用户名: 密码: 验证码:
乳液型聚丙烯酰胺调堵剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在油田注水开发过程中,油井出水的危害很多:如消耗驱替能量,减少油层最终采收率,造成管线和设备的腐蚀与结垢,增加脱水站的负荷等等,严重时还会使油井变为无工业价值的报废井,造成极大的资源浪费,因此降低采出液的出水率有其重要的意义。长期以来,国内外堵水、调剖剂的研究与应用受到了广泛的关注。早在20世纪30年代国外就开始探索应用不同的调剖堵水剂,我国化学堵水调剖技术始于20世纪50年代,经过长期的研究试验和发展,已经形成了一系列油田注水开发过程中的治水技术。国内外油田广泛应用的化学调剖堵水剂品种繁多,以阴离子型聚丙烯酰胺类为主的水基凝胶是其中发展最快的一个大类。
     然而目前采用的聚丙烯酰胺可动凝胶调堵技术仍然存在许多局限性,影响了其应用规模。主要存在以下几方面问题:一是聚丙烯酰胺多为粉剂,分散溶解困难,现场施工不方便;二是成胶时间和成胶强度不易控制,往往近井地带堵调效果好,而难于到达地层深部发挥作用;三是由于地层对聚合物和交联剂的吸附能力不同,加上地层水的稀释,使得交联体系在地层中易发生色谱分离,堵剂利用率低。针对以上问题,本文开展了乳液型聚丙烯酰胺调堵剂研究,旨在开发一种新型的调堵剂,更好地满足油田开发过程中治理“水害”的需要。
     本文利用乳液型聚丙烯酰胺在水中易分散溶解、有效浓度高的特点,进行了乳液型聚丙烯酰胺调堵剂的研究。通过系统地开展调堵机理、乳液聚合机理、交联机理和堵剂结构设计研究,成功研制了乳液型聚丙烯酰胺-酚醛树脂凝胶调堵剂,首次将反相乳液聚合技术用于注水油田开发过程,解决了聚丙烯酰胺凝胶调剖堵水时交联时间和交联强度难以控制,现场配制不便的难题。该调堵技术是在地面将该调堵剂分散于水中,注入到地层指定位置,在地层温度和转向剂的作用下,聚丙烯酰胺反相乳液转相破乳,聚丙烯酰胺和交联剂发生交联反应形成凝胶。由于在到达指定位置前未转相破乳,聚丙烯酰胺与交联剂的比例不发生改变,交联反应得到有效控制。为了确保堵剂的应用效果,本文在以往注聚开发数学模拟分析模型的基础上,修订建立了乳液型聚丙烯酰胺调堵剂应用效果预测模型,并对现场注入方案进行了优化,较好地指导了现场应用。
     本文的主要研究内容包括以下三部分:第一,开展了聚丙烯酰胺反相乳液制备工艺技术研究,通过对聚丙烯酰胺反相乳液聚合体系组分及聚合条件进行研究,合成了有效含量高、稳定性好、分子量在640~1050万的聚丙烯酰胺反相乳液。研究结果表明,较低乳化剂量时体系不稳定,乳化剂量太高会造成产物分子量下降,而且造成生产成本上升,乳化剂量宜选用8wt%;随着水相单体浓度的增加,聚合物分子量增大,但是,乳液聚合的温度升高,乳液稳定性变差,因此,水相单体浓度选用45wt%,油水比选择为1:1,适宜的聚合起始温度为10~25℃。第二,开展了交联剂的合成工艺及交联机理研究,利用合成的聚丙烯酰胺反相乳液和交联剂,配制成均相的乳液型调剖堵水剂,并进行了理化性能评价、物模封堵性能实验评价。研究结果表明,聚丙烯酰胺-酚醛树脂交联符合两步交联机理,随着聚合物浓度和交联剂用量的增加,交联强度相应增加;温度在50℃以下时,聚合物交联体系不发生交联或交联程度很低;在体系处于酸性条件下时,酚醛树脂与聚丙烯酰胺的交联程度很低;pH值在中性和弱碱性条件下容易形成性能优良的凝胶;岩芯模拟实验表明乳液型调堵剂成胶性能可控,封堵效果良好。第三,通过数模研究优化了现场试验方案,并在孤岛油田油水井上进行了堵水调剖试验,见到了明显了降水增油效果。
     经现场应用证明,该调堵剂具有分散溶解方便、成本低、成胶时间和强度易于控制等优点,能够达到地层深部封堵出水通道,实现液流改向、控水增油的目的,在经济上可收到较好的效果,预计投入产出比可达1:3以上,推广应用前景良好。
The disadvantages of produced water from oil well during the water injection exploitation in oilfield include consuming the displacement energy, reducing the final percent recovery of oil-bearing sand, the corrosion and fouling of pipes and equipments and increasing the load of dehydration station, etc. The oil well may be changed into worthless abandoned well, which may produce enormous resources waste. Therefore, it is important to reduce the specific yield of produced liquid. It has been widely noticed worldwide about the related research of water block and drive-adjusting reagent. Seventy years have passed since the related technology about various drive-adjusting reagents was investigated. Series of water treatment technologies have been formed through research experiments and development for a long time during the water injection exploitation in oilfield. There are many kinds of chemical water block and drive-adjusting reagents used worldwide, the water base gel polyacrylamide of anion type was developed fast.
