用户名: 密码: 验证码:
过渡金属氧化物微纳结构的构筑及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着日益加深的能源危机和环境问题以及风能、太阳能产生的电能需高效储存的要求,发展高效、廉价和环境友好的储能装置是各国科学家面对的重要的挑战和机遇。锂离子电池和超级电容器在我们日常生活所用的电子设备以及电动工具中都发挥着重要的作用,是目前的热点研究领域。过渡金属氧化物材料由于具有比传统碳/石墨基材料高2-3倍的比容量/电容,是锂离子电池和超级电容器中很有前途的电极材料。但是,目前两种储能器件的循环性能和倍率性能依然无法满足实际需要。因此,提高它们的性能,尤其是发展更好的电极材料是非常紧迫的任务。金属氧化物材料由于具有较好的电化学性能、容易合成等优点一直以来被看做是超级电容器和锂离子电池潜在的电极材料。但是,氧化物电极材料有电子电导率较差、循环过程中容易团聚和电解液副反应多等缺点,限制其应用。研究发现纳米化技术对金属氧化物电极材料性能提升很有帮助,因此发展和设计具有更高性能的纳米电极材料并将其应用到电化学储能设备中是非常有必要的。
     在本论文中,我们旨在利用简单的方法构筑高性能的锂离子电池和超级电容器纳米电极材料。本论文的主要内容如下:
     (1)利用尿素和镍盐为原料通过简单的水热法合成了α-Ni(OH)2材料,其中尿素可以提供氢氧根离子并且有利于超细纳米线/纳米片自组装为网状结构。通过检测不同反应时间段的中间产物来详细研究了形貌演变的过程。改变反应参数,如投料比等,可以实现对α-Ni(OH)2的形貌很好的调控。经过在空气氛围中煅烧后,α-Ni(OH)2经过拓扑转变得到了不同形貌的由超细纳米线或纳米片自组装而成的多孔NiO微米球。对比多种形貌的NiO的电化学性能研究表明,调控其表面结构和孔径分布对超级电容器的性能有很明显的影响。其中,由超细纳米线自组装的多孔网状NiO微球具有最好的电化学性能,在10A/g电流密度下循环2000圈容量保持率高达97%。
     (2)采用一种简单、温和的反应路线成功地合成了花状α-Ni(OH)2前驱体材料,通过后续热处理前驱体制备了具有规则形貌和较高比表面积的由超薄纳米片组成的花状NiO多孔材料。详细研究发现溶剂乙二醇与水的体积比对前驱体的形貌有重要影响。将得到的多孔NiO纳米花应用到超级电容器材料中,该样品的比容量为335F/g,在电流密度10A/g下循环1500圈后容量保持率为91%。
     (3)首次通过简单、新颖的设计路线合成了具有骨节状特征的多晶MnO@碳同轴纳米线。该核壳结构由方向高度一致的MnO纳米短棒相连接而成,石墨化的碳层均匀的包覆在MnO的外面。通过对比分析前驱体MnOOH, Mn2O3以及最终产物MnO@C的晶体结构,我们提出了从前驱体到最终产物的连续拓扑转变机理。锂离子电池测试表明MnO@碳同轴纳米线具有较高的比容量、优异的循环稳定性和倍率性能。具体来说,该电极材料在500mA/g电流密度下经过200次循环可逆比容量达到801mAh/g。该材料具有优异电化学性能的原因可以归结为:MnO纳米线外面高度均匀的碳包覆层不但可以有效地缓解不断充放电过程中的体积变化产生的应力,还可以显著地提高电极材料的电子导电率。
     (4)利用简单的微乳液的方法合成了锌钴化合物前驱体,经过煅烧得到了形貌可保持的由纳米片堆积而成的ZnCo2O4多级结构。纳米片的厚度在10-20nm之间,并互相交错构成三维结构。ZnCo2O4多级结构用作锂离子电池负极材料时显示了非常高的可逆容量和好的循环性能。在100mA/g电流密度下,经过100次循环可逆比容量为930mAh/g。其良好的电化学性能是由于ZnCo2O4纳米片组装成的多级结构可以为锂离子的传输提供较短的路径,具有充足的空间来缓解材料在充放电过程中巨大的体积膨胀。
     (5)利用简单的水热反应在无任何模板加入的条件下合成了海胆状的NiCo2O4纳米结构。合成的NiCo2O4直径约5gm,由无数短棒沿径向从中心生长而成,纳米棒的直径在100-200nm之间。把得到的NiCo2O4第一次应用到无酶葡萄糖检测中,结果显示该材料具有较低的检测限、小于1秒的响应时间和较宽的检测范围。NiCo2O4材料被证明具有应用到检测实际样品的前景。
One of the major challenges researchers are facing today is to provide highly efficient, low cost, and environmentally benign electrical energy storage devices to address the problems of climate, the impending exhaustion of fossil fuels and the need for efficient storage of energy produced by solar and wind power. Lithium ion batteries (LIBs) and supercapacitors are at the frontier of this research effort, as they play important roles in our daily life by powering portable consumer electronic devices and even electric vehicles. Transition metal oxide materials are promising electrode materials for lithium ion batteries and supercapacitors because of their high specific capacity/capacitance, typically2-3times higher than that of the carbon/graphite based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall performance, which depends on the development of the advanced electrode architectures. Metal oxide materials have long been studied as potential electrode materials for LIBs and psedocapacitors due to the ease of large-scale fabrication and high electrochemical activity. However, metal oxide electrodes also have some drawbacks, such as poor electronic conductivity, easy aggregation during cycling, side reaction with the electrolyte, etc. It is reported that nanoscale materials can greatly increase the performance of the metal oxide electrodes. Therefore, numerous efforts are urgently required to design advanced electrode nanostructures with high performance in the application of electrochemical energy storage devices.
     In this paper, we aim at utlizing simple methods to design nanostructured electrode materials with high performance for the LIBs and psedocapacitors. The main results are as follows:
     (1) We use a novel hydrothermal route to synthesize α-Ni(OH)2, in which urea has been utilized not only to produce hydroxyl anions, but also to organize ultrathin nanowires/nanosheets into network-like hierarchical assemblage. The morphological evolution process of this organized product has been investigated by examining different reaction intermediates during the synthesis. The growth and thus final assemblage of a-Ni(OH)2can be finely tuned by selecting preparative parameters, such as the molar ratio of starting chemicals. Based on the toptactic transformation from α-Ni(OH)2, various mesoporous NiO hierarchical microspheres by ultrathin nanowires/nanosheets self-assembly have been prepared via thermal decomposition in air atmosphere. The electrochemical performances of the typical nickel oxide products are evaluated. It is demonstrated that tuning of the surface texture and the pore size of the NiO products is very significant in electrochemical capacitor. Mesoporous NiO network-like hierarchical microspheres exhibit excellent cyclic performance with a97%capacity retention at current density of10A/g in a testing range of2000cycles.
     (2) Porous NiO nanoflowers with uniform morphology and high surface area have been obtained by annealing precursor synthesized by a facile solvothermal method. The results show that the ratio of ethylene glycol and water has an important impact on the morphology of the precursor. After heat treatment, the as-prepared NiO nanoflowers are applied as the electrode material for supercapaciors, and the sample exhibits superior performance with a high specific capacitance of335F/g and91%capacity retention at current density of10A/g after1500cycles.
     (3) A facile method is designed for large-scale preparation of joint-like mesocrystalline MnO@carbon core-shell nanowires for the first time based on rational constructed functional systems. The nanostructures present the unique feature of the highly oriented-interconnected of MnO nanorods encapsulated inside and graphitized carbon layers coating outside. Through comparing and analyzing the MnOOH, Mn2O3and MnO@C crystal structures, the sequential topotactic transformation of the corresponding precursors to targets is proposed here. Li-ion battery testing is given to demonstrate that MnO@carbon core-shell nanowires show excellent capacity retention, superior cycling performance and high rate capability. Specifically, the MnO@carbon core-shell nanostructure could deliver reversible capacity as high as801mAh g-1at a high current density of500mA g-1with excellent electrochemical stability after200cycles testing. The remarkable electrochemical performance is mainly attributed to the highly uniform carbon layer around the MnO nanowires which can not only effectively buffer the structural strain and volume variations of anodes during the repeated electrochemical reactions, but also greatly enhance the conductivity of electrode materials.
     (4) A simple microemulsion based method has been developed to synthesize ZnCo2O4hierarchical superstructure stacked by nanoplates, which was transformed from corresponding precursor by annealing process. The nanoplates shown a thickness of10-20nm were connected together to form well assembled three-dimension structure. When applied as anode material of lithium ion battery, ZnCo2O4hierarchical superstructure demonstrated high reversible capacity and good rcyclability. The ZnCo2O4hierarchical superstructure could deliver reversible capacity as high as930mAh g-1at a current density of100mA g-1with excellent electrochemical stability after100cycles testing. The improved electrochemical performance of the as-synthesized ZnCo2O4nanoplates might benefit from its unique hierarchical superstructure, which provides a short path for Li+ion diffusion, and enough free space to buffer the large volume changed during cycling.
     (5) Urchin-like hierarchical NiCo2O4nanostructure has been synthesized by a simple hydrothermal method free of any template. As-synthesized NiCo2O4has a uniform diameter of5μm with numerous small nanorods radially grown from the center. Typical nanorods have a diameter of100-200nm. The NiCo2O4+was first investigated on the application of nonenzymatic glucose detection, demostrating a rather low detection limit, a fast responsible time less than1second and a wide detection range for the electrochemical detection of glucose. It is expected to have potential application in real sample analysis.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].科学出版社,2002.
    [2]王世敏,许祖勋,傅晶.纳米材料制备技术[M].化学工业出版社,2001.
