用户名: 密码: 验证码:
非恒定流充液管系统耦合振动特性及振动抑制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注水是油田增加原油产量的重要措施。注水系统是典型的充液管系统,其中的流动为高压非恒定流动,系统中存在液体的压力脉动和管壁的结构振动,彼此耦合,不仅会造成振动和噪声污染,而且严重的耦合振动可导致灾难性后果。因此,有必要研究注水系统的耦合振动特性及其影响因素,预测其振动响应,以便采取必要措施来抑制或减小系统的振动,减小或避免事故的发生,保障注水管网的安全运行。
     本文首先以Timoshenko梁理论为基础,导出了非恒定流充液管道的耦合非线性振动方程组,在周期性载荷作用下横向平面内的非线性耦合运动方程及其无量纲形式,进而导出了流固耦合拟线性振动方程。
     为了准确预测充液管系统在考虑流固互动效应时的振动响应,对时域响应计算方法进行了研究。提出了简单充液管系统时间步长和管道分段数的确定方法及网格加密方法,可以更好地捕捉到水击压力的变化;提出了“阻尼重分管道钢化优化法”,建立了确定复杂管系统时间步长及管道分段数的优化模型,从而解决了复杂充液管系统特征线法(MOC)计算时各管道时间步长必须相同的问题,并对一复杂充液管系统的计算结果和文献实验结果进行比较,验证了方法的正确性。使用特征线法-有限差分法(MOC-FDM),对一复杂充液管系统的非线性耦合振动响应进行了预测,计算结果与实验结果的比较,验证了方法的有效性。
     对连接耦合、泊松耦合、摩擦耦合、管道壁厚、结构阻尼及管材等因素对充液管系统振动响应的影响进行了研究。弱约束的连接耦合将液体的部分压能转换成管壁的振动能量,但泊松耦合效应又将管壁的部分振动能量转换成液体压能,泊松耦合与连接耦合起着能量转换器的作用;管系统结构阻尼对管道振动响应的衰减作用远大于液体粘性阻尼的作用,但大的结构阻尼引起液体压力升高;管道外径相同时,随管道壁厚的增大,管道振动能量减少,液体压能增加;使用铜管和钢管的充液系统,振动时的能量主要集中在液体里,而使用PVC管和PE管的充液系统,振动时的能量主要集中管道上;提高约束的相对弹簧刚度k可有效降低管道速度响应,与此同时,可显著增大铜管和钢管系统统的液体压能,但对PVC管和PE管系统统液体压能的影响很小。
     研究了充液管系统模态分析的方法,计算结果表明,FSI效应对充液管系统振动模态的影响非常显著,考虑FSI效应的固有频率阶数(在一定的频率范围内)明显多于忽略FSI效应的固有频率阶数,且固有频率值发生显著变化。运用MOC-FFT方法,在忽略管道及液体阻尼影响的情况下,求解了一简单充液管系统的固有频率,计算结果与模态分析结果以及文献的计算结果基本一致。
     最后以一联合站内注水子系统为研究对象,分别对调整约束位置和采用阻尼材料的振动抑制效果进行了仿真分析,结果表明:改变约束位置以减小弯头的伸出距离,可显著降低管道的振动速度和位移,但液体的压能增大;在管道表面覆盖合适的阻尼材料能够有效地降低充液管系统液体和管道的振动响应,减振效果明显。
     非恒定流充液管系统广泛存在于输油管道工程、动力水能工程、生物工程、航天工程、钻井工程、液压系统、建筑工程、核工业等领域,研究其耦合振动特性及其影响因素,预测其振动响应,以便采取必要措施来抑制或减小系统的振动,减小或避免事故的发生,对保障其正常运行具有非常重要的现实意义。
Waterflooding is an important measures to improve output of crude oil in oil field. Waterflooding system is a typical fluid-filled pipe syetem, flow in the system is unsteady and high-pressure flow, pressure pulsation of fluid and vibration of pipe wall exist in the system and they interacts each other, which brings about pollution of vibration and noise, and even disaster if the coupled vibration is severe. It is necessary to study the coupled vibration characteristics of unsteady-fluid-filled pipe system and influence factors of the vibration, to predict response of the system, to take some necessary measures to restrain or minish vibration of the system, to lessen the chance of accident or avoid accident, to safeguard the safty of the waterflooding system.
     Based on the Timoshenko beam theory, coupled nonlinear differential equation, lateral differential equations under periodic loads and corresponding dimensionless expressions of unsteady-fluid-filled straight pipe were developed, and quasilinear equations of the fluid-filled straight pipe with consideration of fluid-structure interaction (FSI) was obtained.
     Numerical methods to exactly get the vibration response solutions of fluid-filled pipe system with consideration of FSI in time-domain were studied. Method to define the time step, divided number of simple fluid-filled pipe system and method to subdivide the mesh spacing were advanced to better capture the change of waterhammer pressure;“Optimization method of damping-redistribution and pipe-steel”was put forword to establish the optimization model of time step and divided numbers of pipes for complex fluid-filled pipe system, which ensured time steps of all pipes being the same during numerical computing by the method of characteristics (MOC). A complex fluid-filled pipe system was adopted to study with the present method, the results agree with the experimental results from literature very well.
