用户名: 密码: 验证码:
运动纸带动力学及振动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴向运动系统横向振动和稳定性的研究有着重要的实际应用价值。但已有研究的对象主要为轴向运动的弦线、梁以及薄板。对运动纸带的研究相对较少。本文将运动纸带作为研究对象,对具有弹性边界、中间刚性支承及中间弹性支承的运动矩形纸带的横向振动和稳定性问题、加速运动矩形纸带的稳定性区域、运动矩形纸带的振动控制、纸张的振动断裁技术等问题进行了系统的研究。具体研究工作如下:
     (1)研究了边界上具有弹性约束的运动矩形纸带的自由振动。将伽辽金无网格法应用于求解具有弹性约束运动矩形纸带的横向振动问题。基于弹性动力学Hamilton原理的推广,采用伽辽金无网格法建立了具有弹性约束边界的运动矩形纸带横向振动的无量纲运动方程和特征方程。通过数值计算给出了纸带的振动频率随纸带运动速度及弹性约束刚性系数的变化曲线,分析了纸带速度及弹性约束对运动矩形纸带的横向振动特性的影响。
     (2)研究了具有中间刚性支承及弹性支承的运动矩形纸带的横向振动特性和稳定性问题。将Laplace变换方法应用于求解具有中间刚性支承及弹性支承的运动矩形纸带的横向振动问题。根据D'Alembert原理,导出了具有中间刚性支承及弹性支承的运动矩形纸带的运动微分方程和特征方程。用Laplace变换的方法求得了四边固支条件下运动纸带的振动频率,并获得了前3阶振动频率与纸带运动速度、纸带张力、弹性支承刚度系数、中间支承位置之间的关系。
     (3)研究了线性及正弦半波型变密度运动矩形纸带的动力学特性及稳定性问题。通过引入无量纲量,得到了变密度运动矩形纸带的无量纲运动微分方程。采用微分求积法离散无量纲振型微分方程和边界条件,得到了该问题的复特征方程。通过数值计算,得到了系统的前3阶振动频率,并分析了纸带的张力比、长宽比、无量纲运动速度及纸带的密度系数对其横向振动及稳定性的影响。
     (4)研究了纸带的运动速度为平均速度与简谐速度的叠加时加速运动纸带的稳定性区域的变化问题。分析了平均速度、简谐运动速度的幅值、纸带张力比、纸带长宽比对加速运动纸带的动力稳定性区域的影响。
     (5)研究了变密度运动矩形纸带的横向振动控制问题。利用有限差分法,对变密度纸带的动力学方程进行离散,导出了运动矩形纸带横向振动控制系统的状态方程。应用次最优控制法,对运动矩形纸带的横向振动进行控制。仿真分析了实施控制后运动矩形纸带横向振动的响应和衰减过程。结果表明,次最优控制方法能够有效地控制运动矩形纸带的横向振动。
     (6)对纸张断裁的振动裁切技术进行了研究。实现了切纸机的振动裁切新工艺,较大地降低了纸张对刀床的裁切抗力和机器受到的猛烈冲击。设计研制了振动裁切试验台,搭建了振动测试系统。通过理论计算和试验得到了最优激振频率。
The study of the vibration and stability of the axially moving systems is of great significance. The main existing subjects are mainly about the axially moving beam, the axially moving column and the axially moving plate. Few papers have been presented on the moving paper web. In this paper, the moving paper web are the object of study. The tranverse vibration and stability of the moving paper web with elastically restrained edge, intermediate rigid support and intermediate elastically support are researched. The stability region of the accelerating paper web, the control of the moving rectangular paper web and the technique of vibration cutting for paper are analyzed respectively in this paper. The main research works are as follows.
     (1) The vibration problems of the moving rectangular paper web with the edge attached to distributed elastic restraint are studied. The element-free Galerkin method is proposed to solve the transverse vibration of the moving rectangular paper web with elastically restrained edge. Based on the extended Hamilton's principle for the elastic dynamics system, the dimensionless equations of motion of the moving rectangular paper web with elastically restrained edge are established by the element-free Galerkin method, and the eigenvalue equations are presented. Via numerical calculation, the curves of the vibration frequency of the moving rectangular paper web versus dimensionless moving speed and the elastic stiffness of edge elastically restrained are obtained. The effects of moving speed and edge elastically restrained on the free vibration characteristics of the moving rectangular paper web are analyzed as a conclusion.