     However, the drive-adjusting technology with gel polyacrylamide present used has many disadvantages, which districted the application scale. Firstly, the polyacrylamide is pulvis. It is difficult to solve it, which make it is inconvenient to field use. Secondly, it is difficult to control the gel form time and gel intensity. Therefore, it is difficult to take effect into the deep stratum. Finally, the crosslinking system tends to separate because of the different sorption performance of stratum to polymer and crosslinking agent, which leads to the decreasing availability of plugging agent. With regard to the above problems, this paper has conducted the research on polyacrylamide inverse emulsion deep drive-adjusting reagent with the aim to develop a new kind of drive-adjusting reagent and satisfy the need of water treatment during the exploitation in oilfield.
     In this paper, the polyacrylamide emulsion deep drive-adjusting reagent, which has the advantages of easy dissolution and high effective concentration, was investigated. By the system research on the plugging mechanism, emulsion polymerization mechanism, crosslinking mechanism and structure design of plugging agent, the polyacrylamide emulsion and phenolics drive-adjusting reagent was prepared successfully. This paper took use of the inverse emulsion polymerization technology into the water injection exploitation in oilfield firstly and solved the difficult problem of uneasy control of gel form time and gel intensity as well as inconvenient formulation in field. The drive-adjusting reagent and inversion reagent are dispersed into water on ground, and then they are injected to drive-adjusting block by water well. After some time, the inversion phase deemulsification of polyacrylamide inverse emulsion will occur at the circumstances of temperature and existed water in stratum. Gel will be formed during the crosslinking reaction between polyacrylamide and crosslinking agent. The inversion phase deemulsification does not occur until the drive-adjusting reagent, which viscosity is low at this time, reaches the required stratum. To assure the application effect of plugging agent, this paper established the predictive model for application effect of polyacrylamide emulsion drive-adjusting reagent. The optimization of injection scheme in field also guided the field application.
     The investigation content includes the following three parts. First, the preparation process of polyacrylamide inverse emulsion was developed. The polyacrylamide inverse emulsion was synthesized by the investigation of polymerization system and polymerization conditions. The polyacrylamide inverse emulsion with the molecular weight of 6400-10500 thousand has the following advantages: high effective content, excellent stability. The experiment results showed that the optimum content of emulsifying agent was 8wt%. The system was unstable when the content of emulsifying agent was low. The molecular weight of product was low when the content of emulsifying agent was high. The molecular weight of product increased with the increasing monomer concentration. However, the temperature of emulsion polymerization increased and the stability of emulsion weakened with the increasing monomer concentration. Therefore, the optimum monomer concentration was 45wt%, the oil-water ratio was 1:1 and the optimum beginning temperature of polymerization was 10~25℃. Second, the synthesis process and crosslinking mechanism of crosslinker were developed. The homogeneous inverse emulsion drive-adjusting reagent was synthesized by polyacrylamide and crosslinker. And the physical chemical property evaluation and plugging performance evaluation were conducted. The results showed that the crosslinking was in deference to two-step crosslinking mechanism. The crosslinking intensity increased with the increasing polymer concentration and content of crosslinker. When the temperature was lower than 50℃, the crosslinking degree was at low level. The simulation experiments for well core showed that the drive-adjusting reagent can be controlled easily and has excellent plugging performance. Finally, the test scheme in field was optimized by the mathematical simulation investigation. The water plugging and drive-adjusting test was conducted in the water wells in Gugao Oilfield. The water decrease and oil increase effect was obvious.
