用户名: 密码: 验证码:
基于矩阵分解的图像表示理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着图像采集设备尤其是智能手机的广泛普及,以及微博、微信、云计算、社交网站等网络多媒体信息服务的迅猛发展,图像不仅在数量上呈现爆炸式的增长,而且在信息的传播和获取中也发挥着巨大的推动作用。这些浩如烟海的图像虽然具有直观、生动、信息量大等特点,但是给实际的存储、传输以及进一步处理都造成了相当大的困难。因此,如何根据图像的内在结构和人类的视觉特性来探索高效的图像表示方法,是计算机视觉和机器学习领域中核心研究问题之一。一个有效的图像表示方法不仅有助于挖掘图像潜在的数据结构,而且有利于降低数据存储和传输的成本。
     非负性、不变性、稀疏性、非线性以及判别性是图像表示理论的核心问题,本文从矩阵分解的角度出发,围绕图像表示方法中的矩阵非负分解和稀疏分解两个重要的研究方向,取得的创新性研究成果包括:
     1.针对非负性约束不足以得到具有不变性的图像表示的问题,本文提出了一种基于地形约束的非负矩阵分解方法,其在矩阵分解过程中通过引入了一个优化编码因子的地形约束,来学习特征的不变性。由于地形约束是一个两层分别包含平方非线性和平方根非线性的自底向上的网络,其可以通过将属于同一主题的结构相关的特征池化在一起,使得相关特征在一个结构相关的低维子空间中聚在一起。从而学到具有特征不变性的图像表示。此外,本文在理论上证明了在该方法中提出的交替迭代更新规则的收敛性。实验结果表明,相比于传统的非负矩阵分解方法,该方法通过学习到具有不变性的图像表示,达到了更高的聚类性能。
     2.为了有效的利用少量标记数据来学习和挖掘未标记数据的潜在结构,本文提出了一种半监督非负矩阵分解方法。该方法通过以惩罚项的方式引入一个类驱动约束,可以在矩阵分解过程中进一步利用数据的标签信息。由于该约束通过为每一个学到的基赋予特定的类标签,使得每一类的基只能有效的表示同一类的图像,而对于其它类的图像无效。此外,为了更好的度量图像的重建误差,本文分别利用欧氏距离和KL散度两种度量方式来评估重建误差,并且理论分析了基于这两种度量方式的算法的计算复杂度。在AT&T ORL、 Yale、Caltech101等真实数据集上进行聚类的结果显示,由于基于类驱动的非负矩阵分解理论很好地结合了图像的标注信息,使得所得到的低维表示有更强的判别力。
     3.针对无监督的重建独立成分分析方法不能有效的利用训练数据标签信息的问题,本文提出了一种监督的重建独立成分分析方法。该方法通过引入一个判别约束,来实现同时最大化稀疏表示本类能量和最小化其他类能量,使得稀疏表示项按类划分,并且每类图像只能由同一类的基稀疏重构。本质上,这种优化方式等价于最大化稀疏表示的类间散度和最小化相应的类内散度。本文在理论上证明了这个判别约束是一个凸函数,因此把它引入到独立成分分析框架中后,得到优化问题仍然是一个无约束的凸优化问题,其有全局最优解。
     4.由于线性的重建独立成分分析方法不能有效的表示在原始数据空间中普遍存在的非线性可分数据结构,本文进一步提出了一种监督的核重建独立成分分析方法。该方法通过利用核函数在一个高维的特征空间中学习图像非线性的稀疏表示,使在原始空间中非线性可分的数据结构在这个空间中变得线性可分。实验结果表明,相比于传统的重建独立成分分析算法,本文提出的方法通过学习监督且非线性的稀疏表示,进一步的提高了其在实际分类任务中的性能。
Data representation is a fundamental problem in image processing and pattern recog-nition tasks. A good representation can typically reveal the latent structure of data, and further facilitate these tasks in terms of learnability and computational complexity. How-ever, in many real applications, the input data matrix is generally of very high dimension, which brings the curse of dimensionality for further data processing. To solve this prob-lem, matrix factorization approaches are used to explore two or more lower dimensional matrices whose product provides a good approximation for the original data matrix. In addition, sparsity is an attribute characterizing a mass of natural and manmade signals, and has played a vital role in the success of many sparse decomposition based image rep-resentation techniques such as sparse coding, dictionary learning, sparse auto-encoders and independent component analysis. Decomposing data into a sparse and discrimina-tive linear combination of features is an important and well-studied problem. The major contributions of the paper are:
     1. We propose a topographic non-negative matrix factorization algorithm, called TN-MF. Specifically, TNMF incorporates a topographic constraint to intuitively pro-mote the sparseness of encoding factor. Meanwhile, this constraint forces features to be organized in a topographical map by pooling together structure-correlated features belonging to the same hidden topic, which is beneficial to learn complex invariances (such as scale and rotational invariance). Some experiments carried out on three standard datasets validate the effectiveness of our method in comparison to the state-of-the-art approaches.
