用户名: 密码: 验证码:
稳定分布环境下的时延估计新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统的信号处理研究中,高斯模型占据主导的地位。许多情况下随机信号和噪声的高斯分布假定是合理的,并且这种合理性可以由中心极限定理而得到证明。另一方面,在高斯假定基础上所设计的信号处理算法易于进行理论上的解析分析。对信号和噪声的任何非高斯假定,都不可避免地会引入非线性和非最小相位问题,从而导致传统的信号处理算法、模型建立及相应分析计算的复杂化。
     时间延迟作为信号处理领域中一个一直十分活跃的研究课题,在军事、工业领域和水声学、地震学、生物医学等领域都有广泛的应用。因此,本文主要考虑了时延估计问题中非高斯噪声对传统算法的挑战,依据分数低阶统计量理论提出了一些新算法;同时从信号重构的角度对多径时延估计问题进行了分析并提出了新的算法。具体包括以下几个方面:
     (1)在α稳定分布噪声环境下,提出了广义的时延估计方法。在时延估计问题中,若背景噪声是脉冲性较强的α稳定分布噪声,则传统的时延估计算法都会出现性能退化甚至失效的现象。在分数低阶统计量的理论框架下,本文首先提出一种具有高分辨率的时延估计法。将FFT谱计算中的一个重要子类——线性调频Z变换(CZT)算法和共变谱同时引入时延估计问题中,将其转化为谐波信号的频率估计问题,从而得到适用于脉冲噪声环境且具有高分辨率的估计结果;然后提出两种适用于脉冲噪声环境的自适应估计非整数时延的方法,即将时延估计问题转化为FIR滤波器的参数估计问题,继而应用自适应技术得到估计结果。本文研究分析了在脉冲噪声环境下,对FIR滤波器系数分别用采样的sinc函数和拉格朗日插值滤波器进行约束时,传统的二阶代价函数失效的原因,提出了新的方法并从理论上证明了新方法有效性。
     (2)考虑α稳定分布噪声对二阶循环统计量的影响,提出了分数低阶循环相关函数和p阶循环模糊函数,并将其应用到时延估计问题中。传统的循环相关函数相当于两个频移信号的互相关函数,而循环功率谱本质就是二维的功率谱,一维代表普通意义的频率,另一维代表循环频率,因此α稳定分布噪声必然对它们产生影响,本文根据分数低阶理论提出了分数低阶循环相关函数,然后在其基础上提出了一种基于p阶循环模糊函数的方法,实现了在脉冲噪声存在时有效地联合估计时延和多普勒频移,该方法比基于分数低阶模糊函数和二阶循环模糊函数的方法具有更好的准确性:同时提出α稳定分布噪声存在条件下的具有信号选择性的自适应时延估计方法。该方法可有效估计高斯噪声和脉冲噪声条件下的时变和非时变时延值,其性能优于基于二阶循环相关的自适应时延估计算法和最小平均p范数(Least Mean P-norm,LMP)自适应时延估计方法。
     (3)根据Whittaker-Shannon插值定理,已知信号的多径时延问题可以归为信号重构问题,因此本文首先采用逐维求解的方法,将多维求解问题转化为多个一维问题,逐个对各径信号的幅度衰减和时间延迟进行估计;另外,将多径时延估计问题看作稀疏信号的重构,并应用Compressing Sense理论方法中的MP(Match Pursuit)和SP(SubspacePursuit)完成重构继而得到时延估计结果,同时提出一种自适应的SP方法,减少了预设参数,仿真结果验证了算法的有效性。
The Gaussian distribution plays a predominant role in signal processing. Its simple justification by the Central Limit Theorem and attractive analytic properties has made it the most important statistical distribution. However, there are many phenomena which are decidedly non-Gaussian and therefore are necessary to look beyond oversimplified Gaussian assumption and into more realistic non-Gaussian models. Any non-Gaussian assumption of signal or noise will inevitably introduce nonlinear and/or nonminimum phase problems, which result in complexity of signal processing algorithms, model construction and analytic computation.