     MOC-FDM was applied to get fully-coupled nonlinear vibration responses of a complex fluid-filled pipe system, comparison between the numerical results and those of test from literature validates the validity of the method.
     Influences of junction coupling, Poisson coupling, frictional coupling, thickness of pipe wall, structural damping of pipe and material of pipe on the responses of fluid-filled pipe system were studied, the results show that weak-restriction junction converts some pressure energy of fluid into vibration of pipe wall, meanwhile Poisson coupling converts some kinetic energy of pipe into pressure energy of fluid, Poisson coupling and junction coupling act as energy transformer. Structural damping of pipe has greater peak attenuation of pipe vibration than viscous damping of fluid, but greater damping ration can causes rise of fluid pressure.
     When pipes’outer diameters are the same, the pipes with thicker wall have less kinetic energy, but increase pressure energy of fluid. The vibration energy of fluid-filled steel pipe and copper pipe system mainly concentrates in fluid, but the vibration energy of fluid-filled PVC pipe and PE pipe system mainly concentrate in pipes. Dynamic response of pipe wall can be reduced effectively with larger relative stiffness of restriction, at the same time, pressure energy of fluid in steel pipe or copper pipe system is strengthened remarkably, however, pressure energy of fluid in PVC pipe or PE pipe system is hardly influenced.
     Method of modal analysis of fluid-filled pipe system was studied, numerical results show that FSI has graet influence on modal characteristics, natural frequency modes with consideration of FSI is obviously more than that without consideration of FSI in a definite frequency range, and the natural frequency values changed evidently. MOC-FFT was advanced and adopted to get natural frequencies of a fluid-filled pipe system with neglect of structural damping of pipes and frictional damping of fluid, the results agree with the results of transfer matrix method (TMM) and those from literature.
     Finally, a waterflooding system was adopted to study. Vibration restrain results of adjusting restriction positions and using damping material were obtained by simulation, which show that vibration of pipe can be reduced remarkably by minishing out-length of pipe, but the pressure of fluid rises. Responses of pipe and fluid can be reduced by covering the pipe with appropriate damping material.
     Unsteady-fluid-filled pipe systems have been widely applied in many engineering realms such as oil transporting, waterpower, biology, spaceflight, drilling, hydraulic system, construction, nuclear industry and so on. researching the coupled vibration characteristics and influence factors of the vibration of the systems are helpful to predict their vibration responses, to take some necessary measures to restrain or minish their vibrations, to lessen the chance of accident or avoid accident, which is very important and necessary for safty of the pipe systems.
引文
[1]周云,刘季.管道振动及其减振技术[J].哈尔滨建筑工程学院学报, 1994, 27(5): 108-114
    [2] Paidoussis M P. Flow-induced Instability of Cylindrical Structures [J]. Applied Mechanics Review, 1987, 40(2): 163-175
    [3] Paidoussis M P. Pipes Conveying Fluid: A model Dynamical Problem [J]. Journal of Fluids and Structures, 1993, 7: 137-204
    [4]党锡淇,黄幼玲.工程中的管道振动问题[J].力学与践, 1993, 15(4): 12-15
    [5] Bourrieres F J. Sur un phenomene d'oscillation autoentretenue en mecanique des fluids reels [M]. Publications Scientifiques et Techniques du Ministere de l’air, 1939, 147: 57-65
    [6] Ashley H, Haviland G. Bending Vibrations of a Pipe Line Containing Flowing Fluid [J]. Journal of Applied Mechanics, 1950, 17: 229-232
    [7] Housner G. W .Bending Vibrations of a Pipe Line Containing Flowing Fluid [J]. Journal of Applied Mechanics, 1952, 19: 205-208
    [8] Long R H .Experimental and Theoretical Study of Transverse Vibration of a Tube Containing Flowing Fluid [J]. Journal of Applied Mechanics, 1955, 22: 65-68
    [9] Handelman G. H .A Note on the Transverse Vibration of a Tube Containing Flowing Fluid [J]. Quarterly of Applied Mathematics. 1955, 13: 326-329
