], 1999:41-48
    [86] G Baudat, F. Anouar. Generalized Discriminant Analysis using a Kernel Ap-proach[J]. Neural Computation, 2000, 12(10):2385-2404
    [87] V. Vapnik,张学工译.统计学习理论的本质[M].北京:清华大学出版社, 2002
    [88]边肇其,张学工.模式识别[M].北京:清华大学出版社, 2002
    [89] M. D. Richard, R. P. Lippmann. Neural Network Classifiers Estimate Bayesian a Posteriori Probabilities[J]. Neural Computation, 1991, 3:461-483
    [90] Leonid I. Perlovsky, William H. Schoendorf, Bernard J. Burdick, David M. Type Model-based Neural Network for Target Detection in SAR Imagery[J]. IEEE Trans. on Image Processing, 1997:203-215
    [91] G. Giacinto, R. Paolucci, F. Roli. Application of Neural Networks and Statistical Pattern Recognition Algorithms to Earthquake Risk Evaluations[J]. Pattern Recog-nition Letters, 1997, 18:1353-1362
    [92] Lars Kai Hansen, Peter Salamon. Neural Network Ensembles[J]. IEEE Tran. on PAMI, 1990, l2(10):993-1001
    [93] Kagan Turner. Analysis Classifiers of Decision Boundaries in Linearly Combined Neural Network[J]. Pattern Recognition, 1996, 29(2):341-345
    [94] Roe J. A Review Applications of Artificial Intelligence Techniques to Navel ESM Signal Processing[A]. Proceedings of IEE Colloquium on the Applications of Arti-ficial Intelligence Techniques to Signal Processing[C], 1989, 5:1-5
    [95] Roe J. Pudner A. The Real-time Implementation of Emitter Identification for ESM[A]. Proceedings of IEE Colloquium on Signal Processing [C], 1994, 7:1-6
    [96] Ford B P, Middlebrook V S. Using a Knowledge Based System for Emitter Classi-fication and Ambiguity Resolution[A]. Proceedings of the IEEE National Aero-space and Electronics Conference[C], 1989:1739-1746
    [97] Whalley G W. Signal Processing Requirements for Future ESM Systems[A]. Pro-ceedings of IEE Colloquium on Signal Processing for ESM Systems[C], 1988, 2:1-4
    [98] Q Zhao, J. C. Principe. Support Vector Machine for SAR Automatic Target Recog-nition[J]. IEEE Trans. on AES, 2001, 37(2):643-654
    [99] C. Comes, V Vapnik. Support Vector Networks[J]. Machine Learning, 1995,20: 273-297
    [100] Edgar Osuna. Training Support Vector Machines: an Application to Face Detec-tion[A]. IEEE Proceedings of CVPR’97[C], 1997:130-135
    [101] J. Kittler, M. Hatef, J. Matas. On Combining classifiers[J], IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(3):226-239
    [102] A. Verikas, A. Lipnickas, Malmqvist. Soft Combination of Neural Classifiers: a Comparative Study[J]. Pattern Recognition Letters, 1999, 20(4): 429-444
    [103] T. K. Ho, J. Hull, S. N. Srihan. Decision Combination in Multiple Classifiers Sys-tems[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1994,16: 66-75
    [104] T. Denceux. Analysis of Evidence Theoretic Decision Rules for Pattern Classifica-tion[J]. Pattern Recognition, 1997, 30:1095-1108
    [105] L. Xu, A. Krzyzak, C.Y Suen. Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition[J]. IEEE Trans. on Systems, Man and Cybernetics, 1992, 22(3):418-435
