用户名: 密码: 验证码:
基于PZT厚膜的MEMS微变形镜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应光学技术在地基天文望远镜、星载/机载相机、激光武器、激光通讯和医学检测等领域有着广泛的应用前景。变形镜作为自适应光学系统的核心部件,其微型化是自适应光学系统微型化和集成化的关键。使用MEMS技术制造的微变形镜由于其具有体积小、成本低、响应快以及集成度高等传统变形镜不具备的特点,已成为变形镜技术发展的重要方向。其中,连续薄膜式微变形镜通过独立控制各致动器单元的位移来控制镜面形状,镜面变形连续且填充比高,利于实现自适应光学系统的高精度补偿,已成为国内外微变形镜研究的热点。
     本文以PZT厚膜驱动的单晶硅连续薄膜式微变形镜为研究对象,以提高连续薄膜式压电微变形镜的冲程、降低工作电压、微型化器件为目标,对连续薄膜式压电微变形镜的结构设计方法、压电微变形镜的加工制造技术、变形镜的驱动和性能表征以及变形镜的形变自检测技术等方面进行了系统的研究。
     在微变形镜的结构设计方面,以压电材料的逆压电效应与镜面弹性负载的相互耦合为基础,提出了两种压电微变形镜结构。根据板壳理论和压电方程建立了两种结构的理论模型,研究了变形镜的结构参数(主要有PZT直径、电极直径、PZT/Si厚度、镜面厚度等)对致动器和镜面冲程的影响,讨论了各参数之间的相互耦合关系;此外,分析了致动器和镜面之间的固定方式以及PZT/Si之间的界面接合层对致动器和镜面形变的影响,最后给出了合理的压电微变形镜的结构参数。
     在压电微变形镜的加工制造方面,主要涉及三个方面:压电厚膜致动器阵列、镜面以及两者的集成。致动器阵列加工中的一个关键问题是硅基PZT厚膜的制备,本论文以商业化的PZT陶瓷片和SOI基片的接合技术以及PZT陶瓷的湿法刻蚀减薄技术为途径,成功制备出了厚度可控(20~100μm)、结构致密以及性能优异的硅基PZT厚膜。在硅基PZT厚膜的基础上再辅以MEMS加工工艺,制得压电微致动器阵列。镜面基于SOI技术制备,以保证镜面有较好的厚度一致性和较低的残余应力;镜面和致动器阵列之间通过中间层技术进行固定以保证足够的结合强度,并且中间层技术的引入在一定程度上补偿了致动器阵列的不平整度。最后根据设计的工艺方案,制备了10×10阵列的MEMS压电微变形镜样机。
     在变形镜的驱动控制方面,以Maxim公司集成化的单片多路D/A芯片以及基于MOS管的放大电路,设计并制作了多通道电压源,用于微致动器阵列的驱动。在性能测试方面,用激光多普勒微振动测量仪测试了压电变形镜样机的变形特性,致动器在装配镜面前后的冲程分别为4.5μm和3.8μm,压电位移迟滞分别为9%和13%,采用“归零登山法”后,致动器和镜面的迟滞得到明显改善,分别为3.7%和1%。装配镜面前后的基频谐振频率分别为72KHz和21KHz,镜面影响函数约为30%。用WYKO光学轮廓仪测试了致动器和镜面单元的初始形变和表面粗糙度,镜面的平面度用实验室自制的Michelson干涉仪表征。
     在变形镜形变自检测方面,通过分割PZT上电极同时实现了PZT膜的驱动和位移传感功能,中心部分为驱动电极,外圈部分为传感电极。当电压加在驱动电极上时,致动器发生形变,从而在外圈的PZT上产生应力,并在传感电极上产生压电电荷,该压电电荷量在一定程度上反映了PZT致动器的形变量,进而定量分析了压电电荷量和致动器(镜面)形变之间的相互关系。最后,制备了集成传感器的压电微致动器阵列,并进行了性能测试。实验结果表明,该传感器的灵敏度约为4pC/nm,和理论值基本相符。用目前的电荷检测电路,可以实现的位移检测分辨率约为50nm。传感器的集成工艺简单,且集成后不影响变形镜的性能。
     基于以上研究,本论文在以下方面具有创新之处:1)提出了基于PZT厚膜驱动的连续薄膜式MEMS压电微变形镜,并建立变形镜的理论模型。和传统的体压电变形镜相比,具有低工作电压、高动态响应、大冲程、高阵列密度、低成本等优点;2)提出了基于环氧接合以及湿法刻蚀减薄技术的硅基PZT厚膜制备方法,所成膜性能优异,且工艺简单,对设备要求低,能在多种衬底上集成;3)提出了压电微变形镜的形变自检测功能的集成技术,工艺简单,集成度高,有望实现自适应光学系统的微型化。
Adaptive optics plays a significant role in the correction of wave aberrations and is applied in various fields such as astronomical observation,laser weapon,laser communication and retina imaging.The aberrated incoming image can be compensated by the adaptive optics,which is mainly composed of the deformable mirror(DM)and a wavefront sensor.Recently,MEMS continuous face-sheet deformable mirror has been deeply investigated,because it offers the advantages of high resonance frequency,low actuation voltage,low cost as well as small volume and weight compared with the traditional deformable mirror and have tremendous potential to realize the adaptive optical system integrated on a single chip.The profile of the continuous face-sheet deformable mirror is controlled by an underlying array of actuator.Pushing one actuator produces a localized deflection of the mirror surface,termed the influence function.The deflection typically extends to adjacent actuators where it changes the mirror surface height by a fraction of the peak deflection.This fraction is termed the coupling coefficient.Then it is possible to realize the high-order Zernike modes compensation using continuous face-sheet deformable mirror.