     (2) The tranverse vibration and stability of the moving paper web with intermediate rigid support and intermediate elastically support are researched respectively. The Laplace transforms method is proposed to solve the transverse vibration of the moving rectangular paper web with intermediate rigid support and elastic support. According to D Alembert theory, the differential equation of motion and the eigenvalue equations of the moving rectangular paper web with intermediate rigid support and elastic support are obtained. The vibration frequencies on the condition of four edges clamped are obtained by the Laplace transforms method. The relationships of the first three order steps of vibration frequency versus velocity, tension, the stiffness of intermediate elastic support and intermediate support position of paper web are obtained.
     (3) The dynamics and stability of the moving rectangular paper web with linearly and half-sinusoid varying density are investigated. The dimensionless equation of motion of the moving rectangular paper web with varying density is obtained by introducing dimensionless variables and parameters. The complex eigen-equation is derived by the discretization of the dimensionless equation of vibration modes and boundary conditions using the Differential Quadrature method. The first three order steps of vibration frequency of the system is obtained by numerical calculation and the effects of the tension ratio, aspect ratio, the dimensionless moving speed and density coefficient on the dynamic behavior and stability of the moving rectangular paper web are analyzed.
     (4) The stability region of the accelerating paper web is developed when the speed is superposition by mean velocity and harmonic velocity. The influence on the stability region of the accelerating paper web exerted by the mean velocity, the amplitude of harmonic velocity, tension ratio of paper web and aspect ratio is investigated.
     (5) The transverse vibration control of the moving rectangle paper web with varying density is studied. The state equation of transverse vibration control system is obtained by using finite difference calculus to separate the dynamical equation. The suboptimum method is used to control the transverse vibration of the moving rectangle paper web. Then the response and the attenuation state of the transverse vibration of the paper web are presented by simulation analysis. It shows that suboptimum method can control the transverse vibration of the moving rectangle paper web effectively.
     (6) The use of vibration cutting technology in the printing machinery is studied. The new technology of vibration cutting in cutter is realized. The cutting resisting force of cutting bed and the severe shock of cutter beared are reduced significantly. The test-bed of vibration cutting is designed, and the vibration test system is built. The optimum excited frequency has been obtaind on the basis of theoretical calculation and experiments.
引文
[1]齐福斌.卷筒纸胶印机[M].北京:印刷工业出版社,2005.
    [2]武吉梅.单张纸平版胶印印刷机[M].北京:化学工业出版社,2005.
    [3]J. Aiken. An account of some experiments on rigidity produced by centrifugal force[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1878,5(29):81-105.
    [4]Y. F. Wang, X. T. Liu, L.H.Huang. Stability analyses for axially moving strings in nonlinear free and aerodynamically excited vibrations[J]. Chaos, Solitons & Fractals,2008,38(2):421-429
    [5]M. Pakdemirli, A. G. Ulsoy, A. Ceranoglu. Transverse vibration of an axially accelerating string[J]. Journal of Sound and Vibration,1994,159:179-195.
    [6]M. Pakdemirli, A. G. Ulsoy. Stability analysis of an axially accelerating string[J]. Journal of Sound and Vibration,1997,203:815-832.
    [7]陈立群,J. W.Zu.轴向运动弦线纵向振动及其控制[J].力学进展,2001,31(4):535-545.
    [8]陈立群.轴向运动弦线横向非线性振动的能量和守恒[J].振动与冲击,2002,21(2):81-82.
    [9]刘芳,陈立群,骆毅.轴向运动弦线横向共振分析[J].振动与冲击,2004,23(3):99-100.
    [10]刘芳,陈立群.轴向运动弦线横向振动的频域分析[J].力学季刊,2004,25(1):124-128.
    [11]周洪刚,朱凌,郭乙木.轴向加速度运动弦线横向振动的数值计算方法[J].机械强度,2004,25(1):15-19.
    [12]L. Q. Chen. Analysis and control of transverse vibrations of axially moving strings[J]. ASME Applied Mechanics Reviews,2005,58(2):91-115.
    [13]吴俊,陈立群.轴向变速运动弦线的非线性振动的稳态响应及其稳定性.应用数学和力学,2004,25(9):917-925.
    [14]A. G. Ulsoy, C. D. Mote. Vibration of wide band saw blades[J]. ASME Journal of Engineering for Industry,1982,104(1):71-78.