     2. We propose a semi-supervised class-driven non-negative matrix factorization method to associate class label with each basis vector by introducing an inhomo-geneous representation cost constraint. This constraint forces the learned basis vectors to represent better for their own classes but worse for the others. Therefore, data samples in the same class will have similar representations, and thereby the discriminability in new representations could be boosted. Some experiments car-ried out on several standard databases validate the effectiveness of our method in comparison to the state-of-the-art approaches.
     3. To exploit the class information, we extend the unsupervised reconstruction inde- pendent component analysis method (RICA) to a supervised one, namely d-RICA, by introducing a class-driven discrimination constraint. This constraint minimizes the inhomogeneous representation energy and maximizes the homogeneous rep-resentation energy simultaneously, which will make a data sample uniquely repre-sented by the over-complete basis vectors from the corresponding class. In essence, it's equivalent to maximizing the between-class scatter and minimizing the within-class scatter in an implicit way.
     4. Since nonlinearly separable data structure generally exists in the original data s-pace, a linear discriminant might not be complex enough for most real-world data. To enhance the expressiveness of the discriminant, kernel trick can be used to map the nonlinearly separable data structure into a linearly separable case in a high di-mensional feature space. Therefore, we develop the kernel extensions of RICA and d-RICA respectively, i.e., kRICA and d-kRICA, to represent the data in the feature space. Experimental results validate the effectiveness of kRICA and d-kRICA for classification tasks.
引文
① http://www.leiphone.com/qq-150b-vs-facebook.html
    ① http://www.uk.research.att.com/facedatabase.html
    ② http://cvc.yale.edu/projects/yalefaces/yalefaces.html
    ① http://en.wikipedia.org/wiki/Cosine_similarity
    [1]Chion M. Audio-vision:sound on screen. Columbia University Press,1994.
    [2]邓承志.图像稀疏表示理论及其应用研究[D].华中科技大学,2008.
    [3]Duda R O, Hart P E, Stork D G. Pattern classification. Wiley-Interscience,2001.
    [4]边肇祺,张学工.模式识别.清华大学出版社有限公司,2000.
    [5]韦世奎.基于信息融合的多媒体内容搜索[D].北京交通大学,2010.
    [6]Sun Y, Paik J, Koschan A, et al. Point fingerprint:A new 3-d object representation scheme. IEEE Trans. Syst., Man, Cybern. B, Cybern.,2003,33(4):712-717.
    [7]Anderson K, McOwan P W. A real-time automated system for the recognition of human facial expressions. IEEE Trans. Syst., Man, Cybern. B, Cybern.,2006,36(1):96-105.
    [8]Li X, Lin S, Yan S, et al. Discriminant locally linear embedding with high-order tensor data. IEEE Trans. Syst., Man, Cybern. B, Cybern.,2008,38(2):342-352.