     The estimation or tracking of the time delay between received signals impinging on two separated sensors is important in some fields, such as sonar, radar, biomedical application and position locating in wireless networks, etc. Although the work that deals with the problem of time delay estimation has already been presented in the literature, it has always assumed a Gaussian signal and noise model. A better model for the noise is the a stable distribution which can model, in addition to the Gaussian distribution, a wider and more impulsive range of phenomena. Based on this obersation, new methods for time delay estimation in impulsive noise environments are studied using theαstable distribution theory. And multipath time delay estimation problem is thrown into signal reconstruction to arise novel alogrithms. Main research and conclusions are summarized as:
     (1)New time delay estimation methods for impulsive noise environments are addressed. The impulsiveness ofαstable distributed noise can make the performance of conventional time delay estimation methods degrade even invalidate. Firstly, considering the effect of a stable distributed noises for the classical second order statistics, this dissertation combines covariation spectrum and chirp Z transformation (CZT) which is one of the most useful spectrum analysis methods, and consequently proposes a novel multi-source time delay estimation method in impulsive noise environment. Simulations show that the proposed algorithm is a high resolution method suited forαstable distributed noises condition and its performance is better than the common method named covariation method. Secondly, two roubst adaptive algorithms are proposed for fractional time delay estimation which define novel cost function and transfer the time delay estimation into the parameter estimation of FIR filter. Some conclusions are deduced in theory.
     (2) Taking into consideration the influence ofαstable distributed noise on second order cyclostationary statistics, fractional lower order cyclostationary statistics are developed, and then applied to time delay estimation problems. The trational cyclic correlation is just a correlation of two frequency shift signals and in nature cyclic spectrum is just power spectrum with two dimentions which represent time lag and cyclic frequency respectively. Therefore theαstable distributed noise has impact on them. Combinig with the theory of fractional lower order statistics theory, novel function are introduced and their properties are proven. Firstly, an approach for estimating time delay with signal selectivity in the presence of impulsive noise is developed. Simulations show that the performance of proposed algorithm is not only better than that based on second order cyclic correlation, but also the covariation algorithm. Secondly, considering such circumstance that relative motions can be discribed as a fixed time delay and Doppler shift, a new algorithm based on the propesed p th order cyclic ambiguity function is investigated.It is showed that time delay and Doppler shift can be jointly estimated in the presence of impulse noise. It has better estimation accuracy than second order, fractional lower order and cyclic ambiguity function. Finally, a new adaptive time delay estimation method is proposed for highly corruptive environments, which is based on the proposed robust cyclic correlation estimator. Simulations show that the performance of the proposed algorithm is superior to the LMP (Least Mean P-norm) time delay estimation method and adaptive time delay estimation method based on second order cyclic correlation in alpha-stable distributed noises.
     (3)According to Whittaker-Shannon theorem, this dissertation announces that the problem of multipath time delay estimation is equal to that of signal reconstruction problem. Firstly, the multi-dimention optimization is transfered into mulitiple one-dimention optimization, which simplize the process.Then by using the match pursuit and subspace pursuit algorithms in compressing sense theory, the amplitude and time difference of different paths are gained. At the same time, a proposed adaptive subspace pursuit algorithm is applied into multipath time delay estimation, which needs less prior knowledge with effective results.
引文
[1]Matsuba I,Takahashi H.Generalized entropy approach to stable levy distributions with financial application[J].Elsevier Physisa A,2003,319:458-468.
    [2]Ahandra A.Measurements of radio impulsive noise from various sources in an indoor environment at 900 MHz and 1800 MHz[C].The 13th IEEE International Symposium on Personal,Indoor and Mobile Radio Communications,2002,2:639-643.
    [3]Blackard K L,Rappaport T S,Bostian C W.Measurements and models of radio frequency impulsive noise for indoor wireless communications[J].IEEE Journal on selected areas in communication,1993,11(7):991-1001.
    [4]Bertocco M,Paglierani P.Nonintrusive measurement of impulsive noise in telephone-type networks[J].IEEE Transactions on instrumentation and measurement,1998,47(4):864-868.