     The field application results showed that the drive-adjusting reagent can be resolved easily. And the drive-adjusting reagent has low cost. The gel form time and gel intensity can be controlled easily. The product can reach the deep plugging stratum, change the flow direction, control the water and increase oil. The economic effect was obvious and the input output ratio can reach 1:3. The application prospect of the drive-adjusting reagent was excellent.
引文
[1]李宜坤,覃和,蔡磊.国内堵水调剖的现状及发展趋势[J].钻采工艺,2006(3):37-39
    [2]熊春明,唐孝芬.国内外堵水调剖技术最新进展及发展趋势[J].石油勘探与开发2007(1):16-18
    [3]殷艳玲,张贵才.化学堵水调剖剂综述[J].油气地质与采收率2003,45(3):23-26
    [4]纪朝凤,葛红江.调剖堵水材料研究现状与发展趋势[J].[石油钻采工艺.2002(1):15-17
    [5]吴琳.高含水井调剖堵水技术及现场应用分析[J].西南石油大学学报.2002(2):16-18
    [6]李仰民,赵英,周晓俊.聚合物延迟交联深部调剖堵水技术研究[J].石油与天然气化工2000(3):12- 15
    [7]李宁乡,刘双成.我国油田化学堵水调剖剂开发和应用现状[J].油田化学, 1995; 12(1): 88-94
    [8]刘庆普,侯斯健,哈润华.油田堵水剂的研究[J].石油学报, 1996; 17(2): 62-69
    [9]严瑞瑄,唐丽娟.水溶性高分子产品手册[M].北京:化学工业出版社,2003,109
    [10]严瑞瑄.水处理剂应用手册[M].北京:化学工业出版社,2003:55-78
    [11]段洪东,侯万国,韩书华,等.制备聚合物冻胶用有机铬和有机铬铝交联剂组成研究[J].油田化学, 2002; 19(1): 42-46
    [12]尉小明,张春山,黄有泉.延缓型有机/无机复合交联剂LD-1的研制[J].油田化学, 2000; 17(3): 234-236 [13 ]刘双成,朱怀江,邓桂琴,等.堵水调剖类水基凝胶的力学性能研究[J].油田化学, 1995; 12(4): 332-336.
    [14]唐亚林,李立璞,侯可悦,等. HPAM/ALCit体系交联聚合物反应的27AL核磁共振研究[J].波谱学杂志, 2000; 17(6): 489-493
    [15]罗文利,吴肇亮,牛亚斌.胶态分散凝胶研究的新进展[J].油田化学, 1999; 16(2), 188-193
    [16]陈铁龙,张丽虹,周建民,等.胶态分散凝胶及其流变、渗流特性研究[J].油田化学, 1998; 15(3): 265-268, 277
    [17]景峰,黄荣华.AMPS-DMAEMA两性聚合物溶液性能的研究[J].高分子材料科学与工程.1997,13(6):109-113
    [18]冯玉军,郑焰,罗平亚.疏水缔合聚丙烯酰胺的合成及溶液性能研究[J].化学研究与应用, 2000,12(1): 70-73
    [19]罗文利等.两种驱油用AP型两性聚合物[J].油田化学.2000,17(1):55-57
    [20]彭晓宏.聚丙烯酰胺剂衍生物应用概况[J].精细与专用化学品,2001年增刊,24-28
    [21] Sarac A S, Yavuz O, Sezer E. The synthesis of CMS[J].Journal of Applied Polymer Sciene, 1999, 72:861-867