    [9]Yang Y, Shen H T, Nie F, et al. Nonnegative Spectral Clustering with Discriminative Regular-ization. Proceedings of AAAI,2011.
    [10]Liu L, Shao L, Zhen X, et al. Learning Discriminative Key Poses for Action Recognition. IEEE Trans. Cybern.,2013,43(6):1860-1870.
    [11]Zhang H, Ho J, Wu Q, et al. Multidimensional Latent Semantic Analysis Using Term Spatial Information. IEEE Trans. Cybern.,2013,43(6):1625-1640.
    [12]Tao D, Jin L, Yang Z, et al. Rank Preserving Sparse Learning for Kinect Based Scene Classi-fication. IEEE Trans. Cybern.,2013,43(5):1406-1417.
    [13]Lowe D G. Object recognition from local scale-invariant features. Proceedings of Int. Conf. Comput. Vis., volume 2,1999.1150-1157.
    [14]Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2002,24(7):971-987.
    [15]Sivic J, Zisserman A. Video Google:A text retrieval approach to object matching in videos. Proceedings of Int. Conf. Comput. Vis.,2003.1470-1477.
    [16]Lee D, Seung H. Learning the parts of objects by non-negative matrix factorization. Nature, 1999,401(6755):788-791.
    [17]Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. Signal Processing, IEEE Transactions on,1993,41(12):3397-3415.
    [18]Friedman J H. On bias, variance,0/1-loss, and the curse-of-dimensionality. Data mining and knowledge discovery,1997, 1(1):55-77.
    [19]Kershaw D S. The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. Journal of Computational Physics,1978,26(1):43-65.
    [20]Golub G H, Reinsch C. Singular value decomposition and least squares solutions. Numerische Mathematik,1970,14(5):403-420.
    [21]Palmer S. Hierarchical structure in perceptual representation. Cognitive Psychol.,1977, 9(4):441-474.
    [22]Wachsmuth E, Oram M, Perrett D. Recognition of objects and their component parts:responses of single units in the temporal cortex of the macaque. Cereb. Cortex,1994,4(5):509-522.
    [23]Li S, Hou X, Zhang H, et al. Learning spatially localized, parts-based representation. Proceed-ings of Comput. Vis. Pattern Recognit., volume 1,2001.1-207.
    [24]Xu W, Liu X, Gong Y. Document clustering based on non-negative matrix factorization. Pro-ceedings of 26th Annu. Int. ACM SIGIR Conf. Research and Development in Information Retrieval,2003.267-273.
    [25]Jolliffe I. Principal component analysis. Wiley Online Library,2005.
    [26]Candes E J, Tao T. Near-optimal signal recovery from random projections:Universal encoding strategies? Information Theory, IEEE Transactions on,2006,52(12):5406-5425.
    [27]Elad M. Sparse and redundant representations:from theory to applications in signal and image processing. Springer,2010.
    [28]Mairal J, Bach F, Ponce J, et al. Non-local sparse models for image restoration. Proceedings of Comput. Vis. Pattern Recognit.,2009.2272-2279.
    [29]Yang J, Yu K, Gong Y, et al. Linear spatial pyramid matching using sparse coding for image classification. Proceedings of Comput. Vis. Pattern Recognit.,2009.1794-1801.
    [30]Yu K, Zhang T. Improved local coordinate coding using local tangents. Proceedings of Int. Conf. Mach. Learn.,2010.
    [31]Jiang Z, Lin Z, Davis L. Learning a discriminative dictionary for sparse coding via label consistent K-SVD. Proceedings of Comput. Vis. Pattern Recognit.,2011.1697-1704.
    [32]Wright J, Yang A, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell.,2009,31(2):210-227.
    [33]Lawton W H, Sylvestre E A. Self modeling curve resolution. Technometrics,1971,13(3):617-633.
    [34]Paatero P, Tapper U. Positive matrix factorization:A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics,1994,5(2):111-126.
    [35]Anttila P, Paatero P, Tapper U, et al. Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmospheric Environment,1995,29(14):1705-1718.