    [3]朱静.纳米材料和器件[M].清华大学出版社,2003.
    [4]Ball, P.; Garwin, L., Science at the atomic sale Nature 1992,355 (6363),761-6.
    [5]Hulteen, J., C;; Martin, C., R;, Nanoparticles and Nanostructured Films: Preparation,Characterization and Applications. WILEY-VCH,1998.
    [6]Cavicchi, R. E.; Silsbee, R. H., Coulomb suppression of tunneling rate from small metal particles. Physical Review Letters 1984,52 (16),1453-6.
    [7]Hagfeldt, A.; Greetzel, M., Light-induced Redox Reactions in Nanocrysstalline Systems. Chemical Reviews 1995,95 (1),49-68.
    [8]Klabunde, K., J;; STARK, J.; KOPER, O., Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry. The Journal of Physical Chemistry 1996,100 (30),12142-53.
    [9]LINDEROTH, S.; MORUP, S., Ultrasmall iron particles prepared by use of sodium amalgam. Journal of Applied Physics 1990,67 (9),4996-8.
    [10]LEGGETT, A., J;; CHAKRAVARTY, S.; DORSEY, A., T;, Dynamics of the dissipative two-state system [J]. Reviews of Modern Physics 1987,59 (1),1-85.
    [11]TAKAGAHARA, T, Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Physical Review B 1993,47 (8),4569-84.
    [12]张立德,纳米材料与纳米体系物理—面向21世纪的新领域.中国科学基金1994,7,198-200.
    [13]Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L., Direct-current nanogenerator driven by ultrasonic waves. Science 2007,316(5821),102-5.
    [14]El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B., Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 2012,335 (6074),1326-30.
    [15]Jiang, L.; Zhao, Y.; Zhai, J., A lotus-leaf-like superhydrophobic surface:A porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angewandte Chemie-International Edition 2004,43 (33),4338-41.
    [16]Conway, B. E.; Birss, V.; Wojtowicz, J., The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources 1997,66 (1-2),1-14.
    [17]Gutmann, G., Hybrid electric vehicles and electrochemical storage systems — a technology push-pull couple. Journal of Power Sources 1999,84 (2),275-9.
    [18]Lam, L. T.; Newnham, R. H.; Ozgun, H.; Fleming, F. A., Advanced design of valve-regulated lead-acid battery for hybrid electric vehicles. Journal of Power Sources 2000,88 (1),92-7.
    [19]Rudge, A.; Raistrick, I.; Gottesfeld, S.; Ferraris, J. P., A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochimica Acta 1994,39 (2), 273-87.
    [20]Gamby, J.; Taberna, P. L.; Simon, P.; Fauvarque, J. F.; Chesneau, M., Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources 2001, 101 (1),109-16.
    [21]Weng, Z.; Su, Y.; Wang, D.-W.; Li, F.; Du, J.; Cheng, H.-M., Graphene-Cellulose Paper Flexible Supercapacitors. Advanced Energy Materials 2011,1(5),917-22.
    [22]Liu, F.; Song, S.; Xue, D.; Zhang, H., Folded Structured Graphene Paper for High Performance Electrode Materials. Advanced Materials 2012,24 (8),1089-94.
    [23]Hu, S.; Rajamani, R.; Yu, X., Flexible solid-state paper based carbon nanotube supercapacitor. Applied Physics Letters 2012,100 (10).
    [24]Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G., Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes. Nano Letters 2009,9 (5),1872-6.
    [25]Han, Y; Dong, X.; Zhang, C.; Liu, S., Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material. Journal of Power Sources 2012,211,92-6.
    [26]Zheng, J. P.; Huang, J.; Jow, T. R., The limitations of energy density for electrochemical capacitors. Journal of The Electrochemical Society 1997,144 (6),2026-31.
    [27]Zheng, J. P.; Jow, T. R., A new charge storage mechanism for electrochemical capacitors. Journal of The Electrochemical Society 1995,142 (1), L6-8.
    [28]Zheng, J. P.; Cygan, P. J.; Jow, T. R., Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. Journal of The Electrochemical Society 1995,142 (8),2699-703.
    [29]Gurunathan, K.; Murugan, A. V.; Marimuthu, R.; Mulik, U. P.; Amalnerkar, D. P., Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Materials Chemistry and Physics 1999,61 (3), 173-91.
    [30]Arbizzani, C.; Mastragostino, M.; Meneghello, L., Polymer-based redox supercapacitors: A comparative study. ElectrochimicaActa 1996,41 (1),21-6.
    [31]Kim, I. H.; Kim, K. B., Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. Journal of The Electrochemical Society 2006, 153(2),A383-9.
    [32]Jia, Q. X.; Song, S. G.; Wu, X. D.; Cho, J. H.; Foltyn, S. R.; Findikoglu, A. T.; Smith, J. L., Epitaxial growth of highly conductive RuO2 thin films on (100) Si. Applied Physics Letters 1996,68 (8),1069-71.
    [33]Sakiyama, K.; Onishi, S.; Ishihara, K.; Orita, K.; Kajiyama, T.; Hosoda, N.; Hara, T., Deposition and properties of reactively sputtered ruthenium dioxide films. Journal of The Electrochemical Society 1993,140 (3),834-9.
    [34]Zheng, Y.-Z.; Ding, H.-Y.; Zhang, M.-L., Hydrous-ruthenium-oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors. Thin Solid Films 2008,516 (21),7381-5.
    [35]Hu, C.C.; Chang, K.H.; Lin, M.C.; Wu, Y.-T., Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letters 2006,6 (12),2690-5.
    [36]Wu, N. L.; Kuo, S. L.; Lee, M. H., Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor. Journal of Power Sources 2002,104 (1),62-5.
    [37]Trasatti, S., "In the Spirit of Caring":a programmed learning experience with marionettes to poster mental health in the classroom. Arctic medical research 1991, Suppl,290.
    [38]Sugimoto, W; Shibutani, T.; Murakami, Y.; Takasu, Y, Charge storage capabilities of rutile-type RuO2-VO2 solid solution for electrochemical supercapacitors. Electrochemical and Solid State Letters 2002,5(7),A170-2.
    [39]Takasu, Y; Murakami, Y., Design of oxide electrodes with large surface area. Electrochimica Acta 2000,45 (25-26),4135-41.
    [40]Yuan, C.Z.; Gao, B.; Zhang, X.G., Electrochemical capacitance of NiO/Ruo.35V0.65O2 asymmetric electrochemical capacitor. Jouranl of Power Sources 2007,173 (1),606-12.
    [41]Yong-gang, W.; Xiao-gang, Z., Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. Electrochimica Acta 2004,49 (12),1957-62.
    [42]Ataherian,F.; Lee, K.-T; Wu, N.-L., Long-term electrochemical behaviors of manganese oxide aqueous electrochemical capacitor under reducing potentials. Electrochimica Acta 2010,55 (25), 7429-35.
    [43]Toupin, M.; Brousse, T.; Belanger, D., Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemistry of Materials 2004,16 (16),3184-90.
    [44]Messaoudi, B.; Joiret, S.; Keddam, M.; Takenouti, H., Anodic behaviour of manganese in alkaline medium. Electrochimica Acta 2001,46 (16),2487-98.
    [45]Hu, C.-C.; Tsou, T.-W., Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochemistry Communications 2002,4 (2),105-9.
    [46]Reddy, R. N.; Reddy, R. G., Sol-gel MnO2 as an electrode material for electrochemical capacitors. Journal of Power Sources 2003,124 (1),330-7.
    [47]Wang, X.; Li, Y. D., Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. Journal of the American Chemical Society 2002,124 (12),2880-1.
    [48]Adelkhani, H.; Ghaemi, M., Characterization of manganese dioxide electrodeposited by pulse and direct current for electrochemical capacitor. Journal of Alloys and Compounds 2010,493 (1-2),175-8.
    [49]Lu, X.; Zhai, T.; Zhang, X.; Shen, Y.; Yuan, L.; Hu, B.; Gong, L.; Chen, J.; Gao, Y.; Zhou, J.; Tong, Y.; Wang, Z. L., WO3-x@Au@MnO2 Core-Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors. Advanced Materials 2012,24 (7),938-44.
    [50]Li, Q.; Wang, Z.-L.; Li, G.-R.; Guo, R.; Ding, L.-X.; Tong, Y.-X., Design and Synthesis of MnO2/Mn/MnO2 Sandwich-Structured Nanotube Arrays with High Supercapacitive Performance for Electrochemical Energy Storage. Nano Letters 2012,12 (7),3803-7.
    [51]Lei, Y.; Daffos, B.; Taberna, P. L.; Simon, P.; Favier, F., MnO2-coated Ni nanorods:Enhanced high rate behavior in pseudo-capacitive supercapacitor. Electrochimica Acta 2010,55 (25),7454-9.
    [52]Duay, J.; Gillette, E.; Liu, R.; Lee, S. B., Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays. Physical Chemistry Chemical Physics 2012, 14(10),3329-37.
    [53]Hu, L.; Chen, W.; Xie, X.; Liu, N.; Yang, Y.; Wu, H.; Yao, Y.; Pasta, M.; Alshareef, H. N.; Cui, Y, Symmetrical MnO2-Carbon Nanotube-Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading. Acs Nano 2011,5 (11),8904-13.
    [54]Yu, G.; Hu, L.; Vosgueritchian, M.; Wang, H.; Xie, X.; McDonough, J. R.; Cui, X.; Cui, Y.; Bao, Z., Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors. Nano Letters 2011,11 (7),2905-11.