    [22] Mathakiya I,Vangni V,Rakshit A K. Terpolymerization of acrylamide, acrylic acid, and acrylonitrile: Synthesis and properties[J]. Journal of Applied Polymer Sciene,1998,69:217-228
    [23]余学军,徐丹,刘明,等.速溶高分子量聚丙烯酸钠的合成研究[J].化学世界,1999(6):310-312
    [24]赵彦生,沈敬之,李万捷.丙烯酰胺-丙烯酸共聚合反应的研究[J].太原工业大学学报,1994,25(2):81-84
    [25]蓝立文.高分子物理[M].西安:西北工业大学出版社, 1985: 153
    [26]吴凤芝,胡靖邦.聚合物935L与柠檬酸铝交联及其影响因素的研究[J].油田化学, 1987; 5(1): 11-17
    [27]王鉴,赵福麟.高价金属离子与聚丙烯酰胺的交联机理[J].石油大学学报(自然科学版), 1992; 16(3): 32-39
    [28]方贵霞,丁彩凤,王光信.温度对聚丙烯酰胺溶胶与凝胶粘度的影响[J].青岛化工学院学报, 1997; 18(2):132-136
    [29]聂小斌,刘娟,陈权生.油田水中聚丙烯酰胺的凝胶色谱法分析[J].大庆石油地质与开发, 1997; 16(3): 49-77
    [30]彭勃,李明远,纪淑玲,等.聚丙烯酰胺胶态分散凝胶微观形态研究[J].油田化学, 1998; 15(4): 385-361
    [31]谭忠印,马金,王琛,等.原子力显微镜对聚丙烯酰胺凝胶分形结构的研究[J].中国科学(B辑), 1999; 29(2): 97-100
    [32]刘敏,李宁乡.非水解聚丙烯酰胺/乙酸铬凝胶堵剂研究[J].油田化学, 1998; 15(3): 253-256.
    [33]郭松林,陈福明,李霞.交联聚合物成胶性能影响因素研究[J].大庆石油地质与开发, 2001; 20(2): 36-39
    [34]李想,林嘉平,周达飞.柠檬酸铝/聚丙烯酰胺胶态分散凝胶反应动力学和机理的研究[J].功能高分子学报, 2002; 15(1): 35-39
    [35]万福忠,陈昌镜,朱艳梅.常温合成高分子量聚丙烯酸钠及其分子量的测定[J].湖北化工,1994,11(3):28-30
    [36]严瑞瑄.水溶性高分子[M].第一版.北京:石油工业出版社,1998:84-178. 132-136.
    [37]林梅钦,李明远.聚丙烯酰胺/柠檬酸酸铝胶态分散凝胶性质的研究[J].高分子学报, 1999; (5): 606-611
    [38]孔昭柯.提高聚丙烯酰胺微凝胶热稳定性的研究[J].油田化学, 2002; 19(3): 260-264.
    [39]孔柏岭.长期高温老化对聚丙烯酰胺溶液性能影响的研究[J].油气采收率技术, 1996; 3 (4): 7-12
    [40]何勤功,古大治.油田开发用高分子材料[M].北京:石油工业出版社, 1990: 12
    [41]杨小华.丙烯酰胺类聚合物的研究与应用[J].精细石油化工, 2000; 7(4): 48-51
    [42]张黎明.油田用水溶性两性聚合物[J].油田化学, 1997; 14(2): 166-174
    [43]傅奎仕,高玉军,曾从荣,等. FT-213两性离子聚合物凝胶调剖剂的研究与应用[J].油田化学, 1995; 12(2):129-134
    [44]徐相凌,殷亚东,葛学武,等.微乳液聚合研究进展[J].高等学校化学学报, 1999; 20(3): 478-485
    [45]黄鹤,程时远,李建宗.合成聚合物乳液的研究与开发[J].湖北化工, 1997; (1): 13-16
    [46]王群,府寿宽.乳液聚合的最新进展(上)[J].高分子通报, 1996; (3): 141-151
    [47] H.瓦尔森, C. A.芬奇.合成聚合物乳液的应用[M].北京:化学工业出版社, 2004: 81
    [48]许国强,黄雪红.丙烯酰胺和表面活性大单体共聚物的合成及其性能研究[J].合成化学,1999,7(2):182-186
