用户名: 密码: 验证码:
近程毫米波成像技术及其信号处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了防范恐怖袭击,许多国家都加强了机场和车站等公共场所的安检措施,其中近程毫米波成像技术就是最简捷有效的安检方式之一。毫米波兼具有微波与红外的优点,有一定的穿透能力,能够根据散射能量的大小区分不同物理属性的物体。近年来毫米波器件的不断发展和人们需求的不断提高,使得近程毫米波成像技术能够在医疗、导航和交管等领域得到越来越广泛的应用。
     根据应用环境和要求的不同,以成像距离为依据研究了被动焦平面全功率交流辐射计机械扫描成像、被动合成孔径成像和主动阵列全息成像等三种不同的近程毫米波成像体制,主要对它们的成像系统、成像特性及其信号处理技术进行了深入分析和讨论。全文围绕提高成像质量展开,主要包括以下几个方面的内容。
     1)近程毫米波成像系统的研究。为了提高成像速度,基于94GHz被动焦平面全功率交流辐射计机械扫描成像系统,设计了旋转圆楔无惯性机械扫描装置,大大提高了成像速度和质量。然后还设计了基于机械扫描的双通道被动合成孔径成像系统,系统由在水平和垂直方向上扫描的一对辐射计以及后端的信号处理系统组成,给出了系统设计参数和结构以及优化设计方案。
     2)近程毫米波成像特性的研究。近程成像是本次论文的特点,也带来了不同于远场成像的独有性质。通过研究可知,在三种近程成像体制中以不同形式都存在非线性相位项,它使得系统脉冲响应变宽,所成图像幅值变低,产生模糊,对于不同的成像体制要分别采用不同方法去除它的影响。
     3)近程毫米波图像恢复的研究。图像恢复和成像算法是本次论文研究的重点,主要是以成像特性为依据,研究提高成像质量的相关信号处理技术,针对三种不同的成像体制具有不同的侧重点。
     对于被动焦平面全功率辐射计机械扫描成像,重点研究了点扩散函数估计和图像恢复算法,如基于盲极大似然估计算法和偏微分方程方法的图像恢复。盲极大似然估计把图像看作一个随机场,各像素之间独立同分布,可以在去除噪声的同时保持图像细节。而偏微分方程方法利用原始图像和降晰图像之间差分,采用迭代算法,有效克服图像中由于离焦产生的模糊等现象。
     4)近程毫米波成像算法的研究。在能够同时得到电磁波幅值和相位信息的情况下,可以通过多种方式来进行信号处理,大大提高了系统的灵活性。
     对于被动合成孔径成像,采用直角坐标系推导了成像公式,简化了表达式和相位补偿运算;在计算相关函数时提出采用多相滤波算法,有效地克制了相关函数虚部的波动;采用多种成像算法提高成像质量,如分数阶Fourier变换和Radon-Wigner变换,同时提出了基于互强度传播方程的近程成像算法,以及基于四阶累积量的孔径扩展;提出用二阶的高阶双正交Fourier变换算法提取距离信息,可以实现被动测距等。
     对于主动阵列全息成像,研究基于阵列天线接收的窄带及宽带全息成像算法。全息成像能够在波数域完全补偿近程电磁波的波前球面弯曲,特别适用于超近程成像。窄带全息成像算法以Fourier变换算法为主,同时以边界元法、分布源边界点法和Helmholtz方程最小二乘法等为有益补充。还研究了宽带毫米波三维成像算法,使得目标像具有立体感,也没有焦距和焦深限制,这样可以克服离焦模糊等现象,较为真实地反映目标的物理特性。
     5)高阶双正交Fourier变换(High-order Biorthogonal Fourier Transform, HBFT)的研究。HBFT是本次论文首次提出的一种全新算法,其特征是把信号在高阶调频信号组成的双正交基下展开,在这组双正交基下,对应不同参数的高阶调频信号彼此正交,因此特别适合对多分量高阶调频信号的调频参数进行估计,得到调频参数密度谱。这个算法没有交叉项,不用搜索,具有较好的性能。
     通过以上研究,对近程毫米波成像中存在的主要问题进行了详细分析,同时提出了切实有效的解决方案,进而提高了成像质量,推动了成像技术的发展。
In order to prevent terrorist attacks, many countries have reinforced the security check in the public places such as airports and stations, and the Near Range Millimeter wave Imaging (NRMI) technology is one of the most simple and effective ways. Millimeter wave (MMW) has the advantages of both the infrared and Microwave, and can distinguish objects with different physical properties according to their scattering energy. In recent years, with the improvement of MMW devices and people's needs, NRMI is more and more widely used such as in the medical, navigation, traffic control and other areas.
     Three different NRMI systems of the passive focal plane full power AC radiometer mechanical scanning imaging, passive synthetic aperture imaging and active array holographic imaging are researched for different application environments and requirements in the dissertation, and their imaging characteristics and signal processing are detailed discussed. The work of the whole dissertation mainly includes the following items.
     1) Research on the NRMI systems. A non-inertial mechanical scanning device is designed based on rotating circular wedge in order to improve imaging system speed, which is a 94GHz passive full power AC radiometer imaging system based on the mechanical scanning. The dissertation also designs a dual-channel passive synthetic aperture imaging system based on mechanical scanning, which consists of a pair of horizontal and vertical scanning radiometers, as well as signal processing system, and gives the system hardware parameters and structure.
     2) Research on the NRMI characteristics. There exists nonlinear phase in the three NRMI system, which makes the system impulse response broaden and amplitude become lower. It needs different methods to remove its effects for different systems. For the passive full power imaging, it uses image restoration to improve image quality, and for passive synthetic aperture imaging and active array holographic imaging, it reduces its impacts by the phase compensation respectively in the relevant domain and wave number domain.
     3) Research on the NRMI image restoration. Image restoration and imaging algorithm are the keys of this dissertation, and three different systems emphasize different aspects.