    [5]Sanchez M G,Haro L D,Ramon M C,Mansilla A,et.al.Impulsive noise measurements and characterization in a UHF digital TV channel[J].IEEE Transactions on electromagnetic compatibility,1999,41(2):124-136.
    [6]Ilow J,Hatzinakos D.Analytic alpha-stable noise modeling in a poisson field of interferers or scatterers[J].IEEE Transactions on signal processing,1998,46(6):1601-1611.
    [7]Button M D,Gardiner J G,Glover I A.Measurement of the impulsive noise environment for satellite-mobile radio systems at 1.5 GHz[J].IEEE Transaction on vehicular technology,2002,51(3):551-560.
    [8]Paglierani P.Non-intrusive measurement of impulsive noise in telephone-type networks[C].IEEE Instrumentation and Measurement Technology conference,1997:451-456.
    [9]Batur O,Koca M,DundarG.Measurements of impulsive noise in broad-band wireless communication channe[C].Research in Microelectronics and Electronics,2008;233-236.
    [10]Huan Y F and Thomas J B.Signal detection in nearly Gaussian skewed noise[J].The Journal of the Acoustical Society of America.1983,74(5):1399-1405.
    [11]Kassam S.Signal Detection in Non-Gaussian Noise[M].A Dowden & Culveer Book Springer-Verlag,1987.
    [12]赵莹,郑君里.非Gaussian信道DS-CDMA系统中的多用户检测算法[J].清华大学学报(自然科学版),2004,44(7):954-957.
    [13]Poor H P.Multiuser detection in flat flading non-Gaussian channel[J].IEEE Transaction on Communication,2002,50(11):1769-1777.
    [14] Sayadi B, Marcos S. Robust equalization based on a network of Kalman filters in impulsive noise environments[J]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2003, 5:37-40.
    [15] Zhang Z G, Chan S C and Tse K W, A new algorithm of tracking time-varying channels in impulsive noise environment using a robust kalman f ilter[C]. Proc. of 2005 International Symposium on Intelligent Signal Processing and Communication Systems, 2005, 11:13-16.
    
    [16] Kassam S A and Moustakides G. Robust techniques for signals processing:A survey[J]. Proc. Of the IEEE, 73(3):433-481,1985.
    [17] Aazhang B, Poor H V. Performance of DS/SSMA communications in impulsive channels—Part I:Linear correlation receivers[J]. IEEE Transaction on Communication, 1987, 35(11): 1179-1188.
    [18] Adler R, Feldman R and and Taqqu M S. A practical guide to heavy tails: statistical techniques for analyzing heavy tailed distributions[M].Boston:Birkhauser, 1997.
    [19] Szajnowski W J, Wynne J B. Simulation of dependent samples of symmetric alpha-stable clutter[J]. IEEE signal processing letters, 2001, 8(5):151-152.
    [20] Wang X D, Poor H P. Robust multiuser detection in non-Gaussian channels [J]. IEEE Trans Signal Processing, 1999,47(2):289-305.
    [21] NikiasCL, ShaoM. Signal processing with alpha-stable distribution and application[M]. New York John Wiley & Sons, Inc, 1995.
    [22] Shao M, Nikias C L. Signal processing with fractional lower order moments: stable processes and their applications[J]. Proceedings of the IEEE, 1993, 81(7):986-1010.
    [23] Mandelbrot B. The variation of certain speculative prices[J]. Journal of Business, 1963, 36:394-419.
    
    [24] G. Samorodnitsky, M. S. Taqqu. Stable Non-Gaussian Random Processes[M]. New York: Chapman & Hall, 1994.
    [25] Fama E. The ehaviour of stock-market prices[J]. Journal of Business, 1965, 38:34-105.
    
    [26] Teichmoller J. A note on the distribution of stock price changes[J]. Journal of the American Statistical Association,1971, 66:282-284.
    [27] Berger J and Madelbrot B. A new model for error clustering in telephone circuits[J]. IBMJ Research and Development, 1963, 7:223-236.