    [49]王群,府寿宽,于同隐.乳液聚合的最新进展(下)[J].高分子通报, 1996; (4): 210-220
    [50] Goodwall A R, Wilkinson M C, Hearn M C. Mechanism of emulsion polymerization of styrene in soap-free systems[J]. J.Polym. Sci.Polym.Chem.Ed.,1977,(15):2193
    [51]张洪涛,黄锦霞.乳液聚合新技术及应用[M].京:化学工业出版社,2007:143
    [52]金正中,朱永,胡涌东.水包水乳液合成及其相组成的研究[J].高等化学学报,1991,12(7):942-945
    [53] Hong-Quan Xie, Dating Tian, Ping He, et al. One-Step Preparation of Electrorheological Suspension Containing Poly(lithium acrylate)via Inverse Emulsion Polymerization and Study of its Electrorheological Effect[J]. J Appl Polym Sci, 1998; 68(13): 2169-2174
    [54]赵亮..丙烯酰胺与阳离子单体的双水相共聚合[D].浙江,杭州:浙江大学,2006. 129-134
    [55] Hosoda Y,Ueshima T,Ishihara S,Imamura K.In: Bailey W J,Tsuruta T,ed. Contemporary Topic in Polymer Science[J].Volume4.NewYork and London:Plenum Press,1980,575-586
    [56]狄超,胡涌东,金正中.涂料工业[M],北京:化学工业出版1994,2:1-4
    [57] J.P.Riggs,F. Rodriguez. J. Polym. Sci. PartA-1,1967,5:3151-3165
    [58]单国荣,曹志海,黄志明,翁志学.丙烯酰胺在聚乙二醇水溶液中的聚合动力学[J].高分子学报.2003,6:784-788
    [59] M.S. Cho ,K.J. Yoon ,B.K .Song. Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate: Synthesis and characterization. J.Appl.Polym.Sci.,2002,83:1397-1405
    [60]林浩,高建村,地木拉提.丙烯酰胺系反相乳液聚合研究进展[J].新疆石油学院学报, 2001; 13(1): 58-60
    [61]马少君. DMMC-AM反相乳液聚合及其应用[J].大连轻工业学院学报,1999,18(4):321-325
    [62]哈润华,王德松,候斯健等.高单体浓度下反相微乳液聚合[J].聚合物乳液通讯.1994,(2):22-25
    [63]廖刚.二甲基二烯丙基氯化铵的反相乳液共聚合[J].西南石油学院学报, 1997; 19(4): 102-106
    [64]徐相凌,张志成,费宾,等.丙烯酸钠反相乳液聚合[J].高分子学报, 1998; (2): 134-138
    [65]徐溢,曹京,赫明.高分子合成用助剂[M].北京:化学工业出版社, 2002: 143
    [66]赵科,孙培勤,刘大壮.核壳乳液聚合乳胶粒形态理论研究进展[J].高分子材料科学与工程, 2003; 19(6): 14-18
    [67]易昌凤,徐祖顺,程时远,等.丙烯酰胺和阳离子型单体反相乳液共聚合的研究[J].高分子学报,1999,(3):291-296
    [68]潘智存,王晓茹,张达华,等.丙烯酸系反相乳液共聚合反应的研究[J].清华大学学报(自然科学版),1998,38(6):49-52
    [69]路建美,朱秀林,万德纯,等.反相悬浮聚合分散剂的合成及性能[J].应用化学,1999,16(1):89-91.