    [106] H. Tahani, J. Keller. Information Fusion Computer Vision using the Fuzzy Inte-gral[J]. IEEE Trans. on Systems, Man and Cybernetics, 1990, 20:733-741
    [107]姜园.通信对抗中的现代信号处理技术应用研究[D].浙江大学博士论文, 2004
    [108]任春晖.通信电台个体特征分析[D].电子科技大学博士论文, 2006
    [109]袁宇正.锁相与频率合成技术[M].武汉:武汉测绘科技大学出版社, 1992
    [110]张玉兴,彭清泉. DDS的背景杂散信号分析[J].电子科技大学学报, 1997, 26(4):362—365
    [111]张骏凌,张玉兴.直接数字频率合成器中的相位噪声分析[J].电子科技大学学报, 1999, 28(1):24-27
    [112]刘朝军,许人灿,陈曾平. DDS输出信号频谱结构的系统分析[J].国防科技大学学报, 2005, 27(6):53-56
    [113]罗明,杨绍全,郑文秀等.一种用于信号侦测的码元速率估计方法[J].电子对抗技术, 2005, 20(5):3-6
    [114] S. M. Kay.统计信号处理基础-估计与检测理论.北京:电子工业出版社,2003
    [115] Kay S. A. Fast and Accurate Single Frequency Estimator[J]. IEEE Trans.on ASSP, 1998, 37(12):1987-1990
    [116] Rife D. C., Bootstyn R. R. Single-tone Parameter Estimation From Discrete-time Observation[J]. IEEE Trans. on Information Theory, 1974, 20(5):591-598
    [117]刘渝.快速高精度正弦波频率估计综合算法[J].电子学报, 1999,27(6):126-128
    [118] O. Bessen, P. Stoica. Frequency Estimation and Detection for Sinusoidal Signals with Arbitrary Envelope: a Nonlinear Least-squares Approach[A]. Proceedings of IEEE ICASSP’98[C], 1998, 4:2209-2212
    [119] Mark A. Wickert. The Effect of Multipath on the Detection of Symbol-Rate Spec-tral Lines by Delay and Multiply Receivers[J]. IEEE Journal on Selected Areas in Communications. 1992, 10(3):545-549
    [120] Mark A. Wickert, L. randy, Tuecotte. Rate-Line Detection Using Higher-order Spectra[A]. Proceedings of MILCOM’92, 1992, 3:1221-1225
    [121] P.Ciblat, P.Loubaton, E. Sperpedin, G. B. Giannalis. Asymptotic Analysis of Blind Cylic Correlation-Based Symbol-rate Estimators[J]. IEEE Trans. on Information Theory,2002, 48(7):1992-1934
    [122] Chan Y T, Plews J W, Ho K C. Symbol Rate Estimation by the Wavelet Trans-form[A]. Proceedings of IEEE ISCAS’97 [C], 1997,1:177-180
    [123] Ho K C, Prokopiw, Chan Y TO. Modulation Identification of Digital Signals by the Wavelet Transform[A]. IEE Proceedings of Radar, Sonar and Navigation[C], 2000, 147(4):169-176
    [124]纪勇,徐佩霞.基于小波变换的数字信号符号率估计[J].电路与系统学报, 2003, 8(1):12-15
    [125] R. Matzner. An SNR Estimation Algorithm for Complex Baseband Signals Using Higher Order Statistics[J]. Facta Universitatis(Nis), 1993, 6(1):41-52
    [126]胡光锐,韦晓东.基于倒谱特征的带噪语音端点检测[J].电子学报, 2000: 28(10):95-97
    [127]梅晓丹,孙圣和.基于小波变换的静音与语音分割新算法[J].哈尔滨工业大学学报, 2002, 34(3):408-411
    [128] A.K.Nandi, E.E.Azzouz. Automatic Analogue Modulation Recognition[J]. Signal Processing, 1995, 46:211-222
    [129] F.Jondral. Automatic Classification of High Frequency Signals[J]. Signal Process-ing, 1985, 9(3):177-190
    [130] Gardner. W. Spectral Correlation of Modulated Signals: PART I-Analogue Modu-lation[J]. IEEE Trans. on Comm., 1987, 35(6):584-594
    [131] Y.T.Chan, L.GGadbois. Identification of the Modulation Type of a Signal[J]. Sig-nal Processing, 1989, 16:149-154