     For passive focal plane full power radiometer mechanical scanning imaging, it focuses on the point spread function estimation and image restoration algorithms such as maximum likelihood (ML) estimation algorithm and partial differential equation (PDE) method. The ML estimation takes the image as a random field, and can remove the noise while retaining the edges. While the PDE method uses the difference between the original and blurred images; it can effectively overcome the image blur due to defocus iteratively.
     4) Research on the NRMI imaging algorithms. If both the amplitude and phase information of the electromagnetic waves can be obtained, it could bring a variety of ways to carry out signal processing, which greatly increase system flexibility.
     For the passive synthetic aperture imaging, it deduces the imaging formula in the Cartesian coordinate system, which greatly simplifies the expression and phase compensation. Otherwise, it introduces polyphase filtering to calculate the correlation function for restraint fluctuations of imaginary part to improve image quality and system efficiency. It also introduces a variety of imaging algorithms to improve image quality, such as the fractional Fourier transform and Radon-Wigner transform, and put forward a new algorithm based on the mutual intensity propagation equation, moreover introduce the fourth order cumulant for aperture expansion. Finally it proposes the principle to extract the range information using the second order HBFT, which can achieve passive ranging.
     For the active array holographic imaging, it researches both the narrow-band and wideband imaging algorithms. Holographic imaging can fully compensate the spherical wavefront bending in the wave number domain, especially suitable for ultra-near range imaging. Narrow-band holographic imaging algorithm is based on the Fourier transform, while the boundary element method for arbitrary shape, distributed source boundary point method and the Helmholtz equation least squares method are the useful complement. The wideband MMW three-dimensional imaging algorithm also is discussed, while there is no restrictions on the focal length and focus depth, so that defocus blur can be overcome, and it can more truly reflect the physical properties of objects.
     5) Research on the High-order Biorthogonal Fourier Transform (HBFT). HBFT is a new algorithm proposed by this dissertation for the first time, which expands signal with biorthogonal basis functions composed with the high order FM signal, the corresponding high order FM signals with different parameters are orthogonal each other under this biorthogonal basis. Therefore, HBFT is particularly suitable for parameters analysis of multi-component high order FM signals, and obtain the density spectrum. It has a good performance of no cross-term and no need search.
     Through the above research, it detailed analyses the main problems in NRMI, and puts forward some practical and effective solutions, which improves the imaging quality and promotes the development of NRMI technology.
引文
[1]李兴国,李跃华.毫米波近感技术基础.北京:北京理工大学出版社,2009.
    [2]章勇.被动毫米波成像技术的研究.南京:南京理工大学博士论文,1999.
    [3]向敬成,张明友.毫米波雷达及其应用.北京:国防工业出版社,2005.
    [4]J C Wiltse. History of Millimeter and submillimeter waves. IEEE transactions on Microwave theory and techniques.1984,32(9):1118-1127.
    [5]Alan Lettington, Qi He Hong, Andrew Dean, et al. An overview of recent advances in passive Millimetre wave imaging in the UK. SPIE proceeding.1996,2744:146-153.
    [6]David D Ferris, Nicholas C Currie. Overview of current technology in MMW radiometric sensors for law enforcement applications. SPIE proceeding.2000,4032:61-71.
    [7]Larry Yujiri, Hiroshi Agravante, Mike Biedenbender, et al. Passive Milliliter-wave camera. SPIE proceeding.1997,3064:15-22.
    [8]Christopher A Martin, Carlos Enol Garcia Gonzalez, Vladimir G Kolinko, et al. Rapid passive MMW security screening portal. SPIE proceeding.2008,6948:69480J,1-9.
    [9]Nitin M Vaidya, Thomas Williams. A novel approach to automatic threat detection in the MMW imagery of people scanned in portals. SPIE proceeding.2008,6948:69480F, 1-10.
    [10]Duncan A Robertson. Compact mm-wave medical imager. SPIE proceeding.2004, 5410:219-229.
    [11]Douglas L McMakin, David M Sheen, Thomas E Hall, et al. Cylindrical holographic radar camera. SPIE proceeding.1998,3575:79-88.
    [12]Douglas L McMakin, David M Sheen, Jeffery W Griffin, et al. Extremely high-frequency holographic radar imaging of personnel and mail. SPIE proceeding.2006, 6201:62011W,1-12.
    [13]David M Sheen, Douglas L MeMakin, Thomas E Hall. Cylindrical Millimeter-wave imaging technique and applications. SPIE proceeding.2006,6211:62110A,1-10.
    [14]Stanley J Reeves. Analysis of the difficulties and possibilities for superresolution. SPIE proceeding.1997,3064:239-248.
    [15]Richardson W H. Bayesian based iterative method of image restoration. Journal of the optical society of America.1972,62(1):55-59.
    [16]Lucy L B. An iterative technique for the rectification of observed distributions. The astronomical journal.1974,79(6):745-754.
    [17]Lettington A H, Hong Q H. Image restoration using a Lorentzian probability model. Journal of modern optics.1995,42(7):1367-1376.
    [18]Lettington A H, Rollason M P, Tzimopoulou S. Image restoration using a two dimensional Lorentzian probability model. Journal of modern optics.2000,47(5):931-938.
    [19]Burch S F, Gull S F, Skilling J K. Image restoration by a powerful maximum entropy method. Computer vision, graphics, and image processing.1983,23(1):113-128.
    [20]Youla D C, Webb H. Image restoration by the method of convex projections:Part 1-Theory. IEEE transactions on medical imaging.1982,1(2):81-94.
    [21]Sezan M I, Stark H. Image restoration by the method of convex projections:Part 2-Applications and numerical results. IEEE transactions on medical imaging.1982,1(2): 95-101.
    [22]Stark H, Oskoui P. High resolution image recovery from image plane arrays, using convex projections. Journal of the optical society of America.1989,6(11):1715-1726.
    [23]Rushforth C K, Harris T W. Restoration, resolution and noise. Journal of the optical society of America.1968,58(4):539-545.
    [24]邹谋炎.反卷积和信号复原.北京:国防工业出版社,2001.
    [25]Kim S P, Bose N K, Valenzuela H M. Recursive reconstruction of high-resolution image from noisy undersampled multiframes. IEEE transactions on acoustics, speech and signal processing.1990,38(6):1.013-1027.