    [70] M. V. Dimonie, C. M. Boghina, N. N. Marinescu, M. M. Marinescu, C. I. Cincu and C. G. Oprescu. Inverse suspension polymerization of acrylamide[J]. Eur Polym,1982,(18):639-645
    [71] Boghina C M,et al.J Makromol Sci Chem.,1985,22(5~7):591
    [72]李小伏,李绵贵.反相悬浮法淀粉接枝丙烯酸钠的研究[J].高分子材料科学与工程,1994,(6):18-21
    [73]李园春,李绵贵.丙烯酰胺反相悬浮聚合[J].应用化学,1993,10(3):114-115
    [74]刘莲英,孟晶,杨万泰.丙烯酰胺/氧化-还原引发体系的反相乳液聚合[J].北京化工大学学报, 2002; 29(2): 59-62
    [75]彭晓宏,盘思伟,沈家瑞.氧化还原引发体系对DMC/AM/AA三元水溶液共聚合的影响[J].精细化工,1999,28(8):543-546
    [76]张志成,徐相凌,张曼维.过硫酸钾引发丙烯酰胺微乳液聚合[J].高分子学报,1995(1):23-27
    [77]张万忠,乔学亮,陈建国,等.水溶性偶氮引发体系引发DMDAAC-AM共聚合[J].应用化学,2005,22(7),749-753
    [78] Baad W,et al. Die Makromol Chem: Rapid Comma,1986,7:235
    [79]韩晶杰,卢晓,郭卫东等.丙烯酰胺-DMC阳离子型共聚物的研制[J].精细石油化工进展.2001,7:23-25
    [80]酒红芳,高保娇,曹霞. 4-乙烯基吡啶与丙烯酰胺共聚合的研究[J].高分子学报.2002,4:438-442
    [81]张龙,刘雪雁,李长海,等.丙烯酰胺-丙烯酸乙酯基氯化铵共聚物的合成及絮凝作用[J].高分材料科学与工程,1999,15(6):59-61
    [82] Takeda,Hisao,K awano,Mutsumi[P].EP:0183466
    [83]尉小明,张春山,黄有泉.诱导作用及其对复合调剖剂延缓胶凝的作用机理研究[J].化学研究, 2001; 12(3), 16-19
    [84]程原,杜拴丽.丙烯酰胺反相乳液聚合的研究[J].华北工学院学报, 1999; 20(1): 79-82
    [85]罗文利.超高分子量两性离子聚合物的制备[P]. CN99111315.2, 2000.03.08
    [86]潘智存,王晓茹,张达华,等.丙烯酸系反相乳液共聚合反应的研究[J].清华大学学报(自然科学版), 1998; 38(6): 49-51
    [87]赵勇,何炳林,哈润华.反相微乳液中疏水缔合型聚丙烯酰胺的合成及其性能研究[J].高分子学报, 2000; (5): 550-553
    [88] Xu Zushun, Chen Yuanchun, Zhang Gueijun, et al. The Inverse Emulsion Polymerization of Acrylamide Using Polystyrene-Graft-Polyoxyethylene as the Stabilizer[J]. J Polym Sci: Part A: Polym Chem, 1999; 37(15): 2719-2725
    [89]黄鹏程.二甲基二烯丙基氯化铵反相乳液聚合动力学及机理的研究[J].化学学报, 1996; 54(3): 209-217
    [90]地木拉提,林浩,高建村.丙烯酰胺反相乳液聚合的研究[J].新疆石油学院学报, 2001; 13(3): 62-65
    [91]高青雨,王振卫,史先进,等. AM/SAMPS反相乳液聚合动力学[J].石油化工, 2000; 29(11): 841-844
    [92]刘莲英,杨万泰.UV光引发的丙烯酰胺反相乳液聚合[J].高分子学报2004;(4):545-551
    [93]徐相凌,张志成,张曼维.辐射引发丙烯酰胺微乳液聚合[J].高分子学报,1995 (3):377-379
    [94]廖刚.二甲基二烯丙基氯化铵的反相乳液共聚合[J].西南石油学院学报, 1997; 19(4): 102-106
    [95]李明远,林梅钦,郑晓宇,等.交联聚合物溶液深部调剖矿场试验[J].油田化学, 2000; 17(2): 144-147
    [96]张绍东.热采堵水调剖剂研究及应用[J].特种油气藏, 2001,(03):74-77
    [97]陈凌,王建云,胡国亮.深井碳酸盐岩油藏堵水工艺技术研究与应用[J].新疆石油学院学报,2004(1) :72-77