    [36]Seung D, Lee L. Algorithms for non-negative matrix factorization. Advances in Neural Infor-mation Processing Systems,2001,13:556-562.
    [37]Ding C, He X, Simon H. On the equivalence of nonnegative matrix factorization and spectral clustering. Proceedings of SIAM Data Mining Conf.,2005.606-610.
    [38]Ding C, Li T, Jordan M. Convex and semi-nonnegative matrix factorizations. IEEE Trans. Syst, Man, Cybern. B, Cybern.,2010,32(1):45-55.
    [39]Hofmann T. Probabilistic latent semantic indexing. Proceedings of Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. ACM,1999.50-57.
    [40]Ding C, Li T, Peng W. Nonnegative matrix factorization and probabilistic latent semantic indexing:Equivalence chi-square statistic, and a hybrid method. Proceedings of Proceedings of the national conference on artificial intelligence, volume 21,2006.342.
    [41]Ding C, Li T, Peng W. On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing. Computational Statistics & Data Analysis,2008, 52(8):3913-3927.
    [42]Wang Y X, Zhang Y J. Non-negative Matrix Factorization:a Comprehensive Review. IEEE Transactions on Knowledge and Data Engineering,2012..
    [43]李乐,章毓晋.非负矩阵分解算法综述.电子学报,2008,36(4).
    [44]Stefan W, Curry J, Dougherty A. Improving non-negative matrix factorizations through struc-tured initialization. Pattern Recognition,2004,37(11):2217-2232.
    [45]Heiler M, Schnorr C. Learning sparse representations by non-negative matrix factorization and sequential cone programming. The Journal of Machine Learning Research,2006,7:1385-1407.
    [46]Sandler R, Lindenbaum M. Nonnegative matrix factorization with earth mover's distance met-ric. Proceedings of IEEE Intl. Conf. Comput. Vis. Pattern Recognit.,2009.1873-1880.
    [47]Zdunek R, Cichocki A. Non-negative matrix factorization with quasi-Newton optimization. Proceedings of Artificial Intelligence and Soft Computing-ICAISC,2006.870-879.
    [48]Gao Y, Church G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics,2005,21(21):3970-3975.
    [49]Hoyer P. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res., 2004,5:1457-1469.
    [50]Li S Z, Hou X W, Zhang H J, et al. Learning spatially localized, parts-based representation. Proceedings of Comput. Vis. Pattern Recognit., volume 1,2001.1-207.
    [51]Ding C, Li T, Peng W, et al. Orthogonal nonnegative matrix t-factorizations for clustering. Proceedings of SIGKDD,2006.126-135.
    [52]Belkin M, Niyogi P, Sindhwani V. Manifold regularization:A geometric framework for learn-ing from labeled and unlabeled examples. J. Mach. Learn. Res.,2006,7:2399-2434.
    [53]Basu S, Banerjee A, Mooney R J. Semi-supervised clustering by seeding. Proceedings of ICML, volume 2,2002.27-34.
    [54]Wang Y, Jia Y. Fisher non-negative matrix factorization for learning local features. Proceedings of Asian Conf. on Comp. Vision,2004.
    [55]Liu H, Wu Z, Li X, et al. Constrained Nonnegative Matrix Factorization for Image Represen-tation. IEEE Trans. Pattern Anal. Mach. Intell.,2012,34(7):1299-1311.
    [56]Cai D, He X, Han J, et al. Graph regularized nonnegative matrix factorization for data repre-sentation. IEEE Trans. Pattern Anal. Mach. Intell.,2011,33(8):1548-1560.
    [57]Zhi R, Flierl M, Ruan Q, et al. Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition. IEEE Trans. Syst., Man, Cybern. B, Cybern., 2011,41(1):38-52.
    [58]Gu Q, Zhou J. Local learning regularized nonnegative matrix factorization. Proceedings of IJCAI,2009.