    [15]Bhat R B, Xistris G D, Sankar T S. Dynamic behavior of a moving belt supported on an elastic foundation[J]. Journal of Mechanics Design,1982,104(1):143~147
    [16]Schaier G S. The vibration of a rotating circular strings subject to a fixed elastic restraint[J].Journal of Sound and Vibration,1984,92(1):11~19
    [17]Perkins N C. Linear dynamics of a translating string on an elastic foundation[J]. Journal of Vibration and Acoustics,1990,112(1):2~7
    [18]Wicker J A. Response solutions for the vibration of a traveling string on an elastic foundation[J] Journal of Vibration and Acoustics,1994,115(1):137~139
    [19]Zhu W D, Mote C D Jr. Propagation of boundary disturbances in an axially moving strip in contact with rigid and flexible constraints[J]. Journal of Applied Mechanics,1995,52(4):873~879
    [20]Lakshmikumaran A V, Wickert J A. On the vibrating of coupled traveling string and air bearing systems[J]. Journal of Vibration and Acoustics,1995,118(3):398~405
    [21]Mochensturm E M, Perkins N C, Ulsoy A G. Stability and limit cycles of parametrically excited axially moving strings[J]. Journal of Vibration and Acoustics,1995,115(3):345~351
    [22]Chen J S. Natural frequencies and stability of an axially traveling string in contact with a stationary load systems[J]. Journal of Vibration and Acoustics,1997,152(2):152~157
    [23]Moon J, Wickert J A. Nonkinear vibration of power transmission belts[J]. Journal of Sound and Vibration,1997,200(4):419~431
    [24]Fung R F, Huang J S, Chen Y G. The transient amplitude of the viscoelastic traveling string: an integral constitutive law[J]. Journal of Sound and Vibration,1997,201(2):153~157
    [25]Renshaw A A, Rahn C D, Wickert J A, Mote C D Jr. Energy and conserved functional for axially moving materials[J]. Journal of Vibration and Acoustics,1998,120(2):534~535
    [26]Zhang L, Zu J W. Modal analysis of serpentine belt drive systems[J]. Journal of Sound and Vibration, 1999,222:259~279
    [27]Ozkaya E, Pakdemirli M. Lie group theory and analytical solutions for the axially accelerating string problem[J]. Journal of Sound and Vibration,2000,230(4):729~742
    [28]Zhang L, Zu J W. One-to-one auto-parametric resonance in serpentine belt drive system[J]. Journal of Sound and Vibration,2000,232(4):783~805
    [29]Hong-Fong Fung, Jinn-Wen Wu, Pai-Yat Lu. Adaptive boundary control of an axially moving string system[J]. Journal of Vibration and Acoustics,2002,124:435~440
    [30]L.Q. Chen, J.W. Zu, J. Wu, Dynamic response of the parametrically excited axially moving string constituted by the Boltzmann superposition principle[J]. Acta Mechanics,2003,152:143-155.
    [31]L. Q. Chen, W. J. Zhao. A numerical method for simulating transverse vibrations of an axially moving string [J]. Applied Mathematics and Computation,2005,150:411-422.
    [32]L.Q. Chen, X. D.Yang. Transverse nonlinear dynamics of axially accelerating viscoelastic beams based on 4-term Galerkin truncation [J]. Chaos, Solitons and Fractals,2005,27(3):748-757.
    [33]X. D. Yang, L. Q. Chen. Stability in parametric resonance of axially accelerating beams constituted by Boltzmann's superposition principle[J]. Journal of Sound and Vibration,2005,289:54-55.
    【34】陈立群,轴向加速运动弦线的能量变化[J].自然杂志,2001,23(2):123
    【35】陈立群,Zu J W.平带驱动系统振动分析研究进展[J].力学与实践,2001,23(4):8-12
    【36】吴俊、陈立群.轴向变速运动弦线的非线性振动的稳态响应及其稳定性[J].应用数学和力学,2004,9(25):917~925
    [37]L. Q. Chen, N. H. Zhang, J. W. Zu.The regular and chaotic vibrations of axially moving viscoelastic string based on 4-order Galerkin truncation [J]. Journal of Sound and Vibration,2003,251(14):754-773.
    [38]L. Q. Chen, J. Wu, J. W. Zu. The chaotic response of the viscoelastic traveling string: an integral constitutive law[J]. Chaos, Solitons and Fractals,2004,21 (2):349-357.