    [10] Benjanin T B. .Dynamics of a System of Articulated Pipes Conveying Fluid-I Theory [J]. Proceedings of the Royal Society (Longdon) Ser. A, 1961, 261: 457~486
    [11] Gregory R W, Paidoussis M P. Unstable Oscillation of Tubular Cantilevers Conveying Fluid-I Theory [J]. Proceedings of the Royal Society (longdon) A, 1966, 293: 512-527
    [12] Chen S S. Forced vibration of a cantilevered tube conveying fluid [J]. Journal of the Acoustical Society of America, 1970, 48: 773-775
    [13] Chen S S. Dynamic stability of a tube conveying fluid [J]. ASCE Journal of the Engineering Mechanics Division, 1971, 97: 1469-1485
    [14] Chen S S. Vibration and stability of a uniformly curved conveying fluid [J]. Journal ofthe Acoustical Society of America, 1972, 51: 223-232
    [15] Chen S S. Flow-induced in-plane instability of curved pipes [J]. Nuclear Engineering and Design, 1972, 23: 29-38
    [16] Chen S S. Out-of-plane vibration and stability of curved tubes conveying fluid [J]. Journal of Applied Mechanics, 1973, 40: 362-368
    [17] Chen S S. Parallel flow-induced vibrations and instabilities of cylindrical structures [J]. Shock and Vibration Digest, 1974, 6(10): 1-11
    [18] Paidoussis M P, Issid N T .Dynamics stability of pipes conveying fluid [J]. Journal of Sound and Vibration, 1974, 33: 267-294
    [19] Paidoussis M P, Deksnis E B .Articulated , models of cantilevers conveying fluid: the study of a paradox [J]. Journal of Mechanical Engineering Science, 1970, 12: 288-300
    [20] Paidoussis M P .Dynamics of tubular cantilevers conveying fluid [J]. Journal of Mechanical Engineering Science, 1970, 12: 85-103
    [21] Paidoussis M P, Denise J P. Flutter of cylindrical shells conveying fluid [J]. Journal of Sound and Vibration, 1971, 16: 459-461
    [22] Paidoussis M P, Issid N T .Dynamics stability of pipes conveying fluid [J]. Journal of Sound and Vibration, 1974, 33: 267-294
    [23] Paidoussis M P .Flutter of conservative sysrem of pipes conveying incompressible fluid[J]. Journal of Mechanical Engineering Science, 1975, 17: 19-25
    [24] Paidoussis M P. Hydroelastic. AIAA Journal of Hydronautic, 1976, 14: 30-32
    [25] Paidoussis M P, Issid N T. Experiments on Parametric resonance of pipes containing pulsatile flow [J]. Journal of Applied Mechanics, 1976, 43: 198-202
    [26] Paidoussis M P, Laitbier B E. Dynamics of Timoshenko beams conveying fluid[J]. Journal of Mechanical Engineering Science, 1976, 18: 210-220
    [27] Paidoussis M P, Flow-induced vibration in nuclear reactors and heat exchangers[M]. Practical experiences and state of knowledge. In Practical Experiences with Flow-induced Vibration (eds. E. Naudascher & D. Rockwell), Berlin: Springer, 1980, 1-81
    [28] Paidoussis M P. Flow-induced Instabilities of cylindrical structures[J]. AppliedMechanics Reviews, 1987, 40: 163-175
    [29] Edelstein W S, Chen S S, Jendrzejczyk J K. A finite element computation of the flow-induced oscillation in a cantilevered tube[J]. Journal of Sound and Vibration, 1986, 107: 121-129
    [30] Sallstrom J H, Akesson B A. Fluid-conveying damped Rayleigh-Timoshenko beams in transverse vibration analyzed by use of an exact finite element. Part I: theory[J]. Journal of fluids and Structures, 1990, 4: 561-572
    [31] Sallstrom J H .Fluid-conveying damped Rayleigh-Timoshenko beams in transverse vibration}analyaxd by use of an exact finite element. Part II: application[J]. Journal of fluids and Structures, 1990, 4: 573-582
    [32] Sallstrom J H. Fluid-conveying damped Rayleigh-Timoshenko beams in transient transverse vibration studied by use of complex model synthesis[C]. In Proceedings 32nd AIAA/ASME/ASCE/ASC structures, structural Dynamics& Material Conference, Baltimore, MD, USA, April 1991
    [33] Semler C, Li G X, Paidoussis M P. The nonlinear equation of motion of pipes conveying fluid[J]. Journal of Sound and Vibration, 1994, 169(5): 577-599
    [34] Bajaj A K, Sethna P R. Effect of symmetry-breaking perturbation on flow-Induced oscillations in tubes[J]. Journal of Fluids and Structures, 1991, 5: 651-679
    [35] Li G X, Paidoussis M P. Stability, double degeneracy and chaos in cantilevered pipes conveying fluid[J]. International Journal of Non-Linear Mechanics, 1994, 29(1): 83-107
    [36] Makrides G A, Edelstein W S. Some numerical studies of chaotic motions in tubes conveying fluid[J]. Journal of Sound and Vibration, 1992, 4: 655- 670