    [59]Guan N, Tao D, Luo Z, et al. Manifold regularized discriminative nonnegative matrix factor-ization with fast gradient descent. IEEE Trans. Image Process.,2011,20(7):2030-2048.
    [60]Guillamet D, Vitria J, Schiele B. Introducing a weighted non-negative matrix factorization for image classification. Pattern Recognition Letters,2003,24(14):2447-2454.
    [61]Kim Y D, Choi S. Weighted nonnegative matrix factorization. Proceedings of ICASSP,2009. 1541-1544.
    [62]Smaragdis P. Non-negative matrix factor deconvolution; extraction of multiple sound sources from monophonic inputs. Proceedings of Independent Component Analysis and Blind Signal Separation,2004.494-499.
    [63]Smaragdis P. Convolutive speech bases and their application to supervised speech separation. Audio, Speech, and Language Processing, IEEE Transactions on,2007,15(1):1-12.
    [64]Yoo J, Choi S. Orthogonal nonnegative matrix tri-factorization for co-clustering:Multiplicative updates on Stiefel manifolds. Information processing & management,2010,46(5):559-570.
    [65]Shashua A, Hazan T. Non-negative tensor factorization with applications to statistics and computer vision. Proceedings of ICML,2005.792-799.
    [66]Hazan T, Polak S, Shashua A. Sparse image coding using a 3D non-negative tensor factoriza-tion. Proceedings of ICCV, volume 1,2005.50-57.
    [67]Li L, Zhang Y J. Non-negative Matrix-Set Factorization. Proceedings of ICIG,2007.564-569.
    [68]Zhang D, Zhou Z H, Chen S. Non-negative matrix factorization on kernels. Proceedings of PRICAI,2006.404-412.
    [69]Buciu I, Nikolaidis N, Pitas I. Nonnegative matrix factorization in polynomial feature space. Neural Networks, IEEE Transactions on,2008,19(6):1090-1100.
    [70]Pan B, Lai J, Chen W S. Nonlinear nonnegative matrix factorization based on Mercer kernel construction. Pattern Recognition,2011,44(10):2800-2810.
    [71]Zibulevsky M, Pearlmutter B A. Blind source separation by sparse decomposition in a signal dictionary. Neural computation,2001,13(4):863-882.
    [72]Konidaris G, Osentoski S, Thomas P S. Value Function Approximation in Reinforcement Learning Using the Fourier Basis. Proceedings of AAAI,2011.
    [73]Farge M, Schneider K, Kevlahan N. Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Physics of Fluids,1999, 11(8):2187-2201.
    [74]Mairal J, Bach F, Ponce J. Task-driven dictionary learning. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2012,34(4):791-804.
    [75]Wang J, Yang J, Yu K, et al. Locality-constrained linear coding for image classification. Pro-ceedings of CVPR,2010.3360-3367.
    [76]MacQueen J, et al. Some methods for classification and analysis of multivariate observations. Proceedings of Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1,1967.14.
    [77]Jenatton R, Mairal J, Bach F R, et al. Proximal methods for sparse hierarchical dictionary learning. Proceedings of ICML,2010.487-494.
    [78]Aharon M, Elad M, Bruckstein A. K-SVD:An Algorithm for Designing Overcomplete Dic-tionaries for Sparse Representation. IEEE Trans. Signal Process.,2006,54(11):4311-4322.
    [79]Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms. Proceedings of Advances in neural information processing systems,2006.801-808.
    [80]Le Q, Karpenko A, Ngiam J, et al. ICA with reconstruction cost for efficient overcomplete feature learning. Proceedings of Adv. Neural Inform. Process. Syst.,2011.
    [81]Cortes C, Vapnik V. Support-vector networks. Machine learning,1995,20(3):273-297.
    [82]Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis. Cambridge university press,2004.
    [83]Gao S, Tsang I, Chia L. Kernel sparse representation for image classification and face recog-nition. Proceedings of ECCV,2010.1-14.