    [26]肖泽龙,许建中,彭树生,等.基于凸集投影算法的被动毫米波图像超分辨率恢复.南京理工大学学报.2007,31(3):355-358.
    [27]Keightly D, Hunt B R. A rigid POCS extension to a passion super-resolution algorithm. IEEE proceeding on the international conference on image processing.1995, 508-511.
    [28]Malur K Sundareshan, Supratik Bhattacharjee. Super-resolution of passive Millimeter wave images using a combined maximum likelihood optimization and projection-onto-convex-sets approach. SPIE proceeding.2001,4373:105-116.
    [29]Alan H Lettington, Naomi E Alexander, Eriso Boukouvala. Constrained image restoration for use in passive mm-wave imaging. SPIE proceeding.2004,5410:278-289.
    [30]Ho-Yuen Pang, Malur K Sundareshan, Sengvieng Amphay. Superresolution of Millimeter-wave images by iterative blind maximum likelihood restoration. SPIE proceeding.1997,3064:227-238.
    [31]Alan H Lettington, Marc R Yallop, Dennis Dunn. Review of super-resolution techniques for passive millimeter-wave imaging. SPIE proceeding.2002,4719:230-239.
    [32]Chen W F, Chen M, Zhou J. Adaptively regularized constrained total least-squares image restoration. IEEE transactions on image processing.2000,9(4):588-596.
    [33]王绶琯,吴盛殷,崔振兴,等.射电天文方法.北京:科学出版社,1988.
    [34]单文磊,史生才,杨戟,等.3毫米波段9像元超导接收机前端.2009年全国微波毫米波会议论文集.北京:电子工业出版社,2009:1205-1207.
    [35]张祖荫,林士杰.微波辐射测量技术及应用.北京:电子工业出版社,1995.
    [36]袁龙.被动毫米波成像探测技术研究.成都:西南交通大学硕士论文,2006.
    [37]张俊荣.我国微波遥感现状及前景.遥感技术与应用.1997,12(3):58-64.
    [38]金亚秋.电磁散射和热辐射的遥感理论.北京:科学出版社,1998.
    [39]王华力.干涉阵列毫米波辐射计系统及双谱后处理成像方法研究.南京:南京理工大学博士论文,1997.
    [40]钱嵩松.被动毫米波阵列探测成像的关键技术研究.南京:南京理工大学博士论文,2006.
    [41]王桂丽.毫米波精确探测系统信号检测及处理.南京:南京理工大学博士论文,2009.
    [42]夏春华.被动毫米波成像技术研究.南京:南京理工大学硕士论文,2004.
    [43]肖泽龙.毫米波对人体隐匿物品辐射成像研究.南京:南京理工大学博士论文,2007.
    [44]邱景辉,王楠楠,庄重,等.8mm波段20通道被动焦面阵成像系统研究.2009年全国微波毫米波会议论文集.北京:电子工业出版社,2009:1223-1226.
    [45]李青侠,郭伟,胡飞,等.毫米波综合孔径辐射计仿真和实验.2009年全国微波毫米波会议论文集.北京:电子工业出版社,2009:1275-1278.
    [46]张光锋.毫米波辐射特性及成像研究.武汉:华中科技大学博士论文,2005.
    [47]苏品刚,窦文斌,王综新,等.主动式毫米波焦平面成像系统.2007全国微波毫米波会议论文集.北京:电子工业出版社,2007:1373-1376.
    [48]卢万铮.天线理论与技术.西安:西安电子科技大学出版社,2004.
    [49]James P hollinger, Jamese E Kenney, Ballard E Troy. A versatile Millimeter wave imaging system. IEEE transactions on Microwave theory and techniques.1976,24(11): 786-793.
    [50]Martti U Kemppinen, Martti T Hallilainen. The theory and mechanical realization of an ideal scanning method for a single channel imaging Microwave radiometer. IEEE transactions on geoscience and remote sensing.1992,30(4):743-749.
    [51]William J Wilson, R J Howard, Anthony C Ibbott, et al. Millimeter wave imaging sensor. IEEE transactions on Microwave theory and techniques.1986,34(10):1026-1035.
    [52]Alexander Denisov, V N Radzikhovsky. Passive Millimeter wave imaging system. Proceeding on the 11th international conference in Microwave and telecommunication technology.2001:263-365.
    [53]Vladimir Gorishnyak, Alexander Denisov, Sergei Kuzmin, et al.8 mm passive imaging system with 32 sensors. Proceeding on European radar conference.2004:333-336.
    [54]Alan H Lettingtona, Dennis Dunna, et al. Further designs of opto-mechanical scanners for use in passive mm-wave imaging. SPIE proceeding.2003,5077:22-32.
    [55]R Appleby, R N Anderton, S Price, et al. Mechanically scanned real time passive Millimetre wave imaging at 94GHz. SPIE proceeding.2003,5077:1-6.
    [56]Rory Doyle, Brendan Lyons, Alan Lettington, et al. Stand-off detection of hidden threat objects on personnel at checkpoints and in public areas using active Millimetre-wave imaging. SPIE proceeding.2004,5619:90-97.
    [57]Rory Doyle, Brendan Lyons, Alan Lettington, et al. Illumination strategies to achieve effective indoor Millimetre wave imaging for personnel screening applications. SPIE proceeding.2005,5789:101-108.
    [58]Lettington A H, Alexander N E, Dunn D. A new opto-mechanical scanner for Millimeter and sub-millimeter wave imaging. SPIE proceeding.2005,5789:16-23.
    [59]Trex Enterprises corporation. Pupil plane array based Millimeter wave imaging radiometer. AD report of USA,2004.
    [60]Nail A salmon, Steve Hayward, Richard Walke, et al. Electronic scanning for passive Millimeter wave imaging. SPIE proceeding.2003,5077:71-76.
    [61]Neil A Salmon, John Beale, Andy Beard, et al. An all electronic passive Millimeter wave imaging system. SPIE proceeding.2005,5789:11-15.