    [55]Xiao, Y.; Liu, S.; Li, F.; Zhang, A.; Zhao, J.; Fang, S.; Jia, D.,3D Hierarchical Co3O4 Twin-Spheres with an Urchin-Like Structure:Large-Scale Synthesis, Multistep-Splitting Growth, and Electrochemical Pseudocapacitors. Advanced Functional Materials 2012,22 (19),4052-9.
    [56]Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B., Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Advances 2012,2 (5),1835-41.
    [57]Kung, C.-W.; Chen, H.-W.; Lin, C.-Y.; Vittal, R.; Ho, K.-C., Synthesis of Co3O4 nanosheets via electrodeposition followed by ozone treatment and their application to high-performance supercapacitors. J. Power Sources 2012,214,91-9.
    [58]Tao, L. Q.; Zai, J. T.; Wang, K. X.; Zhang, H. J.; Xu, M.; Shen, J.; Su, Y. Z.; Qian, X. F., Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. Journal of Power Sources 2012,202,230-5.
    [59]Duan, B. R.; Cao, Q., Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application. Electrochimica Acta 2012, 64,154-61.
    [60]Wang, L.; Liu, X.; Wang, X.; Yang, X.; Lu, L., Preparation and electrochemical properties of mesoporous Co3O4 crater-like microspheres as supercapacitor electrode materials. Current Applied Physics 2010,10 (6),1422-6.
    [61]Gao, Y.; Chen, S.; Cao, D.; Wang, G.; Yin, J., Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. Journal of Power Sources 2010,195 (6),1757-60.
    [62]Yang, L.; Cheng, S.; Ding, Y.; Zhu, X.; Wang, Z. L.; Liu, M., Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanonet for High-Capacity Pseudocapacitors. Nano Letters 2012,12 (1),321-5.
    [63]Wei, T.-Y.; Chen, C.-H.; Chang, K.-H.; Lu, S.-Y.; Hu, C.-C., Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route. Chemistry of Materials 2009,21 (14),3228-33.
    [64]Gupta, V.; Kusahara, T.; Toyama, H.; Gupta, S.; Miura, N., Potentiostatically deposited nanostructured α-Co(OH)2:A high performance electrode material for redox-capacitors. Electrochemistry Communications 2007,9 (9),2315-9.
    [65]Gupta, V.; Gupta, S.; Miura, N., Statically deposited nanostructured CoxNi1-x layered double hydroxides as electrode materials for redox-supercapacitors. Journal of Power Sources 2008,175 (1), 680-5.
    [66]Fusalba, F.; Gouerec, P.; Villers, D.; Belanger, D., Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. Journal of The Electrochemical Society 2001,148 (1), A1-A6.
    [67]Gupta, V.; Gupta, S.; Miura, N., Al-substituted a-cobalt hydroxide synthesized by potentiostatic deposition method as an electrode material for redox-supercapacitors. Journal of Power Sources 2008, 177(2),685-9.
    [68]Zhou, W.-J.; Xu, M.-W.; Zhao, D.-D.; Xu, C.-L.; Hu-Lin, L., Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors. Microporous and Mesoporous Materials 2009,117 (1-2),55-60.
    [69]Nam, K.-W.; Kim, K.-H.; Lee, E.-S.; Yoon, W.-S.; Yang, X.-Q.; Ki, K.-B., Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates. Journal of Power Sources 2008,182 (2),642-52.
    [70]Yuan C.Z.; Zhang X.G.; Su L.H.; Gao B.; Shen L.F., Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry 2009,19 (32),5772-7.
    [71]Zhao, B.; Ke, X.-K.; Bao, J.-H.; Wang, C.-L.; Dong, L.; Chen, Y.-W.; Chen, H.-L., Synthesis of Flower-Like NiO and Effects of Morphology on Its Catalytic Properties. Journal of Physical Chemistry C2009,113(32),14440-7.
    [72]Meher, S. K.; Justin, P.; Rao, G. R., Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis. Nanoscale 2011,3 (2),683-92.
    [73]Cao, C.-Y.; Guo, W.; Cui, Z.-M.; Song, W.-G.; Cai, W., Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. Journal of Materials Chemistry 2011,21 (9),3204-9.
    [74]Ren, Y.; Gao, L., From Three-Dimensional Flower-Like alpha-Ni(OH)2 Nanostructures to Hierarchical Porous NiO Nanoflowers:Microwave-Assisted Fabrication and Supercapacitor Properties. Journal of the American Ceramic Society 2010,93 (11),3560-4.
    [75]Zhu, J. H.; Jiang, J. A.; Liu, J. P.; Ding, R. M.; Ding, H.; Feng, Y. M.; Wei, G. M.; Huang, X. T., Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application. Journal of Solid State Chemistry 2011,184 (3),578-83.
    [76]Wang, B.; Chen, J. S.; Wang, Z.; Madhavi, S.; Lou, X. W. D., Green Synthesis of NiO Nanobelts with Exceptional Pseudo-Capacitive Properties. Advanced Energy Materials 2012,2 (10),1188-92.
    [77]Su, D.; Kim, H.-S.; Kim, W.-S.; Wang, G., Mesoporous Nickel Oxide Nanowires: Hydrothermal Synthesis, Characterisation and Applications for Lithium-Ion Batteries and Supercapacitors with Superior Performance. Chemistry-A European Journal 2012,18 (26),8224-9.
    [78]Wu, J. B.; Li, Z. G.; Lin, Y., Porous NiO/Ag composite film for electrochemical capacitor application. Electrochimica Acta 2011,56 (5),2116-21.
    [79]Zhao, B.; Song, J.; Liu, P.; Xu, W.; Fang, T.; Jiao, Z.; Zhang, H.; Jiang, Y., Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. Journal of Materials Chemistry 2011,21 (46),18792-8.
    [80]Lin, P.; She, Q.; Hong, B.; Liu, X.; Shi, Y.; Shi, Z.; Zheng, M.; Dong, Q., The Nickel Oxide/CNT Composites with High Capacitance for Supercapacitor. Journal of The Electrochemical Society 2010, 157 (7), A818-A823.
    [81]Gao, B.; Yuan, C.; Su, L.; Chen, S.; Zhang, X., High dispersion and electrochemical capacitive performance of NiO on benzenesulfonic functionalized carbon nanotubes. Electrochimica Acta 2009, 54 (13),3561-7.
    [82]Wakihara, M., Recent developments in lithium ion batteries. Materials Science & Engineering R-Reports 2001,33 (4),109-34.
    [83]Akimoto, J.; Gotoh, Y.; Oosawa, Y., Synthesis and structure refinement of LiCoO2 single crystals. Journal of Solid State Chemistry 1998,141 (1),298-302.
    [84]Ohzuku, T.; Ueda, A., Solid-state redox reactions of LiCoO2 for 4 volt secondary lithium cells. Journal of The Electrochemical Society 1994,141 (11),2972-7.
    [85]Wang, Z. X.; Wu, C. A.; Liu, L. J.; Wu, F.; Chen, L. Q.; Huang, X. J., Electrochemical evaluation and structural characterization of commercial LiCoO2 surfaces modified with MgO for lithium-ion batteries. Journal of The Electrochemical Society 2002,149 (4), A466-A471.
    [86]Hon; Y., Effects of Metal Ion Sources on Synthesis and Electrochemical Performance of Spinel LiMn2O4 Using Tartaric Acid Gel Process. Journal of Solid State Chemistry 2002,163 (1),231-8.
    [87]Deng, B. H.; Nakamura, H.; Yoshio, M., Comparison and improvement of the high rate performance of different types of LiMn2O4 spinels. Journal of Power Sources 2005,141 (1),116-21.
    [88]Xi, L. J.; Wang, H.-E.; Lu, Z. G.; Yang, S. L.; Ma, R. G.; Deng, J. Q.; Chung, C. Y., Facile synthesis of porous LiMn2O4 spheres as positive electrode for high-power lithium ion batteries. Journal of Power Sources 2012,198,251-7.
    [89]Yamada, A.; Tanaka, M.; Tanaka, K.; Sekai, K., Jahn-Teller instability in spinel Li-Mn-O. Journal of Power Sources 1999,81,73-8.
    [90]Chung, K., Investigations into capacity fading as a result of a Jahn?Teller distortion in 4V LiMn2O4 thin film electrodes. Electrochimica Acta 2004,49 (20),3327-37.
    [91]Amatucci, G. G.; Schmutz, C. N.; Blyr, A.; Sigala, C.; Gozdz, A. S.; Larcher, D.; Tarascon, J. M., Materials' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries. Journal of Power Sources 1997,69 (1-2),11-25.
    [92]Jang, D. H.; Shin, Y. J.; Oh, S. M., Dissolution of spinel oxides and capacity losses in 4 V Li/Lix Mn2O4 cells. Journal of The Electrochemical Society 1996,143 (7),2204-11.
    [93]He, X.; Li, J.; Cai, Y; Wang, Y.; Ying, J.; Jiang, C.; Wan, C., Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries. Journal of Power Sources 2005,150 (0),216-22.
    [94]Tsuji, T.; Umakoshi, H.; Yamamura, Y., Thermodynamic properties of undoped and Fe-doped LiMn2O4 at high temperature. Journal of Physics and Chemistry of Solids 2005,66 (2-4),283-7.
    [95]Singhal, R.; Saavedra-Aries, J. J.; Katiyar, R.; Ishikawa, Y.; Vilkas, M. J.; Das, S. R.; Tomar, M. S.; Katiyar, R. S., Spinel LiMn2-xNixO4 cathode materials for high energy density lithium ion rechargeable batteries. Journal of Renewable and Sustainable Energy 2009,1(2).
    [96]He, L.; Zhang, S.; Wei, X.; Du, Z.; Liu, G.; Xing, Y, Synthesis and electrochemical performance of spinel-type LiMn2O4 using y-MnOOH rods as self-template for lithium ion battery. Journa of Power Sources 2012,220,228-35.