    [84]Gao S, Tsang I W H, Chia L T. Sparse Representation With Kernels. IEEE Trans. Image Process.,2013,22(2):423-434.
    [85]Zheng M, Bu J, Chen C, et al. Graph Regularized Sparse Coding for Image Representation. IEEE Trans. Image Process.,2011,20(5):1327-1336.
    [86]Le Q V, Monga R, Devin M, et al. Building High-level Features Using Large Scale Unsuper-vised Learning. Proceedings of Int. Conf. Mach. Learn.,2012.
    [87]Mairal J, Leordeanu M, Bach F, et al. Discriminative sparse image models for class-specific edge detection and image interpretation. Proceedings of ECCV. Springer,2008:43-56.
    [88]Perronnin F. Universal and adapted vocabularies for generic visual categorization. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2008,30(7):1243-1256.
    [89]Ramirez I, Sprechmann P, Sapiro G. Classification and clustering via dictionary learning with structured incoherence and shared features. Proceedings of CVPR. IEEE,2010.3501-3508.
    [90]Zhou N, Shen Y, Peng J, et al. Learning inter-related visual dictionary for object recognition. Proceedings of CVPR. IEEE,2012.3490-3497.
    [91]Winn J, Criminisi A, Minka T. Object categorization by learned universal visual dictionary. Proceedings of ICCV, volume 2. IEEE,2005.1800-1807.
    [92]Lazebnik S, Raginsky M. Supervised learning of quantizer codebooks by information loss minimization. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2009, 31(7):1294-1309.
    [93]Krause A, Cevher V. Submodular dictionary selection for sparse representation. Proceedings of ICML,2010.567-574.
    [94]Jiang Z, Zhang G, Davis L S. Submodular dictionary learning for sparse coding. Proceedings of CVPR. IEEE,2012.3418-3425.
    [95]Mairal J, Bach F, Ponce J, et al. Supervised dictionary learning. Proceedings of Advances in neural information processing systems,2009.
    [96]Boureau Y L, Bach F, LeCun Y, et al. Learning mid-level features for recognition. Proceedings of CVPR. IEEE,2010.2559-2566.
    [97]Huang K, Aviyente S. Sparse representation for signal classification. Proceedings of Advances in neural information processing systems,2006.609-616.
    [98]Yang M, Zhang L, Feng X, et al. Fisher Discrimination Dictionary Learning for Sparse Repre-sentation. Proceedings of Int. Conf. Comput. Vis.,2011.543-550.
    [99]Pham D S, Venkatesh S. Joint learning and dictionary construction for pattern recognition. Proceedings of CVPR. IEEE,2008.1-8.
    [100]Zhang Q, Li B. Discriminative K-SVD for dictionary learning in face recognition. Proceedings of Comput. Vis. Pattern Recognit.,2010.2691-2698.
    [101]Yang J, Yu K, Huang T. Supervised translation-invariant sparse coding. Proceedings of CVPR. IEEE,2010.3517-3524.
    [102]Lian X C, Li Z, Lu B L, et al. Max-margin dictionary learning for multiclass image catego-rization. Proceedings of ECCV. Springer,2010:157-170.
    [103]Lian X C, Li Z, Wang C, et al. Probabilistic models for supervised dictionary learning. Pro-ceedings of CVPR. IEEE,2010.2305-2312.
    [104]Golub G H, Van Loan C F. Matrix computations. Baltimore, MD, USA:JHU Press,1996.
    [105]Liu H, Yang Z, Wu Z, et al. A-Optimal Non-negative Projection for image representation. Proceedings of Comput. Vis. Pattern Recognit.,2012.1592-1599.
    [106]Olshausen B, et al. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature,1996,381(6583):607-609.
    [107]Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks. Pro-ceedings of Adv. Neural Inform. Process. Syst., volume 19,2007.153.
    [108]Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with de-noising autoencoders. Proceedings of ICML. ACM,2008.1096-1103.