    [62]Lettington A H, Dunn D, Alexander N E, et al. Design and development of a high performance passive mm-wave imager for aeronautical applications. SPIE proceeding. 2004,5410:210-218.
    [63]Hitoshi Nohmi, Seiki Ohnishi, Osamu kujubu. Passive Millimeter wave camera with interferometric processing. SPIE proceeding.2007,6548:65480C,1-8.
    [64]Jian Huang, Tiguo Gan. A novel Millimeter wave synthetic aperture radiometer passive imaging system. Proceeding on the 4th international conference on Microwave and Millimeter wave technology.2004:414-417.
    [65]Peichl M, Suess H. Error analysis of sparse passive synthesis radiometers on UAV platforms. SPIE proceeding.2005,5789:1-10.
    [66]Born M, Wolf E. Principles of Optical. London:Cambridge university press,1999.
    [67]Stuart E Clark, John A Lovberg, Christopher A Martin, et al. Passive Millimeter wave imaging for concealed object detection. SPIE proceeding.2002,4708:128-133.
    [68]Gordon N Sinclair, Rupert N Anderton, Roger Appleby. Passive Millimeter wave concealed weapon detection. SPIE proceeding.2001,4232:142-151.
    [69]毛海波.毫米波在医学中的应用研究.南京:南京理工大学硕士论文,2004.
    [70]阮颖铮.雷达截面与隐身技术.北京:国防工业出版社,1998.
    [71]彭祥龙.国外毫米波电扫描技术.电讯技术.2009,49(1):85-91.
    [72]Zaitsev E F, Yavon Y P, Komarov Y A, et al. MM-Wave integrated phased arrays with ferrite control. IEEE transactions on antennas and propagation.1994,42(3):304-310.
    [73]Hao Xin, West J B, Mather, J C, et al. A two-dimensional Millimeter wave phase scanned lens utilizing analog electromagnetic crystal(EMXT) wave guide phase shifters. IEEE transactions on antennas and propagation.2005,53(1):151-159.
    [74]Ming-yi Li, Kai Chang. Novel beam-control techniques using dielectric-image-line-fedmicrostrip patch-antenna arrays for Millimeter-wave applications. IEEE transactions on Microwave theory and techniques.1998,46(11):1930-1935.
    [75]Helmut Suess, Matthias Soellner. Fully polarimetric measurements of brightness temperature distributions with a quasioptical radiometer system at 90 GHz. SPIE proceeding.2002,4719:382-390.
    [76]R N Anderton, R Appleby, J R Borrill, et al. Real time passive mm-wave imaging. SPIE proceeding.1998,3378:27-33.
    [77]Arttu Luukanen, Aaron J Miller, Erich N Grossman. Passive hyperspectral terahertz imagery for security screening using a cryogenic microbolometer. SPIE proceeding.2005, 5789:127-134.
    [78]娄国伟,李兴国,汪敏.毫米波涂层隐身材料吸波性能的研究.红外与毫米波学报.2000,19(4):318-320.
    [79]彭树生,李兴国.毫米波辐射计反空中涂层隐身飞机的研究.红外与毫米波学报.1998,17(6):454-458.
    [80]李青侠,郭伟,张祖荫,等.面目标微波辐射特性实验模型.遥感学报.2000,4(4):256-260.
    [81]韦前华.典型地物微波辐射特性研究.武汉:华中理工大学硕士论文,2004.
    [82]G Richard Huguenin. Millimeter wave concealed weapon detection and through the wall imaging systems. SPIE proceeding.1997,2938:152-159.
    [83]Doe Ewen, Roger Smith, Byron Belcher. All weather capabilities of passive Millimeter wave sensors. SPIE proceeding.2000,4032:103-118.
    [84]聂建英,李兴国,娄国伟.装甲目标毫米波辐射亮温解的优化控制.电子学报.2004,32(9):1491-1494.
    [85]钱嵩松,李兴国.毫米波交流全功率辐射计的信号恢复处理.南京理工大学学报.2007,31(3):350-354.
    [86]汪敏,李兴国,吴文.8mm波段直接检波式接收机研究.红外与毫米波学报.2002,21(4):310-313.
    [87]关福宏,王闯,田为中,等.直接检波式毫米波接收机研制.红外与毫米波学报.2007,26(2):125-128.
    [88]Dow G S, Ton T N, WANG H, et al. W-band MMIC direct detection receiver for passive imaging system. IEEE MTT-S international Microwave symposium digest.1993,1: 163-166.
    [89]Kemppinen M. Airborne imaging radiometer scan simulation. IEEE transactions on geoscience and remote sensing.1995,33(3):660-669.
    [90]Hitoshi Nohmi, Seiki Ohnishi, Osamu kujubu. Passive Millimeter-wave camera with interferometric processing. SPIE proceeding.2006,6211:621104,1-8.
    [91]E N Grossman, A J Miller. Active Millimeter-wave imaging for concealed weapons detection. SPIE proceeding.2003,5077:62-70.
    [92]Peter Coward, Roger Appleby. Development of an illumination chamber for indoor Millimetre-wave imaging. SPIE proceeding.2003,5077:54-61.
    [93]R Appleby, R N Anderton, S Price, et al. Whole body 35GHz security scanner. SPIE proceeding.2004,5410:244-251.
    [94]郭晓新.超分辨率重建问题的研究.长春:吉林大学博士论文,2005.
    [95]袁小华.超分辨率图像恢复中的方法研究.南京:南京理工大学博士论文,2005.
    [96]袁建华.超分辨率重建中若干问题研究.北京:中国科学院研究生院博士论文,2006.
    [97]李兰兰.基于偏微分方程图像复原和增强算法研究.南京:东南大学博士论文,2005.
    [98]闫华.基于重构的超分辨率技术研究.济南:山东大学博士论文,2007.
    [99]泽尔EV著,邱文杰译.口径天线与绕射理论.成都:电子科技大学出版社,1987.
    [100]吴显金.自适应正则化图像复原方法研究.长沙:国防科技大学博士论文,2006.
    [101]杨明极,何美华.盲图像恢复算法研究.哈尔滨理工大学学报.2007,13(1):1-3.