    [97]Lee, S.; Cho, Y; Song, H.-K.; Lee, K. T.; Cho, J., Carbon-Coated Single-Crystal LiMn2O4 Nanoparticle Clusters as Cathode Material for High-Energy and High-Power Lithium-Ion Batteries. Angewandte Chemie International Edition 2012,51 (35),8748-52.
    [98]Ding, Y L.; Xie, J. A.; Cao, G. S.; Zhu, T. J.; Yu, H. M.; Zhao, X. B., Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries. Advanced Functional Materials 2011,21 (2),348-355.
    [99]Zhou, W. J.; He, B. L.; Li, H. L., Synthesis, structure and electrochemistry of Ag-modified LiMn2O4 cathode materials for lithium-ion batteries. Materials Research Bulletin 2008,43 (8-9), 2285-94.
    [100]Luo, J. Y.; Cheng, L.; Xia, Y. Y, LiMn2O4 hollow nanosphere electrode material with excellent cycling reversibility and rate capability. Electrochemistry Communications 2007,9 (6),1404-9.
    [101]Lim, S.; Cho, J., PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates. Electrochemistry Communications 2008,10 (10),1478-81.
    [102]Gu, X.; Li, X.; Xu, L.; Xu, H.; Yang, J.; Qian, Y, Synthesis of Spinel LiNixMn2-xO4 (x=0,0.1, 0.16) and Their High Rate Charge-Discharge Performances. International Journal of Electrochemical Science 2012,7 (3),2504-12.
    [103]Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Goodenough, J. B., Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. Journal of The Electrochemical Society 1997,144 (8),2581-6.
    [104]Takahashi, M.; Tobishima, S.; Takei, K.; Sakurai, Y, Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 2002,148 (3-4),283-9.
    [105]Andersson, A. S.; Thomas, J. O.; Kalska, B.; Haggstrom, L., Thermal stability of LiFePO-based cathodes. Electrochemical and Solid State Letters 2000,3 (2),66-8.
    [106]Wang, Y.; Wang, Y; Hosono, E.; Wang, K.; Zhou, H., The Design of a LiFePO4/Carbon Nanocomposite With a Core-Shell Structure and Its Synthesis by an In Situ Polymerization Restriction Method. Angewandte Chemie International Edition 2008,47 (39),7461-5.
    [107]Wu, X.-L.; Jiang, L.-Y.; Cao, F.-R; Guo, Y.-G.; Wan, L.-J., LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix:Superior Cathode Material for Electrochemical Energy-Storage Devices. Advanced Materials 2009,21 (25-26),2710-4.
    [108]Gardiner, G. R.; Islam, M. S., Anti-Site Defects and Ion Migration in the LiFe0.5Mn0.5PO4 Mixed-Metal Cathode Material. Chemistry of Materials 2010,22 (3),1242-8.
    [109]Chen, Y.-C.; Chen, J.-M.; Hsu, C.-H.; Lee, J.-F.; Yeh, J.-W.; Shih, H. C., In-situ synchrotron X-ray absorption studies of LiMn0.25Fe0.75PO4 as a cathode material for lithium ion batteries. Solid State Ionics 2009,180(20-22),1215-9.
    [110]Pei, B.; Yao, H.; Zhang, W; Yang, Z., Hydrothermal synthesis of morphology-controlled LiFePO4 cathode material for lithium-ion batteries. Journal of Power Sources 2012,220,317-23.
    [111]Kang, W. P.; Zhao, C. H.; Liu, R.; Xu, F. F.; Shen, Q., Ethylene glycol-assisted nanocrystallization of LiFePO4 for a rechargeable lithium-ion battery cathode. Crystengcomm 2012,14 (6),2245-50.
    [112]Wang, L.; He, X.; Sun, W.; Wang, J.; Li, Y.; Fan, S., Crystal Orientation Tuning of LiFePO4 Nanoplates for High Rate Lithium Battery Cathode Materials. Nano Letters 2012,12 (11),5632-6.
    [113]Qin, Z. H.; Zhou, X. F.; Xia, Y. G.; Tang, C. L.; Liu, Z. P., Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. Journal of Materials Chemistry 2012,22 (39),21144-53.
    [114]Nie, P.; Shen, L.; Zhang, F.; Chen, L.; Deng, H.; Zhang, X., Single Crystalline LiMnPO4 Flowerlike Hierarchical Microstructures for Lithium-Ion Batteries. Crystengcomm 2012,41 (13), 4284-8.
    [115]Lv, D.; Wen, W.; Huang, X.; Bai, J.; Mi, J.; Wu, S.; Yang, Y., A novel Li2FeSiO4/C composite: Synthesis, characterization and high storage capacity. Journal of Materials Chemistry 2011,21 (26), 9506-12.
    [116]Muraliganth, T.; Stroukoff, K. R.; Manthiram, A., Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M=Mn and Fe) Cathodes for Lithium-Ion Batteries. Chemistry of Materials 2010,22 (20),5754-61.
    [117]Tripathi, R.; Ramesh, T. N.; Ellis, B. L.; Nazar, L. F., Scalable Synthesis of Tavorite LiFeSO4F and NaFeSO4F Cathode Materials. Angewandte Chemie International Edition 2010,49 (46),8738-42.
    [118]Yamada, A.; Iwane, N.; Harada, Y; Nishimura, S.; Koyama, Y.; Tanaka, I., Lithium Iron Borates as High-Capacity Battery Electrodes. Advanced Materials 2010,22 (32),3583-7.
    [119]Legagneur, V; An, Y; Mosbah, A.; Portal, R.; La Salle, A. L.; Verbaere, A.; Guyomard, D.; Piffard, Y, LiMBO3 (M=Mn, Fe, Co):synthesis, crystal structure and lithium deinsertion/insertion properties. Solid State Ionics 2001,139 (1-2),37-46.
    [120]Hatchard, T. D.; Dahn, J. R., In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. Journal of The Electrochemical Society 2004,151 (6), A838-A842.
    [121]Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y, High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology 2008,3(1), 31-5.
    [122]Cui, L.-F.; Yang, Y.; Hsu, C.-M.; Cui, Y, Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Letters 2009,9(9),3370-4.
    [123]Wu, H.; Zheng, G. Y; Liu, N. A.; Carney, T. J.; Yang, Y; Cui, Y., Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes. Nano Letters 2012,12 (2),904-9.
    [124]Yao, Y.; Liu, N.; McDowell, M. T.; Pasta, M.; Cui, Y., Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy & Environmental Science 2012,5 (7), 7927-30.
    [125]Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology 2012,7 (5),309-14.
    [126]Sorensen, E. M.; Barry, S. J.; Jung, H. K.; Rondinelli, J. R.; Vaughey, J. T.; Poeppelmeier, K. R., Three-dimensionally ordered macroporous Li4Ti5O12:Effect of wall structure on electrochemical properties. Chemistry of Materials 2006,18 (2),482-9.
    [127]Scharner, S.; Weppner, W.; Schmid-Beurmann, P., Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel. Journal of The Electrochemical Society 1999,146 (3),857-61.
    [128]Wagemaker, M.; Simon, D. R.; Kelder, E. M.; Schoonman, J.; Ringpfeil, C.; Haake, U.; Luetzenkirchen-Hecht, D.; Frahm, R.; Mulder, F. M., A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12. Advanced Materials 2006,18 (23),3169-73.
    [129]Colin, J.-F.; Godbole, V.; Novak, P., In situ neutron diffraction study of Li insertion in Li4Ti5O12. Electrochemistry Communications 2010,12 (6),804-7.
    [130]Shen, L.; Zhang, X.; Uchaker, E.; Yuan, C.; Cao, G., Li4Ti5O12 Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries. Advanced Energy Materials 2012,2 (6),691-8.
    [131]Rahman, M. M.; Wang, J.-Z.; Hassan, M. F.; Wexler, D.; Liu, H. K., Amorphous Carbon Coated High Grain Boundary Density Dual Phase Li4Ti5O12-TiO2:ANanocomposite Anode Material for Li-Ion Batteries. Advanced Energy Materials 2011,1 (2),212-20.
    [132]Jhan, Y.-R.; Lin, C.-Y.; Duh, J.-G., Preparation and characterization of Ruthenium doped Li4Ti5O12 anode material for the enhancement of rate capability and cyclic stability. Materials Letters 2011,65 (15-16),2502-5.
    [133]Yi, T.-F.; Shu, J.; Zhu, Y.-R.; Zhu, X.-D.; Zhu, R.-S.; Zhou, A.-N., Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to OV. Journal of Power Sources 2010,195(1),285-8.
    [134]Chen, J. Z.; Yang, L.; Fang, S. H.; Tang, Y. F., Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries. Electrochimica Acta 2010,55 (22),6596-600.
    [135]Li, Y.; Pan, G. L.; Liu, J. W.; Gao, X. P., Preparation of Li4Ti5O12 Nanorods as Anode Materials for Lithium-Ion Batteries. Journal of The Electrochemical Society 2009,156 (7), A495.
    [136]Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M., Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 2000,407 (6803),496-9.
    [137]Li, N. C.; Patrissi, C. J.; Che, G. L.; Martin, C. R, Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte. Journal of The Electrochemical Society 2000,147 (6),2044-9.
    [138]Xing W; Qiao S.Z.; Wang X. Z.; Gao X.L.; Zhou J.; Zhuo S.P.; Hartono, S. B.; Hulicova-Jurcakova, D., Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. J. Power Sources 2011,196 (8),4123-7.