    [37] Holmes P J. Pipes supported at both ends cannot flutter[J]. Journal of Applied Mechanics, 1978, 45: 619-622
    [38] Namachchivaya N S. Non-Linear dynamics of supported pipe conveying pulsating 1: Subharrnonic resonance[J]. International Journal of Non-Linear Mechanics, 1989, 24: 185-196
    [39] Namachchivaya N S, Tien W M. Non-Linear dynamics of supported pipe conveying pulsating 2: Combination resonance[J]. International Journal of Non-Linear Mechanics,1989, 24: 197-208
    [40] Dupuis C, Rousselet J. The equations of motion of curved pipes conveying fluid[J]. Journal of Sound and Vibration , 1992, 153(3): 473-489
    [41] Svetlisky V A. Statics, stability and small vibration of the flexible tubes conveying ideal incompressible fluid[J]. Raschetv na Prochnost, 1969, 14: 332-351
    [42] Unny T E, Martin E L, Dubey R N. Hydroelastic instability of a uniformaly curved pipe-fluid system[J]. Journal of Applied Mechanics, 1970, 37: 617-622
    [43] Doll R W, Mote C D .On the dynamics of curved and twisted cylinders transporting fluids[J]. ASME Journal of Pressure Vessel Technology, 1976, 98: 143-150
    [44] Misra A K, Paidoussis M P, Van K S. On the dynamics of curved pipes transporting fluid. Part I: Inextensible theory[J]. Journal of fluids and structures, 1988, 2: 211-244
    [45] Misra A K, Paidoussis M P, Van K S .On the dynamics of curved pipes transporting fluid. Part II: extensible theory[J]. Journal of fluids and structures, 1988, 2: 245-261
    [46] Aithal R, Gipson G S. Instability of internally damped curved pipes[J]. ASCE Journal of Engineering Mechanics, 1990, 116: 77-99
    [47] Dupuis C, Rousselet J. Application of the transfer matrix method to non-conservative systems involving fluid flow in curved pipes[J]. Journal of Sound and Vibration, 1985, 98: 415-429
    [48]魏发远,黄玉盈等.分析充液弯管临界流速的迁移矩阵法[J].固体力学学报, 2000, 21: 33-39
    [49]倪樵,张惠兰,黄玉盈等. DQ法用于具有弹性支承半圆形充液弯管的稳定性[J].分析工程力学, 2000, 17(6): 59-64
    [50]倪樵,黄玉盈.增量谐波平衡法用于充液管的非线性振动分析[J].华中理工大学学报2000, 28(10): 43-45
    [51]倪樵,黄玉盈,陈贻平.微分求积法分析具有弹性支承充液管的临界流速.计算力学学报, 2001, 18(2): 146~149
    [52]倪樵,黄玉盈.非线性约束粘性充液管的动力特性分析[J].华中理工大学学报, 2001, 29(2): 87~89
    [53]倪樵,黄玉盈.正交异性充液管的振动与稳定性分析[J].华中科技大学学报, 2001,29(3): 95~97
    [54]张立翔,黄文虎.充液管流固藕合非线性动力稳定分析[J].应用数学和力学, 2002, 23(9): 951~960
    [55] Young T .Hydraulic investigations, subservient to an intended croonian lecture on the motion of the blood [J]. Philosophical Transaction of the Royal Society. 1808, 98, Part2, Paper 13: 164-186.
    [56] Korteweg D J .On the velocity of propagation of sound in elastic pipes (inGerman) [J].Annalen der physikund Chemie, New Series.1878, 5, (12): 525-542.
    [57] Halliwell A R.Velocity of water hammer wave in an elastic pipe [J].ASCE Journal of the Hydraulics Division, 1963, 89(HY4): 1-21
    [58] Wylie E B, Streeter V L .Fluid Transients[M]. New York: McGraw-Hill, 1978
    [59] Gromeka I S .On the Velocity of Propagation of Wave-like Motion of Fluids in ElasticTubes(in Russian)[M]. Physical Mathematical Section of the Scientific Society of the Imperial University of Kazan, Kazan, Russia, May 1883: 1-19.
    [60] Lamb H .On the velocity of sound in a tube, as affected by the elasticity of the walls [J].Memoirs of the Manchester Literary and Philosophical Society, Manchester, 1898, 42(9): 1-16.
    [61] Joukowsky N .On the hydraulic hammer in water supply pipes[A].1898, English translation by OSimin: Water hammer.Proceedings of the American Water Works Association[C].1904.24: 341-424
    [62] Skalak R .An extension of the theory of water hammer[J].Transactions of the ASME.1956, 78(1): 105-116
    [63] Lin T C, Morgan G W .Wave propagation through fluid contained in a cylindrical elastic shell [J].Journal of Acoustical Society of America, 1956, 28(6): 1165-1176
    [64] Herrmann G, Mirsky I .Three-dimensional and shell-theory analysis of axially symmetric motion of cylinders [J].ASME Journal of Applied Mechanics, 1956, 23(4): 563-568
    [65] Spllier W R .Wave propagation in a thin cylindrical shell [J].ASME Journal of Applied Mechanics, 1965, 32(2): 346-350
    [66] Tang S C .Dynamic response of a tube under moving pressure [J].ASCE Journal of theEngineering Mechanics Division, 1956, 91(EM5): 97-122