    [102]于枝伶,李福德,叶嘉鲁.正则化数字图像盲恢复的一种改进方法.计算机应用.2006,26(12):113-114,139.
    [103]朱江兵,许天周,黄春光.基于偏微分方程的图像盲恢复模型.电子学报.2006,34(5):887-891.
    [104]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [105]崔屹.图象处理与分析-数学形态学方法及应用.北京:科学出版社,2000.
    [106]任获荣.数学形态学及其应用.西安:西安电子科技大学出版社,2004.
    [107]段汕.形态学及其在遥感影像处理中的应用研究.武汉:武汉大学博士论文,2004.
    [108]余莉.基于数学形态学的目标检测.长沙:国防科学技术大学博士论文,2005.
    [109]王正明,朱炬波.SAR图像提高分辨率技术.北京:科学出版社,2006.
    [110]杨新.图像偏微分方程的原理与应用.上海:上海交通大学出版社,2003.
    [111]高鑫,刘来福,黄海洋.基于PDE和几何曲率流驱动扩散的图像分析与处理.数学进展.2003,32(3):285-294.
    [112]Chan T F, Chui-Kuang Wong. Total variation bland deconvolution. IEEE transactions on image processing.1998,7(3):370-375.
    [113]Witkin A P. Scale-space filtering. Proceeding on the 8th international joint conference on artificial intelligence.1983:1019-1022.
    [114]曹茂永,孙农亮,郁道银,等.离焦模糊图像清晰度评价函数的研究.仪器仪表学报.2001,22(3):259-260.
    [115]孔德才,李靖,张升伟,等.机载W波段毫米波辐射计扫描成像研究.遥感学报.2004,8(4):362-369.
    [116]秘文亮,许路铁,任新智.末敏弹.四川兵工学报.2008,29(4):79-80,95.
    [117]时翔,娄国伟,李兴国.被动毫米波隐身技术研究.现代防御技术.2007,35(4):112-116,126.
    [118]汪敏.毫米波主被动复合探测系统目标识别技术研究.南京:南京理工大学博士论文,1999.
    [119]汪敏,李兴国.毫米波辐射计的波形模拟与目标识别.红外与毫米波学报.1998,17(4):255-261.
    [120]IS Karanasiou, N K Uzunoglu, S Stergiopoulos, et al. A passive 3D imaging thermograph using microwave radiometry. ITBM-RBM.2004,25(4):227-239.
    [121]Christopher S Ruf, Calnin T Swift, Alan B Tanner, et al. Interferometric synthetic aperture Microwave radiometry for the remote sensing for the earth. IEEE transactions on geoscience and remote sensing.1988,26(5):597-611.
    [122]Kraft U R. Two-dimensional aperture synthesis radiometers in a low earth orbit mission and instrument analysis. IEEE proceeding on international geoscience and remote sensing symposium.1996,2:866-868.
    [123]Edelsohn C R. Applications of synthetic aperture radiometry. IEEE proceeding on international geoscience and remote sensing symposium.1994,3:1326-1328.
    [124]David M Le Vine, Andrew J Griffis, Calvin T Swift, et al. ESTAR:A synthetic aperture Microwave radiometer for remote sensing applications. Proceedings of the IEEE. 1994,82(12):1787-1800.
    [125]D M Le Vine, A Griffis, C T Swift, et al. ESTAR:A synthetic apertuee Microwave radiometer for measuring soil moisture. IEEE proceeding on international geoscience and remote sensing symposium.1992,1:483-485.
    [126]David M Le Vine, Michael Haken, Calvin T Swift. Development of the synthetic aperture radiometer ESTAR and the next generation. IEEE proceeding on international geoscience and remote sensing symposium.2004,2:1260-1263.
    [127]Helmut Suess, Markus Peichi. Airborne and groundbased passive Millimeterwave imaging at 37 and 90 GHz. SPIE proceeding.1997,3064:71-77.
    [128]Markus Peichl, Helmut Suβ, Stephan Dill. High resolution passive Millimetre-wave imaging technologies for reconnaissance and surveillance. SPIE proceeding.2003,5077: 77-86.
    [129]Andrew R Harvey, Paul M Blanchard, Graham M Smith, et al. Optical up conversion for passive Millimetre-wave imaging. SPIE proceeding.1997,3046:98-109.
    [130]Michael L Brothers, Greg P Timms, John D Bunton, et al. A 190 GHz active millimeter-wave imager. SPIE proceeding.2007,6548:654804,1-9.
    [131]Yue Li, Greg Timms, John Archer, et al. Passive mm-wave imaging using two scanning fan-beam antennas. SPIE proceeding.2007,6548:65480E,1-9.
    [132]Komiyama K. Supersynthesis radiometer for passive microwave imaging. IEEE proceeding on international geoscience and remote sensing symposium.1992,2: 1417-1419.
    [133]A R Thompson, J M Moran, G W Swenson. Interferometry and synthesis in radio astronomy. New York:John Wiley & Sons Inc.,2001.
    [134]A T Moffet. Minimum redundancy linear array. IEEE transactions on antennas and propagation.1968,16(2):172-175.
    [135]M Ishiguru. Minimum redundancy linear array for a large number of antennas. Radio science.1980,15(6):1163-1170.
    [136]C S Ruf. Improved array configurations for synthetic aperture interferometric radiometer. IEEE proceeding on international geoscience and remote sensing symposium. 1993,2:1435-1437.
    [137]C S Ruf. numerical annealing of low-redundancy linear arrays. IEEE transactions on antennas and propagation.1993,41(1):85-89.
    [138]卢军,张祖荫,林士杰,等.合成孔径微波辐射计灵敏度与分辨率关系的优化设计.通信学报.1996,17(2):131-136.
    [139]陈海亭,江月松,钟宇.二维圆周光综合孔径阵的优化排列及其成像特性研究.光学学报.2005,25(12):1616-1622.
    [140]胡岸勇,苗俊刚.二维综合孔径辐射计中的稀疏天线布局.遥感技术与应用.2007,22(2):158-161.