    [98]李爱芬,陈辉,陶军,等.聚合物驱后期阳离子聚合物堵聚可行性研究[J].石油大学学报(自然科学版), 2003; 27(1): 45-48
    [99]李宜坤,胡频,冯积累,等.水平井堵水的背景、现状及发展趋势[J].石油天然气学报, 2005,(5):757-760
    [100]李金发,齐宁,张琪,等.大剂量多段塞深度调驱技术[J].石油钻采工艺, 2007,(02):76-78
    [101]赵福麟,张贵才,周洪涛,等.二次采油与三次采油的结合技术及其进展[J].石油学报,2001,(05):69-72
    [102]岳湘安,侯吉瑞,邱茂君,等.聚合物凝胶颗粒调剖特性评价[J].油气地质与采收率, 2006,(02):81-84
    [103] Dimonie M W, et al. Inverse Suspension Poymerization of Acrylamide [J]. Eur Polym,1982, (18):639-645
    [104] Needham, R B, Doe, ed al . Polymer Flooding Review .JPT, Dec ,1987, 26 (12):1503-1507
    [105]刘庆旺,范振中编著.弱凝胶调驱技术[M].北京:石油工业出版社,2003
    [106]郑晓宇,李明远,肖建洪编著.交联聚合物溶液及其在采油中的应用[M].北京:化学工业出版社,2006
    [107]严瑞宣编著.水溶性高分子[M].北京:化学工业出版社,2003
    [108]左榘,张发军,安英丽,等.聚丙烯酸凝胶的动态行为及温敏相变[J].高分子学报, 1999; 4(4), 385-390
    [109]赵勇,何炳林,哈润华.反相微乳液中疏水缔合型聚丙烯酰胺的合成及其性能研究[J].高分子学报, 2000; (5): 550-553
    [110]王振卫,屈菊平,高青雨,等.丙烯酰胺-N-羟甲基丙烯酰胺反相乳液共聚合[J].化学研究, 1999; 10(4): 28-31
    [111]吴全才,姜涛,秦丹.反相乳液聚合合成DDAC/AM阳离子型共聚物[J].沈阳化工学院学报, 1996; 10(1): 57-62
    [112]王凤贺,夏明珠,雷武,等. Span 80-Tween 80/液体石蜡/AM-H2O反相微乳液体系[J].化工学报, 2005; 56(2): 368-371
    [113]项冠群,张英杰,尹家贵.共聚有机强阳离子絮凝剂的开发和利用[J].石化技术与应用, 2005; 23(2): 138-140
    [114]徐祖顺,封麟先,易昌风,等.两亲聚合物溶液性质及其乳液聚合的研究进展[J].高分子材料科学与工程, 1998; 14(4): 1-4
    [115]梁治齐,李金华.功能性乳化剂与乳化液[M].北京:中国轻工业出版社, 2000: 67-69
    [116]王亦农,马建标,孙平川,等.丙烯酰胺-丙烯酸交联共聚凝胶结构与分子运动的1H NMR自旋晶格弛豫研究[J].离子交换与吸附,1997,13(3):280-285
    [117]吴全才等.PDA阳离子型絮凝剂合成及应用的研究[J].工业水处理.1997,17(4):40-42
    [118]罗文利,牛亚斌,孙广华,等.两种驱油用AP型两性聚合物[J].油田化学, 2000; 17(1): 55-58.
    [119]赵林,胡东.胶态分散凝胶表征方法综述[J].江汉石油学院学报, 2001; 23(2): 67-69.
    [120]孔昭柯.提高聚丙烯酰胺微凝胶热稳定性的研究[J].油田化学, 2002; 19(3):
    [121]董朝霞,吴肇亮,林梅钦,等.盐浓度对交联聚合物线团形态的影响[J].油田化学, 2002; 19(1): 80-84
    [122]黄发荣,焦杨声编著.酚醛树脂及其应用[M].北京:化学工业出版社, 2003: 67-69
    [123]马广彦,徐振峰.水溶性酚醛树脂作为水基聚合物凝胶交联剂的研究[J]油田化学, 2000(04):310-313
    [124]何培新,肖卫东,黄鹤,等.高吸水性三元共聚树脂的合成及性能研究[J].高分子材料科学与工程,1999,15(6):65-68
    [125]黎钢,郝立根,杨芳,等.聚丙烯酰胺/酚醛树脂的胶凝反应动力学探讨[J].应用化学, 2003; 20(4): 391-393
    [126]景贵成,高树生,熊伟,等.STP强凝胶调剖剂的深度调剖性能[J].石油勘探与开发,2004,31(3):133-135
    [127]赵敏,周万富等.调剖半径对可动凝胶调剖效果的影响研究[J].中国科学技术大学学报,2004,Z1
    [128]王健,黄云,顾鸿君,等.砂岩油藏弱凝胶调驱的注入参数优选[J].油气地质与采收率,2006,13(1):90-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700