    [67] King W W, Frederick D .Transient elastic waves in a fluid-filled cylinder [J].ASCE Journal of the Sanitary Engineering Mechanics Division.1968, 4(em5): 1215-1230
    [68] Thorley A R D .A pressure transients in hydraulic pipe lines [J].ASME Journal of Basic Engineering, September 1969, 91: 453-461
    [69] De Aromond R P, Rouleau W T .Wave propagation in viscous, compressible liquids confined in elastic tubes [J]. ASME Journal of Basic Engineering, 1972, 12: 811-817
    [70] Rubinow S I, Keller J B .Wave propagation in a visco elastic tube containing a viscous fluid [J]. Journal of Fluid Mechanics, 1978, 88, Part1: 181-203
    [71] Kuiken G D C .Approximate dispersion equations for thin walled liquid-filled tubes [J]. Applied Scientific Research, 1984, 41: 37-53
    [72] Kuiken G D C .Wave propagation in fluid line [J]. Applied Scientific Research, 1984, 41: 69-91
    [73] Kuiken G D C .Wave propagation in a thin-walled liquid-filled initially stressed tube [J]. Journal of Fluid Mechanics, 1984, 141: 289-308
    [74] Kuiken G D C .Amplification of pressure fluctuation due to fluid-structure interaction [J]. Journal of Fluid and Structures, 1988, 2: 425-435
    [75] Thkalkwijk J P, Kranenburg C .Cavitation in horizontal pipe lines due to water hammer [J]. ASCE Journal of the Hydraulics Division.1971, 97(HY9): 1723-1725
    [76] Thkalkwijk J P, Kranenburg C .Closure to“cavitation in horizontal pipe lines due to water hammer”[J]. ASCE Journal of the Hydraulics Division, 1973, 99(HY3): 529-530
    [77] Kot C A, Hsieh B J, Youngdahl C K.Transient cavitation in fluid-structure interactions [J]. ASME Journal of Pressure Vessel Technology, November 1981, 103: 345-351
    [78] Wylie E B .Simulation of vaporous and gaseous cavitation [J]. ASME Journal of Fluids Engineering, 1984, 106(3): 307-311
    [79] Tijsseling A S .Fluid Structure Interactionin Case of Water hammer with Cavitation[D]. Ph.D.Thesis of Delft University of Technology, Delft, The Netherlands, 1993
    [80] Brown F T .The Transient Response of Fluid Lines [J]. Journal of basic Engineering, 1962, 12: 546-553
    [81] Brown F T .A Quasi method of Characteristics with Application to Fluid Lines with Frequency Dependent Wall Shear and Heat Transfer [J]. ASME Journal of Basic Engineering, 1969, 6: 423-432
    [82] D’Souza A F, Oldenburger R .Dynamic Response of Fluid Lines [J]. Journal of Basic Engineering, 1964, 86: 589-598
    [83] Holmboe E L, Rouleau W T .The Effect of Viscous Shear on Transients in liquid Lines [J]. ASME Journal of Basic Engineering, 1967, 3: 174-180
    [84] Tentarelli S C .Propagation of Noise and Vibration in Complex hydraulic Tubing Systems[D]. Ph. D. Thesis of Lehing University, Department of Mechanical Engineering, Bethlehem, USA, 1990
    [85] Zielk M .Frequency-dependent Friction in transient Pipe Flow [J]. ASME Journal of Basic Engineering, 1968, 90(1): 109-115
    [86] Hino M, Sawamoto M and Takasu S .Study on the Transient to Turbulence and Frictional coefficient in an Oscillatory Pipe Flow [J]. Transactions of JSCE, 1977, 9: 282-284
    [87] Brunone B, Golia U M and Greco M .Some Remarks on the Momentum Equation for Fast Transients[C]. international Meeting on Hydraulic transients with Column Separation, 9th Round Table, IAHR. Valencia, Spain, 1991: 140-148
    [88] Davidson L C and Smith J E. Liquid-structure Coupling in Curved Pipes [J]. The Shock and Vibration Bulletin, 1969, 40: 197-207
    [89] Wood D J and Chao S P. Effect of Pipeline Junctions on Waterhammer Surges [J]. ASCE Transportation Engineering Journal, 1971, 97: 441-456
    [90] Jones S E and Wood D J. The Effect of Axial Boundary Motion on Pressure Surge Generation [J]. ASME Journal of Basic Engineering, 1972, 94(2): 441-446
    [91] Ellis J A. Study of Pipe-liquid Interaction Following Pump-trip and Check-valve Closure in a Pumping Station[C]. Proceedings of 3rd International Confernce on Pressure Surges. BHRA Canterbury, March 1980: 203-220
    [92] Tijessing A S, Vardy A E and fan D. Fluid Structure Interaction in a T-piece Pipe [J]. Journal of Fluids and Structure, 1996, 10: 763-786
    [93] Tijessing A S, Vardy A E and Fan D. Fluid Structure Interaction and Cavitation in a single-elbow Pipe System [J]. Journal of Fluids and Structure, 1996, 10: 395-420
    [94] Kolsky H .Stress Waves in Solids[M]. Oxford: Clarendon Press, 1953