    [28] Shao M and Nikias C L. A symmetrical stable model for impulsive noise[R]. Technical report, Unverisity of Southern California, February 1993.
    [29] Stuck B and Kleiner B. A statistical analysis of telephone noise[J].Bell System Tech., 1984, 53(7):1263-1320.
    [30] Bodenschatz J S, Nikas C L.Recursive local orthogonality filtering[J]. IEEE Transactions on signal processing. 1997, 45(9):2293-2300.
    [31]Aydin G,Arikan O,Cetin A E.Robust adaptive filtering algorithms for α-stable random processes[J].IEEE Transactions on circuits and systems.1999,42(2):198-202.
    [32]Belge M,Miller E L.A sliding window RLS-like adaptive algorithm for filtering alpha-stable noise[J].IEEE signal processing letters.2000,7(4):86-89
    [33]Gonzalez J G,Arce G R.Weighted Myriad filters:A robust filtering framework derived from alpha-stable distribution[C].IEEE International Conference on Acoustics,Speech,and Signal Processing.1996,5:2833 -2836.
    [34]Tsakalides P,Nikias C L.Broadband beamforming with alpha-stable distributions[C].1995 Conference Record of the Twenty-Ninth Asilomar Conference on Signals,Systems and Computers,1995,2:l106-1110.
    [35]Tsakalides P,Nikias C L.Robust adaptive beamforming in alpha-stable noise environments[C].IEEE International Conference on Acoustics,Speech,and Signal Processing,1996,5:2884 - 2887.
    [36]Kannan B,Fitzgerald W J.Beamforming in additive alpha stable noise using fractional lower order statistics[C].The 6th International Conference on Electronics,Circuits and Systems 1999,2:1175-1179.
    [37]Ma X Y,Nikias C L.Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics[J].IEEE Transactions on Signal Processing,1996,44(11):2669-2687.
    [38]Hsu Y,Fractional lower order moment based adaptive algorithms.Conference Record of the Thirtieth Asilomar Conference on Signals,Systems and Computers,1996,1:334 338.
    [39]Qiu T S,Kong X.Latency change detection in evoked potentials by direct least mean p norm adaptive time delay estimation[C].IEEE EMBS'98,Hong Kong,China,1998:2054-2057.
    [40]刘文红,邱天爽,胡婷婷.一种韧性的高分辨率多径时延估计方法[J].系统工程与电子技术,2008,30(1):41-45.
    [41]Liu W,Qiu T S,et al.Robust propagatin velocity estimation of gastric electrical activity by least mean p-norm blind channel identification[J].Medical&Biological Engineering & Computing,2007,45(5):437-445.
    [42]Giffith D,Gonzalez J,Arce G.Robust time frequency representiations for signals in alpha-stable noise using fractional lower-order statistics[C].IEEE Signal Processing Worshop on High-Order Statistics.1997,2:1233-1236.
    [43]Coates M J,Kuruoglu E E.Time-frequency based detection in impulsive noise environments using alpha-stable noise model[J].Digtal Signal Processing,82(3):1917-1925.
    [44]Rupi M,Re E D.Optimum design for adaptive equalizatizers based on fractional lower-order statistics in non-Gaussian environment[C].The 33 Asilomar Conference on Signals,Systems,and Computers,1999,1:524-528.
    [45]Spasojevic P,Wang X.Multi-user detection in Alpha stable noise[J].IEEE MILCOM 2001:1087-1090.
    [46]Kidmose P.Alpha-stable distributions in signal processing of audio signals[C].41st Conference on Simulation and Modeling,2000,:87-94.
    [47]Banerjec A,Chellappa H.Tumor detection in digital mammograms[J].Proceedings of the International Conference on Image Processing,2000,3:432-435.
    [48]Kong X,Qiu T S.Latency change estimation for evoked potentials:a comparison of algorithms.Medical & Biological & Computing[J],2001,39(2):208-224.
    [49]Kong X,Qiu T S.Adaptive estimation of latency change in evoked potentials by direct least mean p-normal time delay estimation[J].IEEE Transactions on Biomedical Engineering,1999,46(8):994-1003.