    [139]Wang, G.; Liu, H.; Horvat, J.; Wang, B.; Qiao, S.; Park, J.; Ahn, H., Highly Ordered Mesoporous Cobalt Oxide Nanostructures:Synthesis, Characterisation, Magnetic Properties, and Applications for Electrochemical Energy Devices. Chemistry-A European Journal 2010,16(36),11020-7.
    [140]Xu, X.; Cao, R.; Jeong, S.; Cho, J., Spindle-like Mesoporous a-Fe2O3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries. Nano Letters 2012,12 (9),4988-91.
    [141]Li, H.; Wang, Z.; Chen, L.; Huang, X., Research on Advanced Materials for Li-ion Batteries. Advanced Materials 2009,21 (45),4593-607.
    [142]Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W., Nanostructured materials for advanced energy conversion and storage devices. Nature Materials 2005,4 (5),366-77.
    [143]Pan, A.; Wu, H. B.; Yu, L.; Lou, X. W. D., Template-Free Synthesis of VO2Hollow Microspheres with Various Interiors and Their Conversion into V2O5 for Lithium-Ion Batteries. Angewandte Chemie International Edition 2013, n/a-n/a.
    [144]Zhang, G.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. D., Formation of ZnMn2O4 Ball-in-Ball Hollow Microspheres as a High-Performance Anode for Lithium-Ion Batteries. Advanced Materials 2012,24(34),4609-13.
    [145]Du, N.; Xu, Y. F.; Zhang, H.; Yu, J. X.; Zhai, C. X.; Yang, D. R., Porous ZnCo2O4 Nanowires Synthesis via Sacrificial Templates:High-Performance Anode Materials of Li-Ion Batteries. Inorganic Chemistry 2011,50 (8),3320-4.
    [146]Xiong, S.; Chen, J. S.; Lou, X. W.; Zeng, H. C., Mesoporous Co304 and CoO@C Topotactically Transformed from Chrysanthemum-like Co(CO3)0.5(OH)center dot 0.11H2O and Their Lithium-Storage Properties. Advanced Functional Materials 2012,22 (4),861-71.
    [147]Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M., Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006,312 (5775),885-8.
    [148]Lou, X. W.; Deng, D.; Lee, J. Y; Feng, J.; Archer, L. A., Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Advanced Materials 2008,20 (2),258-62.
    [149]Li, Y. G.; Tan, B.; Wu, Y. Y., Mesoporous CO3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Letters 2008,8 (1),265-70.
    [150]Chen, X.; Zhang, N.; Sun, K., Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties. Journal of Materials Chemistry 2012,22 (27), 13637-42.
    [151]Fang, T.; Duh, J. G.; Sheen, S. R., Improving the electrochemical performance of LiCoO2 cathode by nanocrystalline ZnO coating. Journal of The Electrochemical Society 2005,152 (9), A1701-A1706.
    [152]Holze, R.; Fu, L. J.; Liu, H.; Li, C.; Wu, Y P.; Rahm, E.; Wu, H. Q., Surface modifications of electrode materials for lithium ion batteries. Solid State Sciences 2006,8 (2),113-28.
    [153]Liu, R.; Duay, J.; Lee, S. B., Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chemical Communications 2011,47 (5),1384-1404.
    [154]Yang, S.; Feng, X.; Ivanovici, S.; Muellen, K., Fabrication of Graphene-Encapsulated Oxide Nanoparticles:Towards High-Performance Anode Materials for Lithium Storage. Angewandte Chemie-International Edition 2010,49 (45),8408-11.
    [155]Wang, H.; Cui, L.-F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y; Cui, Y.; Dai, H., Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. Journal of the American Chemical Society 2010,132 (40),13978-80.
    [156]Ko, S.; Lee, J.-L.; Yang, H. S.; Park, S.; Jeong, U., Mesoporous CuO Particles Threaded with CNTs for High-Performance Lithium-Ion Battery Anodes. Advanced Materials 2012,24 (32),4451-56.
    [157]Wang, Y; Li, H.; He, P.; Hosono, E.; Zhou, H., Nano active materials for lithium-ion batteries. Nanoscale 2010,2 (8),1294-1305.
    [158]Zhu, T.; Chen, J. S.; Lou, X. W., Glucose-Assisted One-Pot Synthesis of FeOOH Nanorods and Their Transformation to Fe3O4@Carbon Nanorods for Application in Lithium Ion Batteries. Journal of Physical Chemistry C 2011,115 (19),9814-20.
    [159]Wang, Z.; Luan, D.; Madhavi, S.; Hu, Y.; Lou, X. W., Assembling carbon-coated alpha-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy& Environmental Science 2012,5 (1),5252-6.
    [160]Muraliganth, T.; Murugan, A. V; Manthiram, A., Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chemical Communications 2009, (47),7360-2.
    [161]Xu, G.-L.; Xu, Y.-F.; Sun, H.; Fu, F.; Zheng, X.-M.; Huang, L.; Li, J.-T.; Yang, S.-H.; Sun, S.-G., Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries. Chemical Communications 2012,48 (68),8502-4.
    [162]Wilcox, J. D.; Doeff, M. M.; Marcinek, M.; Kostecki, R., Factors influencing the quality of carbon coatings on LiFePO4. Journal of The Electrochemical Society 2007,154 (5), A389-A395.
    [163]Seng, K. H.; Park, M.-H.; Guo, Z. P.; Liu, H. K.; Cho, J., Self-Assembled Germanium/Carbon Nanostructures as High-Power Anode Material for the Lithium-Ion Battery. Angewandte Chemie International Edition 2012,51 (23),5657-61.
    [1]Lang, J.-W.; Kong, L.-B.; Wu, W.-J.; Luo, Y.-C.; Kang, L., Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chemical Communications 2008, (35),4213-5.
    [2]Yuan, C.; Zhang, X.; Su, L.; Gao, B.; Shen, L., Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry 2009,19 (32),5772-7.
    [3]Xiong, S.; Yuan, C; Zhang, X.; Qian, Y., Mesoporous NiO with various hierarchical nanostructures by quasi-nanotubes/nanowires/nanorods self-assembly:controllable preparation and application in supercapacitors. Crystengcomm 2011,13 (2),626-32.
    [4]Ding, S.; Zhu, T.; Chen, J. S.; Wang, Z.; Yuan, C.; Lou, X. W., Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance. Journal of Materials Chemistry 2011,21 (18),6602-6.
    [5]Yuan, Y F.; Xia, X. H.; Wu, J. B.; Yang, J. L.; Chen, Y B.; Guo, S. Y., Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium ion batteries. Electrochemistry Communications 2010,12 (7),890-3.
    [6]Varghese, B.; Reddy, M. V.; Yanwu, Z.; Lit, C. S.; Hoong, T. C.; Rao, G. V. S.; Chowdari, B. V. R.; Wee, A. T. S.; Lim, C. T.; Sow, C. H., Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chemistry of Materials 2008,20 (10),3360-7.
    [7]Song, X.; Gao, L., Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties. Journal of Physical Chemistry C 2008,112 (39), 15299-305.
    [8]Song, Z.; Chen, L.; Hu, J.; Richards, R., NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater. Nanotechnology 2009,20 (27),275707.
    [9]Cheng, B.; Le, Y; Cai, W.; Yu, J., Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. Journal of Hazardous Materials 2011,185 (2-3),889-97.
    [10]Zhu, T.; Chen, J. S.; Lou, X. W., Highly Efficient Removal of Organic Dyes from Waste Water Using Hierarchical NiO Spheres with High Surface Area. The Journal of Physical Chemistry C 2012, 116(12),6873-8.
    [11]Lin, Y.; Xie, T.; Cheng, B. C; Geng, B. Y.; Zhang, L. D., Ordered nickel oxide nanowire arrays and their optical absorption properties. Chemical Physics Letters 2003,380 (5-6), 521-5.
    [12]Dong, L.; Chu, Y; Sun, W., Controllable synthesis of nickel hydroxide and porous nickel oxide nanostructures with different morphologies. Chemistry-a European Journal 2008,14 (16), 5064-72.
    [13]Zhang, X. J.; Shi, W. H.; Zhu, J. X.; Zhao, W. Y; Ma, J.; Mhaisalkar, S.; Maria, T. L.; Yang, Y H.; Zhang, H.; Hng, H. H.; Yan, Q. Y, Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Research 2010,3 (9), 643-52.
    [14]Liu, X. H.; Qiu, G. Z.; Wang, Z.; Li, X. G., Rationally synthetic strategy from nickel to nickel oxide hydroxide nanosheets nanorolls. Nanotechnology 2005,16 (8), 1400-5.
    [15]Wang, Y; Zhu, Q. S.; Zhang, H. G., Fabrication of beta-Ni(OH)2 and NiO hollow spheres by a facile template-free process. Chemical Communications 2005, (41), 5231 -3.
    [16]Yang, L.-X.; Zhu, Y.-J.; Tong, H.; Liang, Z.-H.; Wang, W.-W, Hierarchical beta-Ni(OH)2 and NiO carnations assembled from nanosheet building blocks. Crystal Growth & Design 2007, 7 (12), 2716-9.
    [17]Zhang, S.; Zeng, H. C, Self-Assembled Hollow Spheres of beta-Ni(OH)2 and Their Derived Nanomaterials. Chemistry of Materials 2009,21 (5), 871-83.
    [18]Kuang, D.-B.; Lei, B.-X.; Pan, Y.-P.; Yu, X.-Y; Su, C.-Y, Fabrication of Novel Hierarchical beta-Ni(OH)2 and NiO Microspheres via an Easy Hydrothermal Process. Journal of Physical Chemistry C 2009,113 (14), 5508-13.
    [19]Li, J.; Zhao, W; Huang, F.; Manivannan, A.; Wu, N., Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 2011,3 (12), 5103-9.