    [109]Lee H, Ekanadham C, Ng A. Sparse deep belief net model for visual area V2. Proceedings of Advances in neural information processing systems,2007.873-880.
    [110]Hinton G. A practical guide to training restricted Boltzmann machines. Momentum,2010, 9(1).
    [111]Hyvarinen A, Hurri J, Hoyer P. Natural image statistics, volume 1. Springer,2009.
    [112]Hyvarinen A, Karhunen J, Oja E. Independent component analysis, volume 26. Wiley-interscience,2001.
    [113]Grimes D B, Rao R P. Bilinear sparse coding for invariant vision. Neural Comput,2005, 17(1):47-73.
    [114]Hyvarinen A, Hoyer P, Inki M. Topographic independent component analysis. Neural Comput., 2001,13(7):1527-1558.
    [115]Goodfellow I, Le Q, Saxe A, et al. Measuring Invariances in Deep Networks. Proceedings of Adv. Neural Inform. Process. Syst.2009:646-654.
    [116]Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algo-rithm. J. Roy. Stat. Soc. B,1977.1-38.
    [117]Fei-Fei L, Fergus R, Perona P. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Und., 2007,106(l):59-70.
    [118]Lovasz L, Plummer M. Matching Theory. Budapest:Akademiai Kiado,1986..
    [119]Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res., 2006,7.
    [120]Chapelle O, Scholkopf B, Zien A, et al. Semi-supervised learning, volume 2. MIT press Cambridge,2006.
    [121]Basu S, Banerjee A, Mooney R J. Semi-supervised clustering by seeding. Proceedings of ICML, volume 2,2002.27-34.
    [122]Basu S, Bilenko M, Mooney R J. A probabilistic framework for semi-supervised clustering. Proceedings of SIGKDD. ACM,2004.59-68.
    [123]Xu W, Gong Y. Document clustering by concept factorization. Proceedings of 27th Annu. Int. ACM SIGIR Conf. Research and Development in Information Retrieval,2004.202-209.
    [124]Candes E, Wakin M. An Introduction To Compressive Sampling. IEEE Signal Proc. Mag., 2008,25(2):21-30.
    [125]Donoho D. Compressed sensing. IEEE Trans. Inform. Theory,2006,52(4):1289-1306.
    [126]Hinton G, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neural Comput., 2006,18(7):1527-1554.
    [127]Jacod J, Shiryaev A N. Limit theorems for stochastic processes. Springer-Verlag Berlin,1987.
    [128]Lewicki M S, Sejnowski T J. Learning overcomplete representations. Neural Comput.,2000, 12(2):337-365.
    [129]Coates A, Lee H, Ng A. An analysis of single-layer networks in unsupervised feature learning. Proceedings of AISTATS,2010.
    [130]Xiao Y, Zhu Z, Wei S, et al. Discriminative ICA model with reconstruction constraint for image classification. Proceedings of ACM Multimedia,2012.929-932.
    [131]Boyd S, Vandenberghe L. Convex optimization.2004.
    [132]Zhu C, Byrd R H, Lu P, et al. Algorithm 778:L-BFGS-B:Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software (TOMS), 1997,23(4):550-560.
    [133]Nocedal J, Wright S J. Conjugate gradient methods. Springer,2006.
    [134]Adams W Y, Su H, Fei-Fei L. Efficient Euclidean Projections onto the Intersection of Norm Balls. Proceedings of ICML,2012.433-440.
    [135]Yang J, Gao X, Zhang D, et al. Kernel ICA:An alternative formulation and its application to face recognition. Pattern Recognit.,2005,38(10):1784-1787.
    [136]Schmidt M. minFunc. http://www.di.ens.fr/mschmidt/Software/minFunchtml,2005.
    [137]Chang C C, Lin C J. LIBSVM:a library for support vector machines. ACM Trans. TIST,2011, 2(3):27.
    [138]Krizhevsky A. Convolutional deep belief networks on CIFAR-10. Unpublished manuscript, 2010..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700