    [50]Raspanti R,Tsakalides P,Nikias C L,Del Re E.Cramer-Rao bounds for targent angle and Doppler estimation for airborne radar in Cauchy interference[C].Sth IEEE Signal Processing Workshop on Statistical Signal and Array Processing,1996,534-537.
    [51]Tsihrintzis G A,Tsakalides P,Nikias C L.Signal detection in severely heavy-tailed radar clutter[C].The Twenty-Ninth Asilomar Conference on Signals,Systems and Computers,1995,2:865-869.
    [52]吕泽均,肖先赐.一种新的自适应波束形成技术[J].系统工程与电子技术,2003,25(5):543-545.
    [53]吕泽均,肖先赐.基于时延分数阶相关函数时空处理的子空间测向算法[J].信号处理,2003,19(1):51-54.
    [54]吕泽均,肖先赐.基于分数阶矩的测向算法研究.电波科学学报[J],2002,17(6):561-568.
    [55]吕泽均,肖先赐.在冲击环境中基于子空间的测向算法研究[J].航空学报,2003,24(2):174-177.
    [56]冯大政,常冬霞,袁莉.一种自适应全局最小平均p范数算法[J].电子学报,2001,29(12):1848-1851.
    [57]常冬霞,冯大政.脉冲噪声环境的一种递归全局最小平均p范数算法[J].电子学报,2002,31(3):426-428.
    [58]刘建强,冯大政.脉冲噪声中的盲源分离方法[J].电子与信息学报,2003,25(7):896-900.
    [59]刘建强,冯大政.脉冲噪声中非平稳源的盲分离方法[J].电子学报,2003,3(12):1921-1923.
    [60]张莉,冯大政.一种改进的自适应脉冲对消LMP算法[J].西安电子科技大学学报(自然科学版),2003,30(2):183-185.
    [61]周祎,冯大政,刘建强.冲击噪声中的谐波回复[J].信号处理,2005,21(2):163-166.
    [62]邓琳伟,马春华,冯大政.非高斯噪声下的一种自适应IIR滤波算法[J].火控雷达技术,2005,34(9):23-27.
    [63]夏光荣,刘兴钊.对称α-stable与高斯的混合噪声中信号检测的几种新方法[J].电子与信息学报,2004,26(9):1504-1508.
    [64]夏光荣,刘兴钊.基于改进经验特征函数的一种混合分布参数估计法[J].上海交通大学学报,2004,38增(10):22-25.
    [65]何劲,刘中.冲击噪声环境中求根类DOA估计方法研究[J].系统工程与电子技术.2005,27(12):2503-2506.
    [66]何劲,刘中.利用分数低阶空时矩阵进行冲击噪声环境下的DOA估计[J].航空学报,2006,27(1):104-108.
    [67]孙永梅,邱天爽.一种基于分数低阶协方差的维纳加权时间延迟估计方法[J].大连理工大学学报,2004,44(3):459-463.
    [68]张金凤,邱天爽.分数低阶α稳定分布下DLMP算法的收敛特性分析[J].电子学报,2005,33(1):74-77.
    [69]查代奉,邱天爽.稳定分布多项式自回归有色噪声及其白化方法[J].电子学报,2005,33(12):2144-2148.
    [70]张安清,邱天爽,章新华.分数低阶矩的信号盲分离方法[J].通信学报,2006,27(3):32-36.
    [71]唐洪,邱天爽.一种脉冲噪声中恒模算法及其稳定性分析[J].电子与信息学报,2006,28(7):1196-1200
    [72]Qiu T S,Tang H,Zha D F.Capture properties of the generalized CMA in Alpha-Stable noise environment[C].The 7th International Conference on Signal Processing,Beijing,2004:439-442.
    [73]Zha D F,Tianshuang Q.A new algorithm for shot noise removal in medical ultrasound images based on alpha-stable model[C].International Journal of Adaptive Control and Signal Processing,2006,20(6):251-263.