    【39】L. Q. Chen, J. W. Zu, W. Wu, X. D. Yang. Transverse vibrations of an axially accelerating viscoelastic string with geometric nonlinearity[J]. Journal of Engineering Mathematics,2004,48(2): 171-182.
    【40】陈立群,吴俊.轴向变速运动粘弹性弦线的横向振动分岔[J].固体力学学报,2005,25(1):83-85.
    【41】W. J. Zhao, L. Q. Chen. A numerical algorithm for non-linear parametric vibration analysis of a viscoelastic moving belt[J]. International Journal of Nonlinear Science and Numerical Simulation, 2002,3 (2):129-134.
    【42】L. Q. Chen, W. J. Zhao. A computation method for nonlinear vibration of axially accelerating viscoelastic strings[J]. Applied Mathematics and Computation,2005,152:305-310.
    【43】L. Q. Chen, W. J. Zhao, J. W. Zu. Transient responses of an axially accelerating viscoelastic string constituted by a fractional differentiation law[J]. Journal of Sound and Vibration,2004,278(4/5): 851-871.
    【44】L. Q. Chen, N. H. Zhang, J. W. Zu.The regular and chaotic vibrations of axially moving viscoelastic string based on 4-order Galerkin truncation [J]. Journal of Sound and Vibration,2003, 251(14):754-773.
    【45】L. Q. Chen, J. W. Zu, W. Wu, X. D. Yang. Transverse vibrations of an axially accelerating viscoelastic string with geometric nonlinearity[J]. Journal of Engineering Mathematics,2004,48(2): 171-182.
    【46】L. Q. Chen, N. H. Zhang, J. W. Zu. Bifurcation and chaos of an axially moving viscoelastic string[J]. Mechanics Research Communications,2002,29:81-90.
    【47】L. Q. Chen, J. Wu, J. W. Zu. Asymptotic nonlinear behaviors in transverse vibration of an axially accelerating viscoelastic string[J]. Nonlinear Dynamics,2004,35(4):347-350.
    【48】L. Q. Chen, N. H. Zhang. Nonlinear dynamics of axially moving viscoelastic strings based on translating eigenfunctions[J]. ⅩⅪ International Congress of Theoretical and Applied Mechanics, Warsaw, Poland,15-21 August,2004.
    【49】陈立群,吴俊.轴向运动粘弹性弦线的横向非线性动力学行为[J].工程力学,2005,22(4):48-51.
    【50】L. Q. Chen, H. Chen, C. W. Lim. Asymptotic analysis of axially accelerating viscoelastic strings[J]. International Journal of Engineering Science,2008,45(10):975-985.
    【51】K. Marynowski. Non-linear dynamic analysis of an axially moving viscoelastic beam[J]. Journal of Theoretical and Applied Mechanics 2002,40:455-482.
    【52】K. Marynowski, T. Kapitaniak. Kelvin-Voigt versus Bugers internal damping in modeling of axially moving viscoelastic web[J]. International Journal of Non-Linear Mechanics,2002,37:1147-1151.
    【53】K. Marynowski. Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension[J] Chaos, Solitons and Fractals,2004,21:481-490.
    [54]L. Q. Chen, X. D. Yang, C. J. Cheng. Dynamic stability of an axially accelerating viscoelastic beam[J]. European Journal of Mechanics A/Solid,2004,23:559-555.
    [55]L. Q. Chen, X. D. Yang. Stability in parametric resonance of axially moving viscoelastic beams with time-dependent speed, Journal of Sound and Vibration,2005,284:879-891.
    [56]杨晓东,陈立群.粘弹性变速运动梁稳定性的直接多尺度分析[J].振动工程学报,2005,18(2):223-225.
    [57]X. D. Yang, L. Q. Chen. Bifurcation and chaos of an axially accelerating viscoelastic beam[J]. Chaos, Solitons and Fractals,2005,23:249-258.
    [58]L. Q. Chen, X. D. Yang. Steady-state response of axially moving viscoelastic beams with pulsating speed:comparison of two nonlinear models [J]. International Journal of Solids and Structures,2005, 42:37-50.
    [59]X. D. Yang, L. Q. Chen. Stability in parametric resonance of axially accelerating beams constituted by Boltzmann's superposition principle[J]. Journal of Sound and Vibration,2005,289:54-55.