    [20]Wang, D. B.; Song, C. X.; Hu, Z. S.; Fu, X., Fabrication of hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures. Journal of Physical Chemistry B 2005,109 (3), 1125-9.
    [21]Jeevanandam, P.; Koltypin, Y; Gedanken, A., Synthesis of nanosized alpha-nickel hydroxide by a sonochemical method. Nano Letters 2001, 1(5), 263-6.
    [22]Luo, Y; Li, G.; Duan, G.; Zhang, L., One-step synthesis of spherical α-Ni(OH)2 nanoarchitectures. Nanotechnology 2006,17 (16), 4278-83.
    [23]Xiong, S. L.; Yuan, C. Z.; Zhang, M. F.; Xi, B. J.; Qian, Y. T., Controllable Synthesis of Mesoporous Co3O4 Nanostructures with Tunable Morphology for Application in Supercapacitors. Chemistry-a European Journal 2009, 75 (21), 5320-6.
    [24]Liang, Y.; Schwab, M. G.; Zhi, L.; Mugnaioli, E.; Kolb, U.; Feng, X.; Muellen, K., Direct Access to Metal or Metal Oxide Nanocrystals Integrated with One-Dimensional Nanoporous Carbons for Electrochemical Energy Storage. Journal of the American Chemical Society 2010,132 (42),15030-7.
    [25]Yuan, C. Z.; Gao, B.; Shen, L. F.; Yang, S. D.; Hao, L.; Lu, X. J.; Zhang, F.; Zhang, L. J.; Zhang, X. G., Hierarchically structured carbon-based composites:Design, synthesis and their application in electrochemical capacitors. Nanoscale 2011,3 (2),529-45.
    [26]Yuan, C.; Yang, L.; Hou, L.; Shen, L.; Zhang, F.; Li, D.; Zhang, X., Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors. Journal of Materials Chemistry 2011,21 (45),18183-5.
    [27]Ye, J.; Liu, W.; Cai, J.; Chen, S.; Zhao, X.; Zhou, H.; Qi, L., Nanoporous Anatase TiO2 Mesocrystals:Additive-Free Synthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium Insertion Behavior. Journal of the American Chemical Society 2011,133 (4),933-40.
    [28]Xu, C.; Wang, L.; Wang, R.; Wang, K.; Zhang, Y.; Tian, F.; Ding, Y, Nanotubular Mesoporous Bimetallic Nanostructures with Enhanced Electrocatalytic Performance. Advanced Materials 2009,21 (21),2165-9.
    [29]Gao, B.; Yuan, C.; Su, L.; Chen, S.; Zhang, X., High dispersion and electrochemical capacitive performance of NiO on benzenesulfonic functionalized carbon nanotubes. Electrochimica Acta 2009, 54 (13),3561-7.
    [30]Zhao, B.; Song, J.; Liu, P.; Xu, W.; Fang, T.; Jiao, Z.; Zhang, H.; Jiang, Y., Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. Journal of Materials Chemistry 2011,21 (46),18792-8.
    [31]Xiao, L. F.; Yang, Y. Y.; Yin, J.; Li, Q.; Zhang, L. Z., Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. Journal of Power Sources 2009,194 (2),1089-93.
    [32]Qing, X.; Liu, S.; Huang, K.; Lv, K.; Yang, Y; Lu, Z.; Fang, D.; Liang, X., Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochimica Acta 2011,56 (14),4985-91.
    [33]Wang, Q.; Jiao, L.; Du, H.; Peng, W.; Han, Y.; Song, D.; Si, Y.; Wang, Y.; Yuan, H., Novel flower-like CoS hierarchitectures: one-pot synthesis and electrochemical properties. Journal of Materials Chemistry 2011,21 (2),327-9.
    [34]Jin, S.; Deng, H.; Long, D.; Liu, X.; Zhan, L.; Liang, X.; Qiao, W.; Ling, L., Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes. Journal of Power Sources 2011,196 (8),3887-93.
    [35]Cui, Y.; Wang, C.; Wu, S.; Liu, G.; Zhang, F.; Wang, T., Lotus-root-like NiO nanosheets and flower-like NiO microspheres: synthesis and magnetic properties. Crystengcomm 2011,13 (15), 4930-4.
    [36]Han, D.; Xu, P.; Jing, X.; Wang, J.; Yang, P.; Shen, Q.; Liu, J.; Song, D.; Gao, Z.; Zhang, M., Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. Journal of Power Sources 2013,235,45-53.
    [37]Zhang, X.; Gu, A.; Wang, G.; Fang, B.; Yan, Q.; Zhu, J.; Sun, T.; Ma, J.; Hng, H. H., Enhanced electrochemical catalytic activity of new nickel hydroxide nanostructures with (100) facet. Crystengcomm 2011,13 (1),188-92.
    [38]Meher, S. K.; Justin, P.; Rao, G. R., Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide. Electrochimica Acta 2010,55 (28),8388-96.
    [39]Ran, S.; Zhu, Y.; Huang, H.; Liang, B.; Xu, J.; Liu, B.; Zhang, J.; Xie, Z.; Wang, Z.; Ye, J.; Chen, D.; Shen, G., Phase-controlled synthesis of 3D flower-like Ni(OH)2 architectures and their applications in water treatment. Crystengcomm 2012,14 (9),3063-8.
    [40]Zhou, W.; Yao, M.; Guo, L.; Li, Y.; Li, J.; Yang, S., Hydrazine-Linked Convergent Self-Assembly of Sophisticated Concave Polyhedrons of beta-Ni(OH)2 and NiO from Nanoplate Building Blocks. Journal of the American Chemical Society 2009,131 (8),2959-64.
    [I]Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M., Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 2000,407 (6803),496-9.
    [2]Li, X.; Li, D.; Qiao, L.; Wang, X.; Sun, X.; Wang, P.; He, D., Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes. Journal of Materials Chemistry 2012,22 (18),9189-94.
    [3]Sun, B.; Chen, Z.; Kim, H.-S.; Ahn, H.; Wang, G., MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries. Journal of Power Sources 2011,196 (6),3346-9.
    [4]Liu, Y.; Zhao, X.; Li, E.; Xia, D., Facile synthesis of MnO/C anode materials for lithium-ion batteries. Electrochimica Acta 2011,56 (18),6448-52.
    [5]Ding, Y. L.; Wu, C. Y.; Yu, H. M.; Xie, J.; Cao, G. S.; Zhu, T. J.; Zhao, X. B.; Zeng, Y. W., Coaxial MnO/C nanotubes as anodes for lithium-ion batteries. Electrochimica Acta 2011,56 (16),5844-8.
    [6]Yu, X. Q.; He, Y.; Sun, J. P.; Tang, K.; Li, H.; Chen, L. Q.; Huang, X. J., Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochemistry Communications 2009,11 (4),791-4.
    [7]Qiu, Y. C.; Xu, G. L.; Yan, K. Y.; Sun, H.; Xiao, J. W.; Yang, S. H.; Sun, S. G.; Jin, L. M.; Deng, H., Morphology-conserved transformation: synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties. Journal of Materials Chemistry 2011,21 (17),6346-53.
    [8]Wang, H.; Cui, L.-E.; Yang, Y; Casalongue, H. S.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H., Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. Journal of the American Chemical Society 2010,132 (40),13978-80.
    [9]Gao, J.; Lowe, M. A.; Abrufia, H. c. D., Spongelike Nanosized Mn3O4as a High-Capacity Anode Material for Rechargeable Lithium Batteries. Chemistry of Materials 2011,23 (13),3223-7.
    [10]Delmer, O.; Balaya, P.; Kienle, L.; Maier, J., Enhanced Potential of Amorphous Electrode Materials:Case Study of RuO2. Advanced Materials 2008,20 (3),501-5.
    [11]Wang, Y.; Zhang, H. J.; Lu, L.; Stubbs, L. P.; Wong, C. C.; Lin, J., Designed Functional Systems from Peapod-like Co@Carbon to Co3O4@Carbon Nanocomposites. Acs Nano 2010,4 (8),4753-61.
    [12]Wang, Z.; Luan, D.; Madhavi, S.; Hu, Y.; Lou, X. W., Assembling carbon-coated alpha-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy & Environmental Science 2012,5(1),5252-6.
    [13]Xue, D.-J.; Xin, S.; Yan, Y.; Jiang, K.-C.; Yin, Y.-X.; Guo, Y.-G.; Wan, L.-J., Improving the Electrode Performance of Ge through Ge@C Core-Shell Nanoparticles and Graphene Networks. Journal of the American Chemical Society 2012,134 (5),2512-5.
    [14]Seng, K. H.; Park, M.-H.; Guo, Z. P.; Liu, H. K.; Cho, J., Self-Assembled Germanium/Carbon Nanostructures as High-Power Anode Material for the Lithium-Ion Battery. Angewandte Chemie International Edition 2012,51 (23),5657-61.
    [15]Xiong, S.; Chen, J. S.; Lou, X. W.; Zeng, H. C., Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-like Co(CO3)0.5(OH) center dot 0.11H2O and Their Lithium-Storage Properties. Advanced Functional Materials 2012,22 (4),861-71.
    [16]Zhang, W. M.; Wu, X. L.; Hu, J. S.; Guo, Y. G.; Wan, L. J., Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries. Advanced Functional Materials 2008,75 (24), 3941-6.
    [17]Zhang, H.-X.; Feng, C.; Zhai, Y.-C.; Jiang, K.-L.; Li, Q.-Q.; Fan, S.-S., Cross-Stacked Carbon Nanotube Sheets Uniformly Loaded with SnO2Nanoparticles:A Novel Binder-Free and High-Capacity Anode Material for Lithium-Ion Batteries. Advanced Materials 2009,21 (22),2299-304.