    [74]Zhao Z J,et al.Data block adaptive filtering algorithms for α -stable random processes[J].Digital Signal Processing,2007,17:836-847.
    [75]Chenyao D,et al.Computing the probability density function of the stable Paretian distribution[J].Mathematical and Computer Modeling,1999,29:235-240.
    [76]Chenyao D,et al.Maximum Likelihood estimation of stable models[J].Mathematical and Computer Modeling,1999,29:275-293.
    [77]Kuruoglu E E,Molina C,Fitagerald J.Approximation of alpha-stable probability densities using finite Gaussian mixtures[C].The 9th European Singnal Processing Conference,Rhodes,Greece,1998,9:654-658.
    [78]Doganoglu T,Mittnik S.An approximation procedure for asymmetric stable paretian densities[J].Computational Statistics,1998,13:463-475.
    [79]Honig M L,Madhow U,Verdu S.Blind adaptive multiuser detection[J].IEEE Trans.Inform Theory,1995,41(4):944-960.
    [80]McCulloch H.Simple consistent estimators of stable distribution parameters[J].Commun.Statist.Simula,1986,15(4):1109-1136
    [81]Chambers J M,Mallows C L,and Stuck B W.A method for simulating stable random variables[J].Journal of the American Statistical Association,1976,71(354):340-344.
    [82]Weron R.On the Chambers-Mallows-Stuck method for simulating skewed stable random-variables[J].Statistics & Probability Letters,1996,28(2):165-171.
    [83]Deroye L.Non-Uniform Random Variant Generation[M].Springer-Yerlag,1986:183-185.
    [84]Carter G C.Coherence and Time Delay Estimation:An Applied Tutorial for Research[J].Development,Test,and Evaluation Engineers.Piscataway,NJ:IEEE Press,1993.
    [85]Youn D H,Ahmed N,Carter G C.On using the LMS algorithm for time delay estimation.IEEE Trans on ASSP,1982,30(5):798-801.
    [86]Hou Z Q,Wu Z D.A new method for high resolution estimation of time delay[J].IEEE International Conference of ICASSP on Acoustics,Speech and Signal,1982,7(5):420-423.
    [87]李天昀,葛临东.两种快速细化分析方法的研究[J].系统工程与电子技术,2004,26(9):1192-1194.
    [88]查代奉,邱天爽.基于分数低阶谱的频域广义白化滤波方案[J].通信学报,2005,26(5):24-30.
    [89]Ching P C,So H C.Two adaptive algorithms for multipath time delay estimation[J].IEEE of Oceanic Eng,1994,19(3):458-463
    [90]王宏禹,邱天爽.自适应噪声抵消与时间延迟估计[M].大连:大连理工大学出版社,1999.
    [91]So H C,Ching P C,Chan Y T.A new algorithm for explicit adaptation of time delay[J].IEEE Trans on Signal Processing,1994,42(7):1816-1820.
    [92]So H C.Adaptive TDOA estimation in presence of impulsive noise.Electronics Letters.1998,34(7):1455-1456.
    [93]So H C.Fractional lower-order moment based adaptive algorithms for time delay estimation in impulsive noise[C].42nd Midwest Symposium on Circuits and Systems,Las Cruces,NM,8-11 Aug.,1999,2:985-988.
    [94]Laakso T L,Valimaki V,Karjalainern M.et al.Splitting the unit delay[J].IEEE Signal Processing Magazine,1996,13(1):30-60.
    [95]邱天爽,Kong x,鲍海平等.一种基于脑电信号分析的中枢神经系统损伤检测的韧性自适应方法[J].中国生物医学工程学报.2003,22(1):23-30.
    [96]Dooley S R,Nandi A K.Adaptive sub-sample time delay estimation using Lagrange interpolators[J].IEEE Trans.on Signal Processing Letters,1999,6(3):65-67.
    [97]Dooley S R,Nandi A K.Adaptive time delay and frequency estimation for digital signal synchronization in CDMA systems[C].Thirty-second Asilomar Conf.Signals System Computer,1998,2:1838-1841.