    [60]L. Q. Chen, X. D. Yang. Vibration and stability of an axially moving viscoelastic beam with hybrid supports[J]. European Journal of Mechanics A/Solids 2005,25:995-1008.
    [61]孙玉秋,程常现,刘玉玲,高亮.纸带张力控制实验装置的设计与研制计[J].北京印刷学院学报,1999,7(1):17-20.
    [62]吴晓.变密度环形薄膜的轴对称振动修正摄动解[J].振动与冲击,2002,21(4):59-51.
    [63]吴晓.具有中间支承的薄膜固有振动分析[J].振动与冲击,2005,25(1):140-141.
    [64]吴晓,马建勋.多支承矩形厚板固有横振频率的特征方程[J].振动与冲击,1997,15(4):52-55.
    [65]侯志勇,王忠民.轴向运动薄膜的横向振动和稳定性分析[J].西安理工大学学报,2005,21(4):402-404.
    [66]Changho Shina, Jintai Chungb, Hong Hee Yoo. Dynamic responses of the in-plane and out-of-plane vibrations for an axially moving membrane[J]. Journal of Sound and Vibration,2005,297(2): 794-809.
    [67]Marynowski K. Two-dimensional rheological element in modeling of axially moving viscoelastic web[J]. European Journal of Mechanics A/Solids,2005,25 (1):729-744.
    [68]Giannoccaro, Oishi, Sakamoto. An experimental web tension control system: system set-up[J]. Advances in Production Engineering & Management,2007,4 (2):185-193.
    [69]A. Kulachenko, P. Gradin, H. Koivurova. Modeling the dynamical behaviour of a paper web Part Ⅰ [J]. Computers and Structures,2007,85(1):131-147.
    [70]A. Kulachenko, P. Gradin, H. Koivurova. Modeling the dynamical behaviour of a paper web Part Ⅱ[J]. Computers and Structures 2007,85(2):148-157.
    [71]王仪明,蔡吉飞,赵吉斌.高速胶印机关键技术研究及进展[J].中国机械工程,2007,28(10): 1255-1259.
    [72]Ulsoy A G. Vibration control in rotating or translating elastic systems[J]. J Dyn Syst Measur Contr,1984,105(1):5~14
    [73]刘定强,王忠民.轴向运动矩形薄膜的横向振动控制[J].西安理工大学学报,2007,23(1):52-55
    [74]Belytschko T, Krongauz Y, Organ D, et al. Meshless methods:An overview and recent developments [J]. Comput. Mech. Engrg,1995,139:3-47
    [75]宋康祖,陆明万,张雄.固体力学中的无网格方法[J].力学进展,2000,30(1):55-55
    [76]娄路亮,曾攀.影响无网格方法求解精度的因素分析[J].计算力学学报,2003,20(3):313-318
    [77]张廷军,张晓炜.无网格迦辽金法应用的参数选择及内部边界处理[J].工程地质学报,2001,321-325
    [78]张雄,宋康祖,陆明万.无网格法的研究进展及其应用[J].计算力学学报,2003,5:730-742
    [79]张雄,刘岩.无网格法.北京:清华大学出版社/Springer,2004
    [80]刘天祥,刘更,朱均,虞烈.无网格法的研究进展[J].机械工程学报,2002,38(5):7-12
    [81]Fleming M, Chu Y A, Organ B. Enriched element-free Galerkin methods for crack-tip field[J]. Int J Numer Meth Engng,1997(40):1483-1504
    [82]Belytschko T, Organ D, Gerlanch C. Element-free Galerkin methods for dynamic fracture in concrete[J].Compu Appl Mech Engrg,2000(187):385-399
    [83]LiewK M, Ng T Y, Wu Y C. Mesh free method for large deformation analysis-a reproducing kernel particle approach[J]. Engineering Structures,2002(24):543-551
    [84]Lucy L B. A numerical approach to the testing of the fission hypothesis[J].The Astron. J,1977, 8(12):1013-1024
    [85]Gingold R A and Monaghan J J.Smoothed particle hydrodynamics: theory and applications to non-spherical stars[J]. Mon Not. Roy. Astrou. Soc,1977,18:375-389
    [86]Monaghan J J. An introduction to SPH[J].Comput Phys.Comm,1988,48:89-95
    [87]Swegle J W, Hicks D L, Attaway S.W. Smoothed particle hydrodynamics stability analysis[J]. Journal of Computational Physics,1995,115:123-134
    [88]Dyka C.T. Addressing tension instability in SPH methods. Technical Report NRL/MR/5384,NRL, 1994
    [89]Johnson G R, Stryk R A, Beissel S R. SPH for high velocity impact computations [J]. Computational Methods in Applied Mechanics and Engineering,1995,139:347-373
    [90]Monaghan J J and Gingold G A. Shock simulation by the Particle Method SPH [J]. Journal of Computational Physics,1983,52:374-389
    [91]Monaghan J J. Particle method for hydrodynamics [J]. Computational Physics Report,1985,3:71-124
    [92]Nayroles B, Touzot G, Villon P.Generalizing the finite element method:diffuse approximation and diffuse elements[J]. Computational Mechanics,1992,10:307-318
    [93]Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994,37:229-255
    [94]张雄,刘岩.无网格法[M].北京:清华大学出版社,2004.