    [95]陈一鸣,赵永凯,赵静一等.液压管流的振动问题[J].东北重型机械学院学报, 1994, 18(3): 275-282
    [96] JIAO Xiu-wen, YAN Xiang-an, ZHANG Cheng-pu. A METHOD OF CALCULATING PRESSURE DISTRIBUTION OF P ERIODIC PULSATION FLUID TRANSPORTED IN PIPING NETWORK[J]. Transactions of Tianjin University, 1996, 2(2): 56-59
    [97]曹树平,邹占江,易孟林.液压管道受迫振动的有限元分析[J].机床与液压, 1996, (4): 32-33, 46
    [98]焦秀稳,曹玉平,石晓庆等.传输管网流体脉动研究[J].海洋学报, 1996, 18(6): 114-118
    [99]焦宗夏,华清,于凯.传输管道流固耦合振动的模态分析[J].航空学报, 1999, 20(4): 316-320
    [100]张智勇,沈荣瀛.充液直管管系统中的固-液耦合振动响应分析[J].振动工程学报, 2000, 13(3): 455-461
    [101]杨春犁.一种空间管路的复模态模型及流固耦合振动分析[J].排灌机械, 2000, 18(2): 38-39
    [102]张立翔,黄文虎, A. S. Tijsseling.水锤诱发弱约束管道流固棍合振动频谱分析[J].工程力学, 2000, 17(1): 1-12
    [103] Ting E C, Hosseinipour A. A numerical approach for flow-induced vibration of pipe structure[J]. Journal of Sound and Vibration, 1983, 88: 289-298
    [104] Kohli A K, Nakra B C. Vibrainn analysis of straight and curved tubes conveying fluid by means of straight beams finite elements[J]. Journal of Sound and Vibration, 1984, 93: 307-311
    [105] Paidoussis M P and Li G X. Pipes conveying fluid: a model dynamical problem[J]. Journal of Fluids and Structures. 1993, 8: 853-876
    [106]黄玉盈,邹时智,钱勤等.充液管的非线性振动、分叉与混沌—现状与展望[J].力学进展, 1998, 28(1): 30-42
    [107] Bajaj A K, Sethna P R. Effect of symmetry-breaking perturbation on flow-Induced oscillations in tubes[J]. Journal of Fluids and Structures, 1991, 5: 651-679
    [108] Ko C L, Bert C W. A perturbation solution for non-linear vibration of uniformly curved pipes conveying fluid [J]. International Journal of Non-Linear Mechanics, 1986, 21: 315-325
    [109] Wiggert D C, Hatfield F J, Shtckenbruck S .Analysis of liquid and strctural transients in piping by the method of characteristics. In Fluid Transients in Fluid-structure interaction-1985 [J], ASME-FED 1985b, 30: 97-102
    [110] Budny D D, Hatfteld F J, Wiggert D C .An experimental study on the influence of structural damping on internal fluid pressure during a transient flow [J]. ASME Journal of Pressure Vessel Technology, 1990, 112: 284-290
    [111] Wiggert D C, Hatfield F J, Stuckenbruck S .Analysis of liquid and structural transients by the method of charaeteristics [J]. ASME Journal of Fluids Engineering, 1987, 100: 161-165
    [112] Elansany A S, Contractor D N .Valve Closure: Method for Controlling Transients [J]. Journal of Pressure Vessel Technology, 1994, 116: 437-442
    [113] Vardy A E, Fan D .Fluid-structure interaction in a T-piece pipe [J]. Journal of Fluids and Structures, 1996, 10: 763-786
    [114]蔡亦钢.流体传输管道动力学[M].浙江:浙江大学出版社, 1990
    [115]王学芳,叶宏开,汤荣铭.工业管道中的水锤[M].北京:科学出版社, 1995
    [116] Lee U, Joohong K .Dynamics of branched pipline systems conveying internal unsteady flow [J]. Journal of vibration and Acoustics, 1999, 121: 114-122
    [117] Soliman H O, Datta T K .The Seismic Response of a Piping System to Non-stationary Random Ground Motion [J]. Journal of Sound and Vibration, 1995, 180(3): 459-473
    [118] Misra A K, Paidoussis M P, Van K S .On the Dynamics of Curved Pipes Transporting Fluid. Part I: Inextensible Theory [J]. Journal of Fluids and Structures, 1988, 2: 221-244
    [119] Lavooij C S W, Tijsseling A S .Fluid-structure Interaction in Liquid-filled Piping Systems [J]. Journal of Fluids and Structure, 1991, 5: 573-595
    [120] Heinsbroek A G T J, Lavooij C S W, and Tijsseling A S .Fluid-structure interaction innon-rigid piping-a numerical investigation[A]. Transactions of SMiRT 11, Tokyo, Japan, 1991, Paper B12/1, 309–314
    [121] Gorman D G., Reese J M , and Zhang Y L .Vibration of a Flexible Pipe Conveying Viscous Pulsating Fluid Flow [J]. Journal of Sound and Vibration. 2000, 230(2): 379-392
    [122] Everstine G C .Dynamic analysis of fluid-filled piping systems using finite element techniques [J]. ASME Journal of Pressure Vessel Technology, 1986, 108: 57-61
    [123] Jamnia M A,Jackson J E .A preliminary study for finite element analysis of two-dimensional fluid-solid interaction[C]. In Proceedings of the 5th International Conference on Pressure Surges, BHRA, Hanover,ermany, September 1986, 5l-62
    [124] Hatfield F J, Wiggert D C, Otwell R S .Fluid structure interaction in piping by component symhesis [J]. ASME Journal of Fluids Engineering, 1982a, 104: 318-325