    [141]何宝宇,吴季.二维综合孔径微波辐射计圆环结构天线阵及其稀疏方法.电子学报.2005,33(9):1607-1610.
    [142]黄广民,杨汝良.多相滤波在合成孔径雷达数字正交解调中的应用.电子与信息学报.2005,27(1):10-13.
    [143]孙晓兵,保铮.中频信号采样与正交相干检波.系统工程与电子技术.1993,15(5):1-9.
    [144]姚敏立,金梁,殷勤业.一种基于最小冗余线阵的时空共轭循环谱相关ESPRIT算法.电子科学学刊.2000,22(1):35-47.
    [145]金梁,王雪明,姚敏立.基于最小冗余线阵的谱相关共轭循环MUSIC算法.信息工程学院学报.1999,18(3):4-7.
    [146]于波,杨莘元.基于约束最小冗余线阵的TLS-ESPRIT快速算法.应用科技.2004,31(5):34-36.
    [147]刘学斌,韦岗,季飞.基于四阶累积量扩展孔径的线阵设计.电波科学学报.2006,21(1):126-130.
    [148]张贤达.现代信号处理.北京:清华大学出版社,2002.
    [149]王永良,陈辉,彭应宁,等.空间谱估计理论与算法.北京:清华大学出版社,2004.
    [150]贾维敏,姚敏立,徐锦拓,等.基于最小冗余线阵的谱相关波达方向估计算法.数据采集与处理.2004,19(3):307-311.
    [151]Lalor E. Conditons for the validity of the angular spectrum of plane wave. Journal of the optical society of America.1968,58(9):1235-1237.
    [152]Mas D, Perez J, Cemandez C. Fast numerical calculation of Fresnel patterns in convergent systems. Optical communications.2003,227(4-6):245-258.
    [153]David Mas, Javier Garcia, Carlos Ferreira, et al. Fast algorithms for free-space diffraction patterns calculation. Optical communications.1999,164(4-6):233-245.
    [154]Lohmann W. Relationship between the Radon-Wigner transforms and fractional Fourier transforms. Journal of the optical society of America.1994,11(6):1798-1801.
    [155]孙晓兵,保铮.分数阶Fourier变换及其应用.电子学报.1996,24(2):60-65.
    [156]陶然,邓兵,王越.分数阶Fourier变换的原理与应用.北京:清华大学出版社,2009.
    [157]Alieva T, Barbe A. Fractional Fourier and Radon-Wigner transforms of periodic signals. Signal processing.1998,69(2):183-189.
    [158]Ozaktas H M, Arikan O, Kutay M A. Digital computation of the fractional Fourier transform. IEEE transactions on signal processing.1996,44(9):2141-2150.
    [159]Firooz A Sadjadi. Passive 3D imaging using polarimetric diversity. SPIE proceeding. 2006,6311:63110H,1-6.
    [160]王本庆.小口径高炮用半主动式激光近炸引信原理研究.南京:南京理工大学硕士论文,2006.
    [161]付小宁.关于基线单站被动测距.激光与红外.2001,31(6):374-376.
    [162]王学伟,沈同圣,周晓东.IRST被动定位研究.激光与红外.2001,31(6):362-363,373.
    [163]孙仲康,周一宇,何黎明.单多基地有源无源定位技术.北京:国防工业出版社,1996.
    [164]付小宁,李西安.单站被动定位及光电实现.华北工学院测试技术学报.2002,16(1):45-47.
    [165]安毓英,曾晓东.激光单站定位接收机研究方案论证报告.西安:西安电子科技大学,1994.
    [166]姜勤波,杨利锋,马红光.机载单站多目标无源定位算法.系统工程与电子技术.2006,28(7):946-948,964.
    [167]陆效梅.单站无源定位技术综述.舰船电子对抗.2003,26(3):20-23.
    [168]王盛利,李士国,倪晋麟,等.一种新的变换匹配傅里叶变换.电子学报.2001,29(3):403-406.
    [169]王盛利,张光义.离散匹配付里叶变换.电子学报.2001,29(12):1717-1718.
    [170]王盛利,倪晋麟,张光义.匹配傅里叶变换的分辨力.系统工程与电子技术.2002,24(4):29-32.
    [171]王盛利,张光义.匹配付里叶变换的噪声抑制与滤波.电子学报,2001,29(12):1683-1684.
    [172]刘爱芳,朱晓华,刘中.基于离散匹配傅立叶变换的多分量LFM信号检测和参数估计.信号处理.2002,18(6):539-542.
    [173]朱力,王盛利,倪晋麟,等.用匹配傅里叶变换估计星载SAR多普勒参数.兵工学报.2005,26(3):429-432.
    [174]刘爱芳,朱晓华,陆锦辉,等.基于离散匹配傅里叶变换的逆合成孔径雷达成像算法.兵工学报.2004,25(4):458-461.
    [175]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998.
    [176]李利,司锡才,柴娟芳,等.一种改进的小波域LFM雷达信号参数估计算法.海军工程大学学报.2008,20(1):84-88.
    [177]彭巧乐,司锡才,杜亚琦.基于瞬时互相关和STFT的LFM信号测向算法.哈尔滨工程大学学报.2008,29(2):179-182.
    [178]Qi Lin, Tao Ran, Zhou Si-yong, et al. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Science in China series F:Information sciences.2004,47(2):184-198.
    [179]Qi Lin, Tao Ran, Wang Yue. Adaptive time-varying filter for linear FM signal in fractional Fourier domain. IEEE proceeding on the 6th International conference on signal processing.2002,2:1452-1428.
    [180]Wood J C, Barry D T. Linear signal synthesis using the Radon-Wigner transform. IEEE transactions on signal processing.1994,42(8):2105-2111.
    [181]Yury Grishin, Wojciech Niczyporuk. LFM radar signal detection in the joint time-frequency domain. SPIE proceeding.2007,6937:69373M,1-7.
    [182]Li Yingxiang, Yi Min, Xiao Xianci. Recursive filtering Radon-Ambiguity transform algorithm for multi-LFM signals detection. IEEE proceeding on international conference on communications, circuits and systems and west Sino expositions.2002,2:1050-1053.