    [18]Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M., Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries. Nano Letters 2009,9 (3),1002-6.
    [19]Cui, L.-F.; Yang, Y.; Hsu, C.-M.; Cui, Y., Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Letters 2009,9 (9),3370-4.
    [20]Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G., High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Materials 2010,9 (4),353-8.
    [21]Hou, Y.; Cheng, Y.; Hobson, T.; Liu, J., Design and Synthesis of Hierarchical MnO2Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes. Nano Letters 2010,10 (7),2727-33.
    [22]Kim, S. W.; Seo, D. H.; Gwon, H.; Kim, J.; Kang, K., Fabrication of FeF3 Nanoflowers on CNT Branches and Their Application to High Power Lithium Rechargeable Batteries. Advanced Materials 2010,22 (46),5260-4.
    [23]Ban, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C., Nanostructured Fe3O4SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode. Advanced Materials 2010,22 (20), E145-E149.
    [24]Lee, S. W.; Yabuuchi, N.; Gallant, B. M.; Chen, S.; Kim, B. S.; Hammond, P. T.; Shao-Horn, Y., High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotechnology 2010,5(7),531-7.
    [25]Zhao, Y.; Li, J.; Ding, Y.; Guan, L., Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries. Chemical Communications 2011,47 (26),7416-8.
    [26]Liu, R.; Duay, J.; Lee, S. B., Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chemical Communications 2011,47 (5),1384-404.
    [27]Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J., Functional Materials for Rechargeable Batteries. Advanced Materials 2011,23 (15),1695-715.
    [28]Xu, G.-L.; Xu, Y.-F.; Sun, H.; Fu, F.; Zheng, X.-M.; Huang, L.; Li, J.-T.; Yang, S.-H.; Sun, S.-G., Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries. Chemical Communications 2012,48 (68),8502-4.
    [29]Bai, Z.; Sun, B.; Fan, N.; Ju, Z.; Li, M.; Xu, L.; Qian, Y, Branched Mesoporous Mn3O4 Nanorods: Facile Synthesis and Catalysis in the Degradation of Methylene Blue. Chemistry-a European Journal 2012,18 (17),5319-24.
    [30]Fang, X. P.; Lu, X.; Guo, X. W.; Mao, Y.; Hu, Y. S.; Wang, J. Z.; Wang, Z. X.; Wu, F.; Liu, H. K.; Chen, L. Q., Electrode reactions of manganese oxides for secondary lithium batteries. Electrochemistry Communications 2010,12 (11),1520-3.
    [31]Zhong, K. F.; Zhang, B.; Luo, S. H.; Wen, W.; Li, H.; Huang, X. J.; Chen, L. Q., Investigation on porous MnO microsphere anode for lithium ion batteries. Journal of Power Sources 2011,196 (16), 6802-8.
    [32]Zhong, K.; Xia, X.; Zhang, B.; Li, H.; Wang, Z.; Chen, L., MnO powder as anode active materials for lithium ion batteries. Journal of Power Sources 2010,195 (10),3300-8.
    [33]Wu, F. D.; Wang, Y., Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries. Journal of Materials Chemistry 2011,21 (18),6636-41.
    [34]Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A., Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Advanced Materials 2008,20 (2),258-62.
    [35]Yao, X.; Tang, C.; Yuan, G.; Cui, P.; Xu, X.; Liu, Z., Porous hematite (a-Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries. Electrochemistry Communications 2011,13 (12),1439-42.
    [36]Wang, S. Q.; Zhang, J. Y.; Chen, C. H., Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance. Journal of Power Sources 2010, 195 (16),5379-81.
    [37]Ke, F.-S.; Huang, L.; Wei, G.-Z.; Xue, L.-J.; Li, J.-T.; Zhang, B.; Chen, S.-R.; Fan, X.-Y.; Sun, S.-G., One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochimica Acta 2009,54 (24),5825-9.
    [38]Zhou, W.; Zhu, J.; Cheng, C.; Liu, J.; Yang, H.; Cong, C.; Guan, C.; Jia, X.; Fan, H. J.; Yan, Q.; Li, C. M.; Yu, T., A general strategy toward graphene@metal oxide core-shell nanostructures for high-performance lithium storage. Energy & Environmental Science 2011,4 (12),4954-61.
    [39]Zhu, X. J.; Zhu, Y. W.; Murali, S.; Stollers, M. D.; Ruofif, R. S., Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries. Acs Nano 2011,5 (4),3333-8.
    [40]Courtel, F. M.; Duncan, H.; Abu-Lebdeh, Y; Davidson, I. J., High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A=Co, Ni, and Zn). Journal of Materials Chemistry 2011,21 (27),10206-18.
    [41]Zhang, K.; Han, P.; Gu, L.; Zhang, L.; Liu, Z.; Kong, Q.; Zhang, C.; Dong, S.; Zhang, Z.; Yao, J.; Xu, H.; Cui, G.; Chen, L., Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries. Acs Applied Materials & Interfaces 2012,4 (2),658-64.
    [42]Laruelle, S.; Grugeon, S.; Poizot, P.; Dolle, M.; Dupont, L.; Tarascon, J. M., On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. Journal of The Electrochemical Society 2002,149 (5), A627-A634.
    [43]Zhou, L.; Wu, H. B.; Zhu, T.; Lou, X. W., Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. Journal of Materials Chemistry 2012,22 (3),827-9.
    [44]Guo, J.; Liu, Q.; Wang, C.; Zachariah, M. R., Interdispersed Amorphous MnOx-Carbon Nanocomposites with Superior Electrochemical Performance as Lithium-Storage Material. Advanced Functional Materials 2012,22 (4),803-11.
    [45]Lai, H.; Li, J.; Chen, Z.; Huang, Z., Carbon Nanohorns As a High-Performance Carrier Anode in Lithium-Ion Batteries. Acs Applied Materials & Interfaces 2012,4 (5),2325-8.
    [46]Zhou, L.; Zhao, D.; Lou, X. W., Double-Shelled CoMn2O4 Hollow Microcubes as High-Capacity Anodes for Lithium-Ion Batteries. Advanced Materials 2012,24 (6),745-8.
    [47]Zhang, G.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. D., Formation of ZnMn2O4 Ball-in-Ball Hollow Microspheres as a High-Performance Anode for Lithium-Ion Batteries. Advanced Materials 2012,24 (34),4609-13.
    [48]Kim, S. W.; Lee, H. W.; Muralidharan, P.; Seo, D. H.; Yoon, W. S.; Kim, D. K.; Kang, K., Electrochemical Performance and ex situ Analysis of ZnMn2O4 Nanowires as Anode Materials for Lithium Rechargeable Batteries. Nano Research 2011,4 (5),505-10.
    [49]Xiao, L. F.; Yang, Y. Y.; Yin, J.; Li, Q.; Zhang, L. Z., Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. Journal of Power Sources 2009,194 (2),1089-93.
    [1]Shama, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R., Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Advanced Functional Materials 2007,17 (15), 2855-61.
    [2]Du, N.; Xu, Y.F.; Zhang, H.; Yu, J. X.; Zhai, C. X.; Yang, D. R., Porous ZnCo2O4 Nanowires Synthesis via Sacrificial Templates: High-Performance Anode Materials of Li-Ion Batteries. Inorganic Chemistry 2011,50 (8),3320-4.
    [3]Sharma, Y; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R., Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. Journal of Power Sources 2007,173 (1), 495-501.
    [4]Wang, C. H.; Zhang, X.; Zhang, D. C.; Yao, C.; Ma, Y. W., Facile and low-cost fabrication of nanostructured NiCo2O4 spinel with high specific capacitance and excellent cycle stability. Electrochimica Acta 2012,63,220-7.
    [5]Sharma, Y; Sharma, N.; Subbarao, G.; Chowdari, B., Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ionics 2008,179 (15-16),587-97.
    [6]Ding, Y.; Yang, Y.; Shao, H., High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochimica Acta 2011,56 (25),9433-8.
    [7]Guo, X. W.; Lu, X.; Fang, X. P.; Mao, Y.; Wang, Z. X.; Chen, L. Q.; Xu, X. X.; Yang, H.; Liu, Y. N., Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochemistry Communications 2010,12 (6),847-50.
    [8]Yang, Y.; Zhao, Y.; Xiao, L.; Zhang, L., Nanocrystalline ZnMn2O4 as a novel lithium-storage material. Electrochemistry Communications 2008,10 (8),1117-20.
    [9]Xiao, L. F.; Yang, Y. Y.; Yin, J.; Li, Q.; Zhang, L. Z., Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. Journal of Power Sources 2009,194 (2),1089-93.
    [10]Qiu, Y. C.; Yang, S. H.; Deng, H.; Jin, L. M.; Li, W. S., A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. Journal of Materials Chemistry 2010,20 (21),4439-44.
    [11]Liu, B.; Zhang, J.; Wang, X.; Chen, G.; Chen, D.; Zhou, C.; Shen, G., Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano Letters 2012,12(6),3005-11.
    [12]Li, Y. G.; Tan, B.; Wu, Y. Y., Mesoporous CO3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Letters 2008,8(1),265-70.
    [13]Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M., Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 2000,407 (6803),496-9.
    [14]Zhang, C. Q.; Tu, J. P.; Yuan, Y. F.; Huang, X. H.; Chen, X. T.; Mao, F., Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries. Journal of The Electrochemical Society 2007,154 (2), A65-A69.
    [15]Laruelle, S.; Grugeon, S.; Poizot, P.; Dolle, M.; Dupont, L.; Tarascon, J. M., On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. Journal of The Electrochemical Society 2002,149 (5), A627-A634.