    [125] Fujita K, Tanaka M .A coupled vibration analysis of piping system with contained fluid[C]. In Proceedings of the 5th International Conference on Pressure Surges, BHRA,Hanover, Germany, September 1986, 227-232
    [126] Finneden S .Spectral finite element analysis straight fluid-filled pipes with flanges [J]. Journal of Sound and Vibration, 1997,199(1): 125-154
    [127] Sallstrom J H .Fluid-conveying damped Rayleigh-Tmoshenko beams in transient transverse vibration studied by use of complex modal synthesis [J]. Journal of Fluids and Structures, 1993, 7: 551-563
    [128] EI-Raheb M .Vibrations of three-dimensional pipe systems with acoustic coupling [J]. Journal of Sound and Vibratian, 1981, 78(1): 39-67
    [129] Lesmez M W, Wiggert D C, Hatfield F J .Modal Analysis of Vibrations on Liquid-filled Piping-systems [J]. Journal of Fluids Engineering, 1990, 112(3): 311-318
    [130] J Charley and G. Gaignaert .Vibroacoustical Analysis of Flow in Pipes by Transfer Matrix with Fluid-structure Interaction[C]. Proceedings of the 6th International Meeting of the IAHR Work Group on the Behavior of Hydraulic Machinery under Steady Oscillatory Conditions. Lausanne, Switzerland. September, 1993
    [131] Zhang Li-xiang, A S Tijsseling, A E Vardy .Frequency Response Analysis in Internal Flows [J]. Journal of Hydrodynamics, 1995, Ser. B. 3: 39-49
    [132] Zhang Li-xiang, Huang Wen-hu, A S Tijsseling, A E Vardy .Normal Modes of Fluid-structure Interaction [J]. Journal of Hydrodynamics, 1998, Ser. B. 4: 71-89
    [133] Zhang Li-xiang, A S Tijsseling and A E Vardy .FSI Analysis of Liquid-filled pipes [J]. Journal of Sound and Vibration, 1999, 244(1): 69-99
    [134] Otani A, Kobayashi H, Kobayashi N, Tadaishi Y. Performance of a viscous damper using electrorheological fluid[C]. In: Ma D C ed. Proceedings of the 1994 ASME Pressure Vessel and Piping Conference, Minneapolis, Minnesota, 1994-06. New York: ASME, 1994. PVP-Vol. 287, MD-Vol. 47, 93-97
    [135] Fang J, Lyons G J. Structural damping of tensioned pipes with reference to cables[J]. Journal of Sound and Vibration, 1996. 193(4): 891-907
    [136] Kwong A H M, Edge K A. Structure-borne noise prediction in liquid-conveying pipes systems[A]. Proc of Institution of Mech Eng Part 1-J Syst. Control Eng, 1996, 210(3): 189-200
    [137] Kwong A H M, Edge K A. A method to reduce noise in hydraulic systems by optimizing pipe clamp locations[A]. Proc of Institution of Mechanical Engineers Part I-J Syst Control Eng, 1998, 212(14): 267-280
    [138] Tijsseling A S, Vardy A E. On the suppression of coupled liquid/pipe vibrations[A]. In: Thomassen E. ed. Proc 18th International Symposium on Hydraulic Machinery and Cavitation, Valencia, Spain, 1996-09. Netherlands: IAHR 1996: 945-954
    [139] Koo G H, Part Y S. Vibration reduction by using periodic supports in a piping system[J]. Journal of Sound Vibration, 1998, 210(1): 53-68
    [140] Tsai Y K, Lin Y H. Adaptive modal vibration control of a fluid-conveying cantilever pipe[J]. Journal of Fluid and Structure. 1997. 11: 535-547
    [141] Chen Y Q, Fan Q S, Zhu Z G. Acquiring appropriate objective functions during optimal vibration design of the piping system[M]. In: Chien Wei-Zang eds. Proceedings of the 4th international conference on nonlinear mechanics, ICNM 4, China, 2002-08. Shanghai: Shanghai University Press, 2002: 544-549
    [142] Yau C H, Bajaj A K, Nwokah O D. Active control of chaotic vibration in a constrained flexible pipe conveying fluid[C]. In: Ibrahim R A, Namachchivaya N S, Bajaj A K,eds. Proceedings of the Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, California, 1992-11. Now York: ASME, 1992, DE-Vol. 50, AMD, Vol. 144, 93-108
    [143] Lin Y H, Chu C L, Active flutter control of a cantilever tube conveying fluid using piezoelectric actuators[J]. Journal of Sound and Vibration, 1996, 196(1): 97-105
    [144] Semercigil C E, Turn O F, Lu S. Employing fluid flow in a cantilever pipe for the vibration control[J]. Journal of Sound and Vibration, 1997, 205: 103-111
    [145] Doke H, Hiramoto K. Active control of cantilevered pipes conveying fluid with constraints on input energy[J]. Journal of Fluids and Structures, 1998, 12: 615-628
    [146] Lin Y H, Chu C L. Active modal control of Timoshenko pipes conveying fluid[J]. Journal of Chinese Institute of Engineers, 2001, 24(1): 65-74