     This dissertation mainly focuses on the PZT thick film actuated MEMS continuous face-sheet deformable mirror to achieve large mirror stroke,high device stiffness and good mirror surface flatness.Accordingly,several topics,including the DM structure deigns,the fabrication techniques,the driving and measurement techniques as well as the self-sensing technology of the DM,are investigated in the dissertation.
     Two designs of the deformable mirror working in d_(31)mode are proposed.These two designs are nearly identical in structure.The only difference between the two designs is that one design employs a full sheet PZT thick film for all the actuators and the other one uses patterned PZT thick film for each actuator.To aid in the DM design, an analytical model based upon the theory of plates and shells is developed to determine the optimal DM membrane dimensions.The main parameters for optimization are the PZT/electrode diameter,the PZT/Si thickness and the mirror thickness.In addition,the influence of the post diameter on the mirror deflection is analyzed using finite element method,and the effect of the bonding layer between the PZT/Si interface and actuator/mirror interface are also discussed.Finally,the DM structure dimensions are selected according to both the optimal results and the feasibility of fabrication techniques.
     As for the fabrication process of the deformable mirror,it mainly includes three parts:the actuator array,the membrane mirror and the assembly of the actuator array and mirror.The key technique in the actuator array fabrication is the preparation of PZT thick film on silicon.The reported preparation methods of PZT films such as the screen printing and sol-gel methods are usually difficult in meeting thickness and piezoelectricity.Therefore,in this dissertation,a hybrid process combining PZT-Si bonding and wet etching technology is developed to prepare silicon based PZT thick film whose electromechanical properties are comparable to the bulk materials.The mirror was fabricated using SOI wafer so that the mirror may have good thickness uniformity and low residual stress.The assembly of the actuator array and the mirror is realized by using an additional interfacial layer which is also beneficial for the final mirror surface flatness.Finally,a prototype of deformable mirror consisting of a 36-μm-thick single-crystal-silicon membrane which is supported by a 10×10 actuator array was fabricated.
     The deformable mirror is driven by a home-build multi-channel dc-voltage supplier which consists of several D/A chips(Maxim Co.)and a series of voltage amplifiers.The deflection of the PZT actuator and mirror were measured with a laser Doppler vibrometer(MLD-821,Neoark Co.).The PZT actuator produces a stroke of 4.5μm at 100V and a piezoelectric displacement hysteresis of about 9%.The resonance frequency of the PZT thick film actuator was measured at about 72 KHz. When a 36-μm-thick silicon membrane mirror was assembled,the mirror has a maximum deflection of 3.8μm with a displacement hysteresis of about 13%and a resonant frequency of 21 KHz.The hysteresis loop was greatly eliminated by using the method of straying on the same segment.Base on this strategy,the displacement hysteresis for the actuator alone and the mirror are reduced to 3.7%and 1%, respectively.The measured influence function is approximately 30%.The influence function refers to the interactuator coupling or cross-talk between adjacent pixels.The initial deformation and surface roughness of the actuator and mirror were measured by a WYKO profile.The mirror surface flatness was characterized by a home-build Michelson interferometer.
     Bulk PZT thick film actuator integrated with displacement sensor,termed self-sensing actuator,is also investigated.The PZT film is used as not only an actuating layer but also a displacement sensing layer,which is achieved by dividing the metal layer on the top surface of the PZT film into two parts:central top electrode for actuation and outer annular electrode for displacement detection.When the actuator moves,the piezoelectric charge is induced in the outer annular PZT due to piezoelectric effect.The total amount of accumulated charge is proportional to the stress acting on the PZT,which is in turn proportional to the actuator displacement. By collecting the piezoelectric charge,the actuator displacement can be detected.A theoretical model is proposed to determine the structure parameters of the sensor and predict the sensor sensitivity.Experiments were performed on the sensor integrated PZT thick film actuator,and the measurement results show that the integrated piezoelectric sensor has a displacement sensitivity of approximately 4pC/nm which is close to the theoretical prediction.Using the current test circuit,a displacement resolution of about 50nm is achieved.In addition,the integration of displacement sensor into the actuator requires no additional fabrication process and has no influence on the DM performance.