    [132]蔡权伟.多分量信号的信号分量分离技术研究[D].电子科技大学博士论文, 2006
    [133]李世雄,陈东方.信号瞬时参数计算方法评价[J].信号处理, 2003, 19(1): 59-63
    [134]吕铁军.通信信号调制识别研究[D].电子科技大学博士论文, 2000
    [135] Yan R Q, Gao R X. Complexity as a Measure for Machine Health Evaluation[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(4): 1327-1334
    [136]聂笃宪.分形维数计算方法的研究[J].微机发展, 2004, 14(9):17-19
    [137]张葛祥,胡来招,金炜东.雷达辐射源信号脉内特征分析[J].红外与毫米波学报,2004, 23(6): 477-480
    [138]孙晔.经验模态分解理论与应用研究[D].浙江大学博士论文, 2005
    [139]文莉,刘正士.小波去噪的几种方法[J].合肥工业大学学报, 2003,25(2):168-170
    [140] Donoho, D.L. De-noising by Soft-Thresholding [J]. IEEE Trans. on Information Theory. 1995, 41(3):613-627
    [141] Quan Pan. Two Denoising Method by Wavelet Transform[J]. IEEE Trans. on Sig-nal Processing, 1999, 47(12): 567-589
    [142] R. R. Coifman, M. V. Wickerhauser. Entropy-based Algorithm for Best Basis Se-lection[J]. IEEE Trans. on Information Theory, 1992, 38 (2): 713-718
    [143] M. K. Tsatsanis, G. B. Giannakis. Object and Texture Classification using Higher Order Statistics[J]. IEEE Trans. Pattern Anal. Machine Intell, 1992,14:733–750
    [144]蔡忠伟.基于双谱的通信辐射源个体识别[J].通信学报, 2007, 28(2):75-79
    [145] Giannakis GB, Tsatsanis M K. Signal Detection and Classification using Matched Filtering and HOS[J]. IEEE Trans. on ASSP, 1990,38(7): 1284-1296
    [146] Shuhua Xu, Benxiong Huang, Huang Yuchun, Zhengguang Xu. Identification of Individual Radio Transmitter Based on Selected Surrounding-line Integral Bispec-tra[A]. IEEE Proceedings of ICACT’07[C], 2007,2:1147-1150
    [147] Roweis S T, Saul L K. Think Globally, Fit Locally: Unsupervised Learning of Nonlinear Manifolds[D]. Technical Report MS CIS-02-18,University of Pennsyl-vania, 2002
    [148]徐书华,黄本雄,徐丽娜.基于矩形积分双谱和PCA的通信辐射源个体识别研究[J].华中科技大学学报(已录用)
    [149] Roweis S T, Saul L K. Think Globally, Fit Locally: Unsupervised Learning of Nonlinear Manifolds[D]. Technical Report MS CIS-02-18,University of Pennsyl-vania, 2002
    [150]肖健.局部线性嵌入的流形学习算法研究与应用[D].国防科技大学硕士论文,2005年
    [151] Bruske J, Sommer G. Intrinsic Dimensionality Estimation with Optimally Topol-ogy Preserving Maps[J]. IEEE Trans. On PAMI, 1998, 20(5): 572-575
    [152] Camastra F, Vinciarelli A. Estimating Intrinsic Dimension of Data with Frac-tal-based Approach[J]. TEEE Trans. On PAMI, 2002, 24(10): 1404-1407
    [153] Levina E, Bickel P. Maximum Likelihood Estimation of Intrinsic Dimension[J]. NIPS, Cambridge, 2005,17:1-8
    [154] Dick de Ridder,Olga Kouropteva. Supervised Locally Linear Embedding[D]. Delft University of Technology, The Netherlands, 2002
    [155] T. Chen. The Past, Present, and Future of Neural Networks for Signal Process-ing[J]. Signal Processing, 1997,14(11) :28 - 48
    [156] T. Evgeniou, M. Pontil, T. Poggio. Statistical Learning Theory: A Primer[J]. Int. Journal Computer Vision, 2000, 38(1):9-13
    [157] J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition[D]. Bell Laboratories, Lucent Technologies. 1997