    [98]Gardner W A.Half a century of cyclostationarity research[J].Signal Processing,2006,86(4):639 -697.
    [99]毕果等.调幅信号谱相关密度分析中白噪声影响的研究[J].振动与冲击,2006,25(2),75-78.
    [100] Gardner W A. Spectral correlation of modulated signals:Part II-digital modulation[J]. IEEE Transactions on Communication, 1987, 35(6):595-601.
    [101] Dandawate A V and Giannakis G B. Statistical tests for presence of cyclostationarity [J].IEEE Trans. Signal Processing, 1994, 42(9):2355-2369.
    [102] Huang T, Zhou Y, Jiang W L. Joint estimation of Doppler and time-difference-of-arrival exploiting cyclostationary property[J]. IEE Proceedings on Radar, Sonar and Navigation, 2002,149(8):161-165.
    
    [103] 易岷.时延及相关参数估计技术研究:(博士学位论文).成都:电子科技大学,2004.
    
    [104] Zhang Y, Wang C M, Colins L M. Adaptive time delay estimation method with signal selectivity[J]. Acoustics, Speech and Signal Processing Proceedings,2002, (2):1477-1480.
    [105] Bell B M and Ewart T E.Separating multipaths by global optimaizaiton of multidimentional matched filter[J]. IEEE Trans. Acoust, Speech and Signal Processing, 1986, ASSP-34(5):1029-1037.
    [106] Carevic D. Automatic Estimation of multiple target positions and velocities using passive TDOA measurements of transients [J]. IEEE Transaction on signal processing, 2007, 55(2): 424-436.
    [107] Gezici S,Celebi H, Arslan H, et al. Theoretical limits on time delay estimation for Ultra-Wideband cognitive radios[C]. IEEE International conference on ultra-wideband processing, 2008:177-180.
    [108] M F. Parameter estimation of superimposed signals using EM algorithm[J].IEEE Trans. Acoust, Speech and Signal Processing, 1988, 36(4):477-489.
    [109] Sehmldt R 0. Multiple emitter location and signal parameter estimation[J]. IEEE Trans Antenna and Propagation, 1986, 34(3):276-280.
    [110] Roy K R. ESPRIT estimation of signal parameter via rotational invariance techniques[J]. IEEE Trans ASSP, 1989, 37(7):984-995.
    [111] Rontogiannis A A and Berberidis K. Bandwidth efficient transmission through sparse channels using a parametric channel estimation-based DFE[C].IEE Proceedings on Communications,2005,152:251-256.
    
    [112] Bjorck A. Numerical Methods for Least Squares Problems[M]. Philadelphia, PA:SIAM, 1996.
    [113] Donoho D. Compressed sensing[J]. IEEE Trans. Inform. Theory, 2006, 52(4):1289-1306.
    
    [114] Candes E, Romberg J, and Tao T. Robust uncertainty principles:Exactsignal reconstruction from highly incomplete frequency information[J]. Trans. Inform. Theory, 2006,52(2):489-509.
    [115] Wakin M, Laska J, Duarte M, et al. An architecture for compressive imaging[C]. Proc. Int. Conf. on Image Processing(ICIP). Atlanta GA, 2006, 10:93-99.
    [116] Bajwa W, Haupt J, Sayeed A, et al. Compressive wireless sensing[C]. Information Processing in Sensor Networks(IPSN). Nashville TN, 2006,4:110-115.
    [117] Kirolos S, Laska J, Wakin M, et al. Analog to information conversion via random demodulation[J]. IEEE Dallas Circuits and Systems Workshop(DCAS) Dallas, TX, 2006. [118] Candes E and Tao T. Decoding by linear programming[J]. IEEE Transactions Information Theory. 2005, 51(12):4203-4215.
    [119] Mallat s and Zhang Z. Matching pursuits with frequency dictionaries[J]. IEEE Trans Signal Process.1993,41(12):3397-3415.
    [120] Dai W and Milenkovic O. Subspace pursuit for compressive sensing:Closing the gap between performance and complexity[J]. IEEE Transactions Information Theory. 2009, 5(55): 2230-2249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700