    [183]Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE transactions on signal processing.1995,43(6):1511-1515.
    [184]Chen En-qing, Tao Ran. A novel method to detect and separate LFM signal based on artificial neural network. IEEE proceeding on international conference on neural networks and brain.2005,1:32-35.
    [185]Wang Ling-huan, Ma Hong-guang, Zhang Jia-wen, et al. A method to detect multi-components linear FM signal. IEEE proceeding on the 8th international conference on signal processing.2006,4:1-5.
    [186]Peter O shea. A new technique for instantaneous frequency rate estimation. IEEE singnal processing letters.2002,9(8):251-252.
    [187]Akay O. Unitary and Hermitian fractional operators and their extension:fractional Mellin transform, joint fractional representations and fractional correlations. Kingston: Dissertation for the doctoral degree of university Rhode Island,2000.
    [188]Qingxia Li, Ke Chen, Wei Guo, et al. An aperture synthesis radiometer at millimeter wave band. IEEE proceeding on 2008 international conference on Microwave and Millimeter wave technology.2008,4:1699-1701.
    [189]Jian Dong, Qingxia Li, Wei Guo, et al. A sparse antenna array with offset parabolic cylinder reflector at millimeter wave band. IEEE proceeding on 2008 international conference on Microwave and Millimeter wave technology.2008,4:1667-1670.
    [190]Zhang Jing, Li Qingxia, Guo Wei, et al. Digital multi-beam microwave radiometer: system configuration and experimental result. IEEE proceeding on 2008 international conference on Microwave and Millimeter wave technology.2008,3:1167-1169.
    [191]D Gabor. A new microscope principle. Nature.1948,161(4098):777-778.
    [192]Emmett N Leith, Juris Upatnieks. Reconstructed wavefronts and communication theory. Journal of the optical society of America.1962,52(10):1123-1130.
    [193]Emmett N Leith, Juris Upatnieks. Wavefronts reconstruction with continuous-tone objects. Journal of the optical society of America.1963,53(12):1377-1381.
    [194]Emmett N Leith, Juris Upatnieks. Wavefronts reconstruction with diffused illumination and three-dimensional object. Journal of the optical society of America.1964, 54(11):1295-1301.
    [195]Rogers G L. A new method of analysing ionospheric movement records. Nature. 1950,177(4509):613-614.
    [196]R P Dooley. X-band holography. Proceedings of the IEEE.1965,53(11):1733-1735
    [197]Michael G Guler, Edward B Joy. High resolution spherical Microwave holography. IEEE transactions on antennas and propagation.1995,43(5):464-472.
    [198]John M Payne. Millimeter and submillimeter wavelength radio astronomy. Proceedings of the IEEE.1989,77(7):993-1017.
    [199]S E Assad, I Lakkis, J Saillard. Holographic SAR image formation by coherent summation of impulse response derivatives. IEEE transactions on antennas and propagation.1993,41(5):620-6.
    [200]F L Thurstone. Ultrasound holography and visual construction. IEEE proceedings on biomedical engineering symposium.1966,1:12-15.
    [201]E G Williams, J D Maynard. Holographic imaging without the wavelength resolution limit. Physics review letters.1980,45(7):554-557.
    [202]Maynard J D, Williams E G, Lee Y. Nearfield acoustic holography I:theory of generalized holography and development of NAH. Journal of the acoustical society of America.1985,78(4):1395-1413.
    [203]Veronesi W A, Maynard J D. Nearfield acoustic holography (NAH) II:Holographic reconstruction algorithms and computer implementation. Journal of the acoustical society of America.1987,81(5):1307-1322.
    [204]Weinreich G, Arnold E B. Method for measuring acoustic radiation fields. Journal of the acoustical society of America.1980,68(2):404-411.
    [205]Wang Z, Wu S F. Helmholtz equation-least-squares method for the reconstructing the acoustic pressure field. Journal of the acoustical society of America.1997,102(4): 2020-2032.
    [206]周海宪,程云芳.全息光学.北京:化学工业出版社,2006.
    [207]B P Hildebrand, B B Brenden著,韦宝锷译.声全息导论.北京:科学出版社,1978.
    [208]T C CaφpoHOB(G S Safronov), AII CaφpoHOBa (A P Safronova)著,浙江大学《新科技译丛》组译.无线电全息摄影.北京:国防工业出版社,1978.
    [209]毕传兴.基于分布源边界点法的近场声全息理论与实验研究.合肥:合肥工业大学博士论文,2004.
    [210]周平.电磁散射问题中有限元法和边界元法及其混合技术研究.南京:南京航空航天大学博士论文,2006.
    [211]毕传兴,陈心昭,陈剑.半自由声场的全息重建和预测实验研究.物理学报.2004,53(12):4268-4376.
    [212]Zhang S Y, Chen X Z. The boundary point method for the calculation of exterior acoustic radiation problem. Journal of sound and vibration.1999,228(4):761-772.
    [213]于飞.基于波叠加方法的声全息技术与声学灵敏度分析.合肥:合肥工业大学博士论文,2005.
    [214]李卫兵.基于统计最优和波叠加方法的近场声全息技术研究.合肥:合肥工业大学博士论文,2006.
    [215]雷宣扬,陈进,张桂才,等.基于Helmholtz方程最小二乘法的声场重构.上海交通大学学报.2006,40(1):129-132,137.
    [216]张海滨,万泉,蒋伟康.HELS法在循环平稳声场全息重建中的理论与实验研究.物理学报.2009,58(1):333-340.
    [217]陈柯,郭伟,何方敏.8mm双通道综合孔径辐射计原理样机及成像实验.2007年全国微波毫米波会议论文集.北京:电子工业出版社,2007:1384-1387.
    [218]郎量,张祖荫,郭伟,等.Ka波段双通道相关辐射计的设计与实验.微波学报.2008,24(2):41-45.
    [219]陈柯,郭伟,桂良启,等..L波段数字相关综合孔径辐射计的研制.华中科技大学学报(自然科学版).2008,36(1):12-14.