    [16]Zhang, H.-X.; Feng, C.; Zhai, Y.-C; Jiang, K.-L.; Li, Q.-Q.; Fan, S.-S., Cross-Stacked Carbon Nanotube Sheets Uniformly Loaded with SnO2 Nanoparticles:A Novel Binder-Free and High-Capacity Anode Material for Lithium-Ion Batteries. Advanced Materials 2009,21 (22),2299-304.
    [17]Ban, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. E.; Blackburn, J. L.; Dillon, A. C., Nanostructured Fe3O4SWNT Electrode:Binder-Free and High-Rate Li-Ion Anode. Advanced Materials 2010,22 (20), E145-E149.
    [18]Zhou, W.; Zhu, J.; Cheng, C.; Liu, J.; Yang, H.; Cong, C.; Guan, C.; Jia, X.; Fan, H. J.; Yan, Q.; Li, C. M.; Yu, T., A general strategy toward graphene@metal oxide core-shell nanostructures for high-performance lithium storage. Energy & Environmental Science 2011,4 (12),4954-61.
    [19]Zhu, X. J.; Zhu, Y. W.; Murali, S.; Stollers, M. D.; Ruoff, R. S., Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries. Acs Nano 2011,5 (4),3333-8.
    [20]Courtel, F. M.; Duncan, H.; Abu-Lebdeh, Y.; Davidson, I. J., High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A= Co, Ni, and Zn). Journal of Materials Chemistry 2011,21 (27),10206-18.
    [21]Zhang, K.; Han, P.; Gu, L.; Zhang, L.; Liu, Z.; Kong, Q.; Zhang, C.; Dong, S.; Zhang, Z.; Yao, J.; Xu, H.; Cui, G.; Chen, L., Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries. Acs Applied Materials & Interfaces 2012,4 (2),658-64.
    [22]Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J., High lithium electroactivity of nanometer-sized rutile TiO2. Advanced Materials 2006,18(11),1421-6.
    [23]Reddy, M. V.; Yu, T.; Sow, C.-H.; Shen, Z. X.; Lim, C. T.; Rao, G. V. S.; Chowdari, B. V. R., alpha-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Advanced Functional Materials 2007, 17 (15),2792-9.
    [24]Lee, S.-H.; Kim, Y.-H.; Deshpande, R.; Parilla, P. A.; Whitney, E.; Gillaspie, D. T.; Jones, K. M.; Mahan, A. H.; Zhang, S.; Dillon, A. C., Reversible Lithium-Ion Insertion in Molybdenum Oxide Nanoparticles. Advanced Materials 2008,20 (19),3627-32.
    [25]Paek, S.-M.; Yoo, E.; Honma, I., Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Letters 2009,9(1),72-5.
    [26]Rong, A.; Gao, X. P.; Li, G. R.; Yan, T. Y.; Zhu, H. Y.; Qu, J. Q.; Song, D. Y., Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. Journal of Physical Chemistry B 2006,110 (30),14754-60.
    [1]Pradhan, D.; Niroui, E.; Leung, K. T., High-Performance, Flexible Enzymatic Glucose Biosensor Based on ZnO Nanowires Supported on a Gold-Coated Polyester Substrate. Acs Applied Materials & Interfaces 2010,2 (8),2409-12.
    [2]Shamsipur, M.; Najafi, M.; Hosseini, M.-R. M., Highly improved electrooxidation of glucose at a nickel(Ⅱ) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 2010,77 (2),120-4.
    [3]Kung, C.-W.; Lin, C.-Y.; Lai, Y.-H.; Vittal, R.; Ho, K.-C., Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose. Biosensors & Bioelectronics 2011,27 (1), 125-31.
    [4]Zhang, X.; Gu, A.; Wang, G.; Wei, Y.; Wang, W.; Wu, H.; Fang, B., Fabrication of CuO nanowalls on Cu substrate for a high performance enzyme-free glucose sensor. Crystengcomm 2010,12 (4), 1120-6.
    [5]Zhang, X.; Wang, G.; Gu, A.; Wei, Y.; Fang, B., CuS nanotubes for ultrasensitive nonenzymatic glucose sensors. Chemical Communications 2008, (45),5945-7.
    [6]Lee, K. K.; Loh, P. Y.; Sow, C. H.; Chin, W. S., CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochemistry Communications 2012,20,128-32.
    [7]Feng, D.; Wang, E.; Chen, Z., Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sensors and Actuators B-Chemical 2009,138 (2),539-44.
    [8]Zhou, Y.-G.; Yang, S.; Qian, Q.-Y.; Xia, X.-H., Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochemistry Communications 2009,11 (1),216-9.
    [9]Park, S.; Chung, T. D.; Kim, H. C., Nonenzymatic glucose detection using mesoporous platinum. Analytical Chemistry 2003,75 (13),3046-9.
    [10]Liu, Y.; Teng, H.; Hou, H.; You, T., Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosensors & Bioelectronics 2009,24 (11), 3329-34.
    [11]Lu, L.-M.; Zhang, L.; Qu, F.-L.; Lu, H.-X.; Zhang, X.-B.; Wu, Z.-S.; Huan, S.-Y.; Wang, Q.-A.; Shen, G.-L.; Yu, R.-Q., A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: Enhancing sensitivity through a nanowire array strategy. Biosensors & Bioelectronics 2009,25 (1),218-23.
    [12]Zhang, Y.; Su, L.; Manuzzi, D.; de los Monteros, H. V. E.; Jia, W.; Huo, D.; Hou, C.; Lei, Y., Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosensors and Bioelectronics 2012,31 (1),426-32.
    [13]Ding, Y.; Wang, Y.; Su, L.; Bellagamba, M.; Zhang, H.; Lei, Y., Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosensors & Bioelectronics 2010,26 (2),542-8.
    [14]Su, L.; Jia, W.; Zhang, L.; Beacham, C.; Zhang, H.; Lei, Y., Facile Synthesis of a Platinum Nanoflower Monolayer on a Single-Walled Carbon Nanotube Membrane and Its Application in Glucose Detection. Journal of Physical Chemistry C 2010,114 (42),18121-5.
    [15]He, L. H.; Yao, L.; Sun, J.; Wang, X. X.; Song, R.; He, Y. J.; Huang, W., A facile and simple phase-inversion method for the fabrication of Ag nanoparticles/multi-walled carbon nanotubes/poly(vinylidene fluoride) nanocomposite with high-efficiency of electrocatalytic property. RSC Advances 2012,2 (4),1516-23.
    [16]Chen, J.; Zhang, W.-D.; Ye, J.-S., Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochemistry Communications 2008,10 (9),1268-71.
    [17]Jiang, H.; Ma, J.; Li, C., Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chemical Communications 2012,48 (37),4465-7.
    [18]Li, J.; Xiong, S.; Liu, Y.; Ju, Z.; Qian, Y., High Electrochemical Performance of Monodisperse NiCo204Mesoporous Microspheres as an Anode Material for Li-Ion Batteries. Acs Applied Materials & Interfaces 2013,5 (3),981-8.
    [19]Wang, C. H.; Zhang, X.; Zhang, D. C.; Yao, C.; Ma, Y. W., Facile and low-cost fabrication of nanostructured NiCo2O4 spinel with high specific capacitance and excellent cycle stability. Electrochimica Acta 2012,63,220-7.
    [20]Wang, R. Y.; Xu, C. X.; Bi, X. X.; Ding, Y., Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy & Environmental Science 2012,5 (1), 5281-6.
    [21]Xu, J.-S.; Zhu, Y.-J., Monodisperse Fe3O4and y-Fe2O3Magnetic Mesoporous Microspheres as Anode Materials for Lithium-Ion Batteries. Acs Applied Materials & Interfaces 2012,4 (9),4752-7.
    [22]Jiao, F.; Bao, J. L.; Hill, A. H.; Bruce, P. G., Synthesis of Ordered Mesoporous Li-Mn-O Spinel as a Positive Electrode for Rechargeable Lithium Batteries. Angewandte Chemie-International Edition 2008,47 (50),9711-6.
    [23]Xiong, S.; Chen, J. S.; Lou, X. W.; Zeng, H. C., Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-like Co(CO3)0.5(OH)center dot 0.11H2O and Their Lithium-Storage Properties. Advanced Functional Materials 2012,22 (4),861-71.
    [24]Su, D.; Kim, H.-S.; Kim, W.-S.; Wang, G., Mesoporous Nickel Oxide Nanowires:Hydrothermal Synthesis, Characterisation and Applications for Lithium-Ion Batteries and Supercapacitors with Superior Performance. Chemistry-A European Journal 2012,18 (26),8224-8229.
    [25]Zhang, X.; Gu, A.; Wang, G.; Huang, Y.; Ji, H.; Fang, B., Porous Cu-NiO modified glass carbon electrode enhanced nonenzymatic glucose electrochemical sensors. Analyst 2011,136 (24),5175-5180.
    [26]Chen, J.; Xu, L.; Xing, R.; Song, J.; Song, H.; Liu, D.; Zhou, J., Electrospun three-dimensional porous CuO/TiO2 hierarchical nanocomposites electrode for nonenzymatic glucose biosensing. Electrochemistry Communications 2012,20,75-78.
    [27]Xiao, J.; Yang, S., Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Advances 2011,1 (4),588-595.
    [28]Li, Y.; Song, Y.-Y.; Yang, C.; Xia, X.-H., Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochemistry Communications 2007,9 (5),981-988.
    [29]Cui, H.-R.; Ye, J.-S.; Zhang, W.-D.; Li, C.-M.; Luong, J. H. T.; Sheu, F.-S., Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites. Analytica ChimicaActa 2007,594 (2),175-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700