    [95]周维垣,寇晓东.无单元法及其工程应用[J].力学学报,1998,30(2):193-202
    [96]寇晓东,周维垣.应用无单元法近似计算拱坝开裂[J].水力学报,2000,(10):28-35
    [97]张伟星,庞辉.弹性地基板计算的无单元法[J].工程力学,2000,17(3):138-144
    [98]周小平,周瑞忠.对无单元法插值函数的几点研究[J].福州大学学报,2000,28(2):52-55
    [99]庞作会,葛修润,王水林.无网格伽辽金法在边坡开挖问题中的应用[J].岩土力学,1999,20(1):51-54
    [100]庞作会,葛修润,郑宏,王水林.一种新的数值方法--无网格法伽辽金法(EFGM) [J].计算力学学报,1999,15(3):320-329
    [101]庞作会,葛修润,王水林,郑宏.对无网格法伽辽金法(EFGM)的两点补充[J].岩石力学与工程学报,1999,18(5)::497-502
    [102]陈建,吴林志,杜善义.采用无单元法计算含边沿裂纹功能梯度材料板的应力强度因子[J].工程力学,2000,17(5):139-144
    [103]Krysl P, Belytschko T. Analysis of thin shells by element-free Galerkin method [J]. International Journal of Solids and Structures,1995.33:3057-3080
    [104]Zhu T, Zhang J, Arluri SN. A meshless local boundary integral equation method for solving nonlinear problems [J]. Computational Mechanics,1998,22(3):174-185
    [105]Arluri S N, Zhu T. A new meshless local Pretrov-Galerkin approach in computational mechanics[J].Computational Mechanics,1998,22(2):117-127
    [106]Liu G R, Gu Y T. Meshless Local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches [J].Computational Mechanics,2000,25:535-545
    [107]Atluri S N, Kim H G, Cho J Y. A critical assessment of the truly meshless local Petrov-Galerkin(MLPG) and local boundary integral equation(LBIE) methods [J]. Computational Mechanics,1999,24(4):348-372
    [108]Atluri S N, Zhu T L. New concepts in meshless methods[J]. International Journal for Numerical Methods in Engineering,2000,47:537-555
    [109]Vemlere P L, Irassar G M, Fiecadenti G M and Laura P A A. Dynamic analysis of a rod with an intermediate elastic support [J]. Journal of Sound and Vibration,1984,98 (3):381-389.
    [110]Ingber M S, Pate A Land Salazer M J. Vibration of a clamped plate with concentrated mass and spring attachments [J]. Journal of Sound and Vibration,1992,153:142-155.
    [111]Glabisz W. Vibration and stability of a rod with elastic supports and concentrated mass under conservative and non-conservative force [J]. Computers and Structures,1999,70:305-313.
    [112]Azim S. Free Vibratio of Circular Plates with Elastic or Rigid Interior Support [J]. Journal of Sound
    [131]Bert C W, Malik M. Differential quadrature method in computational mechanics:a review. Applied Mechanics Review.1995,49(1):1-28.
    [132]Levine W S, Athans M. On the determination of the optimal constant output feedback gains for linear multivariable systems. IEEE Trans. On Automatic Control,1970,15(1):44-48
    [133]Johnson T L, Athans M. On the design of optimal constrained dynamic compensators for linear constant systems. IEEE Trans. on Automatic Control,1970,15(12):558-559
    [134]顾仲权.振动主动控制[M].北京:国防工业出版社1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700