    [220]N H Farhat, W R Guard. Millimeter wave holographic imaging of concealed weapons. Proceedings of the IEEE.1971,59(9):1383-1384.
    [221]Mehrdad Soumekh. Bistatic synthetic aperture radar inversion with application in dynamic object imaging. IEEE transactions on signal processing.1991,39(9):2044-2055.
    [222]Mehrdad Soumekh. A system model and inversion for synthetic aperture radar imaging. IEEE transactions on image processing.1992,1(1):64-76.
    [223]David M Sheen, Douglas L McMakin, Thomas E Hall. Three-dimensional Millimeter-wave imaging for concealed weapon detection. IEEE transactions on Microwave theory and techniques.2001,49(9):1581-1592.
    [224]David M Sheen, H Dale Collins, Thomas E Hall, et al. Real-time wideband holographic surveillance system. United States patent:US5557283,1996.
    [225]P Morse, H Feshbach. Methods of theoretical physics. New York:McGraw Hill Companies,1968.
    [226]David M Sheen, Douglas L McMakin, H Dale Collins, et al. Near-field millimeter-wave imaging for weapon detection. SPIE proceeding.1993,1824:223-233.
    [227]Douglas L McMakin, David M Sheen, H Dale Coffins, et al. Millimeter wave, highresolution, holographic surveillance system. SPIE proceeding.1994,2092:525-535.
    [228]David M Sheen, Douglas L McMakin, H Dale Coffins, et al. Weapon detection using a wideband millimeter-wave linear array imaging technique. SPIE proceeding.1994,2092: 536-547.
    [229]Douglas L McMakin, David M Sheen, et al. Wideband millimeter-wave holographic weapons surveillance systems. SPIE proceeding:1995,2511:131-141.
    [230]Douglas L McMakin, David M Sheen, Thomas E Hall. Millimeter-wave imaging for concealed weapon detection. SPIE proceeding.2003,5048:52-62.
    [231]D M Sheen, D L McMakin, H D Collins, et al. Concealed explosive detection on personnel using a wideband holographic millimeter-wave imaging system. SPIE proceeding.1996,2755:503-513.
    [232]D L McMakin, D M Sheen, H D Collins. Remote concealed weapons and explosive detection on people using millimeter-wave holography. IEEE proceeding on the 30th annual international carnahan conference on security technology,1996:19-25.
    [233]D L McMakin, D M Sheen, A Schur, et al. Initial test and evaluation of the millimeter-wave holographic surveillance system. SPIE proceeding.1997,2932:103-114.
    [234]D M Sheen, H D Collins, R P Gribble, et al. Comparison of active millimeter-wave and acoustic imaging for weapon detection. SPIE proceeding.1997,2935:120-128.
    [235]David M Sheen, Douglas L McMakin, H Dale Collins. Circular scanned millimeter-wave imaging system for weapon detection. SPIE proceeding.1995,2511:122-130.
    [236]David Sheen, Douglas McMakin, Thomas E Hall. Cylindrical millimeter-wave imaging technique for concealed weapon detection. SPIE proceeding.1998,3240:242-250.
    [237]David Sheen, Douglas McMakin, Thomas E Hall. Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection. SPIE proceeding. 2000,4032:52-60.
    [238]Paul E Keller, Douglas L McMakin, David M Sheen, et al. Privacy algorithm for cylindrical holographic weapons surveillance system. IEEE aerospace and electronic systems magazine.2000,15(2):17-24.
    [239]Paul E Keller, Douglas L McMakin, David M Sheen, et al. Privacy algorithm for airport passenger screening portal. SPIE proceeding.2000,4055:476-483.
    [240]Douglas L McMakin, Paul E Keller, David M Sheen, et al. Dual surface dielectric depth detector for holographic millimeter-wave security scanners. SPIE proceeding.2009, 7309:73090G,1-10.
    [241]David M Sheen, Douglas L McMakin, Wayne M Lechelt, et al. Circularly polarized millimeter-wave imaging for personnel screening. SPIE proceeding.2005,5789:117-126.
    [242]Douglas L McMakin, David M Sheen, Jeffery W Griffin, et al. Personnel and mail screening with Millimeter waves. SPIE proceeding.2005,5778:160-167.
    [243]David M Sheen, Douglas L McMakin, Thomas E Hall. Speckle in active millimeter-wave and terahertz imaging and spectroscopy. SPIE proceeding.2007,6548:654809,1-10.
    [244]Douglas L McMakin, David M Sheen, Thomas E Hall, et al. Biometric identification using holographic radar imaging techniques. SPIE proceeding.2007,6538:65380C,1-12.
    [245]David M Sheen, Douglas L McMakin, Jeffrey Barber, et al. Active imaging at 350 GHz for security applications. SPIE proceeding.2008,6948:69480M,1-10.
    [246]David M Sheen, Thomas E Hall, Ronald H Severtsen, et al. Active wideband 350 GHz imaging system for concealed-weapon detection. SPIE proceeding.2009,7309: 730901,1-10.
    [247]H Dale Coffins, Douglas L McMakin, Thomas E Hall, et al. Real-time holographic surveillance system. United States patent:US 5455590,1995.
    [248]Douglas L McMakin, Ronald H Severtsen, Thomas E Hall, et al. Interrogation of an object for dimensional and topographical information. United States patent:US 6507309B2,2003.
    [249]Douglas L McMakin, Ronald H Severtsen, Thomas E Hall, et al. Interrogation of an object for dimensional and topographical information. United States patent:US 6703964B2,2004.
    [250]Paul E Keller. Concealed object detection. United States patent:US 6876322B2, 2005.
    [251]Paul E Keller, Thomas E Hall, Douglas L McMakin. Detection of a concealed object. United States patent:US 7365672B2,2008.
    [252]Douglas L McMakin, Thomas E Hall, David M Sheen, et al. Detecting concealed object at a checkpoint. United States patent:US 7405692B2,2008.
    [253]P H van Cittert. Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene. Physica.1934,1(1-6): 201-210.
    [254]F Zernike. The concept of degree of coherence and its application to optical problems. Physica.1938,5:785-795.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700