    [147] Caillaud S, de Langre E, Philippe P. Measurement of critical velocities for fluid elastic instability using vibration control[C]. In: Pettigrew M J, Paidoussis M P eds. Flow-Induced Vibration: Presented at the 1999 ASME Pressure Vessels and Piping Conference, Boston, Massachusetts, 1999-08-01-05. New York: ASME, 1999. PVP-Vol. 389: 49-55
    [148] Saroj K B, Ahmed N U. Optimal Control of Flow-Induced Vibration of Pipeline[J]. Dynamics and Control, 2001, 11: 187-201
    [149] Lin Y H, Tsai Y K. Non-linear active bibration control of a cantilever pipe conveying fluid[J]. Journal of Sound and Vibration, 1997, 202(4): 477-490
    [150] Borglund D. Active nozzle control and integrated design optimization of beam subject to fluid-dynamic forces[J]. Journal of Fluid and Structure, 1999, 13: 269-287
    [151] Charalambos Antoniades, Panagiotis D. Christofides. Feedback control of nonlinear differential difference equation systems[J]. Chemical Engineering Science. 1999, 54: 5677-5709
    [152]李玩幽,张洪田等.船舶管道振动半主动控制技术实验研究[J].哈尔滨工程大学学报, 1999,20(3): 11-15
    [153] Svingen B .A Frequency domain solution of the coupled hydromechanical vibrations in piping systems by the finite element method[C]. Proceedings of the 17th IAHRSymposium on Hydraulic Machinery and Cavitation, Beijing, China, Sept. 1994, Vol. J: 603-614
    [154] Lee U, Pak C H and Hong S C.The dynamics of a piping system with internal unsteady flow [J]. Journal of Sound and Vibration. 1995, 180: 297-311
    [155]张立翔,黄文虎, Tiisseling A S.充液管道流固耦合振动研究进展[J].水动力学研究与进展, 2000, Ser A, 15(3): 367-378
    [156] Wiggert D C, Otwell R S, Hatfield F J. The effect of elbow restraint on pressure transients [J]. ASME Journal of Fluids Engineering, 1985, 107: 402-406
    [157] Walker J S, Phillips J W .Pulse propagation in fluid-filled tubes [J]. ASME J. Applied Mechanics, 1977, 3: 31-35
    [158] Valentin R A, Phillips J W, Walker J S. Reflection and transmission of fluid transients at an elbow [J]. In: Transactions of SMiRTS. Berlin, Germany, 1979, paper B: 2-6
    [159] Hsiao R C, Zhang H J. Robust analysis of optimal flow control for reducing fluid transients [J]. IEEE, 1991: 49-53
    [160] Brown F T, Tentarelli S C. Dynamic Behavior of Complex Fluid-Filled Tubing Systems-Part I: Tubing Analysis [J]. Journal of Dynamic Systems, Measurement, and Control, 2001, 123: 71-77
    [161] Doebelin E O.System Modeling and Response-Theoretical and Experimental Approaches[M]. John Wiley and Sons. 1980
    [162]李宝顺.液压系统液体振动固有频率的计算[J].液压与气动, 2004, (6): 16-19
    [163] Wilkinson D H. Acoustic and Mechanical Vibration in Liquid-filled Pipework Systems [C]. Proceedings BNES International Conference on Bibration in Nuclear Plant. Keswick, May 1978, Paper 8.5: 863-878
    [164] Nanayakkara S and Perreira N D.Wave Propagation and Attenuation in Piping System [J]. ASME Journal of Acoustics, Stress, and Reliability in Design. 1986, 108: 441-446
    [165] Lesmez M W, Modal Analysis of Vibrations in Liquid-filled Piping Systems[D]. Ph. D. Thesis of Michigan State University, Department of Civil and Environmental Engineering, East Lansing, USA, 1989
    [166] De Jong C A F. Analysis of Pulsation and Vibrations in Fluid-filled Pipe Systems[D]. Ph.D. Thesis of Eindhoven University of Technology. Elndhoven, The Netnerlands, 1994
    [167] Svingen B.Fluid Structure Interaction in Piping Systems[D]. Pd. D. Thesis of the Norwegian University of Science and Technology, Faculty of Mechanical Engineering. Trondheim, Norway. 1996: 61-71
    [168] Vardy A E and Brown J M B. Transients, Turbulent, Smooth Pipe Friction [J]. IAHA Journal of Hydraulic Research, 1995, 33: 435-456
    [169]张立翔,杨柯.流体结构互动理论及其应用[M].北京:科学出版社, 2004
    [170]王乐勤,何秋良.管系统振动分析与工程应用[J].流动机械, 2002, 30(10): 28-31
    [171] Landau I D .A survey of model refrence adaptive technique(theory and application) [J]. Automatica, 1974, 10(4): 353-379
    [172] ShinY W, Wiederman A H .A Method for Suppression of Pressure Pulse in Fluid-filled Piping, part: Theoretical Analysis [J]. ASME Journal of Pressure Vessel Technology, 1992, 114: 60-65
    [173]孙庆鸿,张启军,姚慧珠.振动与噪声的阻尼控制[M].北京:机械工业出版社, 1993
    [174]季文美,方同,陈松淇.机械振动[M].北京:科学出版社, 1985
    [175]何永森,刘邵英.机械管内流体数值预测[M].北京:国防工业出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700