    [158]张国柱.雷达辐射源识别技术研究[D].国防科技大学博士学位论文, 2005年
    [159] R. Rifkin, A. Klautau. In Defense of One-vs.-all Classification[J], Journal of Ma-chine Learning Research, 2004, 5:101-141
    [160] Cheong S M, Oh S H, Lee S Y. Support Vector Machines with Binary Tree Archi-tecture for Mufti-class Classification[J]. Neural Information Processing-Letters and Reviews, 2004, 2(3): 47-51
    [161]刘志刚,李德仁,秦前清.支持向量机在多类分类问题中的推广[J].计算机工程与应用, 2004, 40 (7) : 10 - 13
    [162] Shuhua Xu, Benxiong Huang, Yuchun Huang. Classification and Diagnosis of Mechanical Faults Using the RBF Network Based on the Local Bispectra. The 4th International Symposium on Neural Network, ISNN2007
    [163] Y. S. Huang, C. Y. Suen. A Method of Combining Multiple Experts for the Recog-nition of Unconstrained Handwriting Numerals[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1995, 17: 90-94
    [164] Saman S. Abeysekera. Efficient Frequency Estimation Using the Pulse-Pair Method at Various Lags[J]. IEEE Trans. On Communication, 2006, 54(9):1542-1546
    [165] Jian Yang, Hongsheng Xi, Wei Guo. Robust Modified Newton Algorithm for Adaptive Frequency Estimation[J]. IEEE Signal Processing Letters, 2007, 14(11):879-882
    [166]张磊,刘永光,付永领等.一种新的正弦信号频率估计方法[J].系统工程与电子技术,2005, 27(9):1542-1544
    [167]王鑫,赵春晖,戎建刚.基于多级维纳滤波的信号频率估计算法研究[J].系统工程与电子技术,2007, 29(6):862-865
    [168]李滔,杨绍全,汤建龙.基于指数遗忘分布的瞬时频率估计算法[J].电子学报,2004, 32(12):2082-2085
    [169]马章勇,赵春明,尤肖虎. CDMA系统中载频频偏估计的新方法[J].电路与系统学报,2002,7(4):49-52
    [170] Ko Seok Jun, Lee Kyung Ha, Hyung Jin Choi. Performance of Coherent DSSS/QPSK for Mobile Communications in Fast-fading Multipath and High-frequency Offset[J]. IEEE Trans. On Vehicular Technology, 2001,1(50):250-266
    [171]黄春琳,柳征,姜文利等.基于循环谱包络的扩频直序信号的码片时宽、载频、幅度估计[J].电子学报,2002, 30(9):1353-1356
    [172] Gardner W. A. Signal Interception: A Unifying Theoretical Framework for Feature Detection[J]. IEEE Trans. on Communication, 1988, 36(8):897-906
    [173] Hill D.A. Experimental Carrier Detection of BPSK and QPSK Direct Sequence Spread Spectrum Signals[A]. IEEE Proceedings of MILCOM’95[C], 2007, 1:362-367
    [174] Zhenhui Shen,Bin Ting, Yan Lv,Xiaowu Zhu. Multiple Parameters Estimation Simultaneously for DSSS/BPSK Signal Based on Fourth-order Cumulant 2-D Slice[A]. IEEE Proceedings of ICCCAS’04[C], 2004, 2:867-870
    [175] Beek,Sandell,Borjesson. ML Estimation of Time and Frequency Offset in OFDM Systems[J]. IEEE Trans. on Communications, 1997, 45(7):1800-1805
    [176] Timothy Schmidl Cox,Robust Frequency and Timing Synchronization for OFDM[J]. IEEE Trans. on Communications, 1997, 45(12):1613-1621
    [177] HuiLiu,UfukTureli. High-eficiency Carrier Estimator for OFDM [J]. IEEE Trans. on Communications, 1998, 46(4):104-106
    [178] Tureli U,Liu H,Zohowski M D. OFDM Blind Carrier Offset Estimation: ES-PRIT[J]. IEEE Trans. on Communications, 2000, 48(9):1459-1461

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700