     The following points are pioneering work of this dissertation:①The MEMS continuous face-sheet deformable mirror based on PZT thick film actuator is proposed for the first time and correspondingly an analytical model is developed for parameter optimization.Compared with the commercial piezoelectric-stack actuators that are widely employed in commercial DM,our DM requires lower operating voltage and less power consumption for producing the same magnitude of mirror deflection.In addition,our DM costs less and can achieve high actuator density and large aperture more easily due to MEMS batch fabrication;②PZT thick films have been deposited on silicon substrate by combining PZT-Si bonding and wet etching technology.The measured electromechanical properties of the PZT thick films are comparable to the corresponding bulk ceramics.This method separates the PZT wafer fabrication from the target substrate and allows integrating the PZT thick films onto many kinds of substrates;③a self-sensing PZT thick film actuator was developed for the MEMS deformable mirror.By collecting the piezoelectric charge induced in the outer annular PZT,the actuator displacement can be detected.The sensor integration requires no additional fabrication process and does not influence the performances of the DM.It may provide the potential for the microminiaturization of the adaptive optics system.
引文
[1]杨强,”自适应光学13单元双压电晶片变形反射镜的研制,”北京理工大学.
    [2]马品仲,”自适应光学在4.3m望远镜设计中的应用,”物理,vol.24(6),1995.
    [3]马品仲,”自适应校正波面畸变系统设计,”红外与激光技术,vol.24(5),1995.
    [4]吴毅,”变形镜波前校正非线性相应剩余位相方差分析,”,光学学报,vol.15(8),1995.
    [5]李有宽,”双变形镜自适应光学全场补偿模拟,”强激光与粒子束,vol.12(6),2000.
    [6]张志伟,”自适应光学再空间光学遥感器上的应用,”高技术通讯,2000.
    [7]W.T.Cathey,"Holographic simulation of compensation for atmospheric wavefront distortion," in IEEE,1968,p.360.
    [8]J.W.Hardy,"Real-time wavefi'ont correction system," U.S.Patent 3,400,Ed.,1975.
    [9]J.C.Wyant,"White light extended source shearing interferometer," Appl.Optics,vol.13,p.200,1974.
    [10]P.T.B.W.B.Bridges,"Coherent optical adaptive techniqures," Appl.Optics,vol.13,p.291,1974.
    [11]D.L.Fried,"Optical heterodyne detection of an atmospherically distorted singal wave front," in IEEE,1967,pp.57-67.
    [12]D.L.Fried,"Imaging through the atmosphere," in Proc.of SPIE,1976,p.20.
    [13]D.P.Greenwood and D.L.Fried,"Power spectra requirements for wave-front compensative systems," J.Opt.Soc.Am.,vol.66,pp.193-206,1976.
    [14]D.P.Greenwood,"Bandwidth specification for adaptive optics systems," J.Opt.Soc.Am.,vol.67,pp.174-176,1977.
    [15]D.L.Fried,"Probability of getting a lucky short-exposure image through turbulence,"J.Opt.Soc.Am.,vol.68,pp.1651-1657,1978.
    [16]D.P.Greenwood,"Mutual coherence function o a wave-front corrected by zonal adaptive optics," J.Opt.Soc.Am.,vol.69,pp.549-554,1979.
    [17]W.Y.Cathey,C.L.Hayes,W.C.Davis,and V.F.Pizzurro,"Compensation for atmospheric phase effects at 10.6 micron," Appl.Optics,vol.9,p.701,1970.
    [18]L.C.Bradley and J.Herrmann,"Phase compensation for thermal blooming," Appl.Optics,vol.13,p.331,1974.
    [19]D.P.Greenwood and C.A.Primmerman,"Adaptive optics research at Lincoin laboratory,"Lincoin Laboratory Journal,vol.5,pp.1,3,1992.
    [20]"Atmospheric-compensation technology," J.Opt.Soc.Am.,vol.11,1994.
    [21]EMerkle and N.Hubin,"Adaptive optics for the European very large telescope," in Proc.of SPIE,1991,pp.283-292.
    [22]"http://www.ls.eso.org/index.html."
    [23]P.J.Lena,"Astrophysical results with the Come-on+ adaptive optics system," in Proc.of SPIE,1994,pp.1099-1109.
    [24]L.Lai,J.-P.Veran,ERigaut,D.Rouan,P.Gigan,F.Lacombe,P.J.Lena,R.Arsenault,D.Salmon,J.Thomas,D.Crampton,J.M.Rletcher,R.James,C.Boyer,and P.Jagourel,"CFHT adaptive optics:first results at the telescope," in Proc.ofSPIE,1997.
    [25]P.L.Wizinowich,J.E.Nelson,T.S.Mast,and A.D.Gleckler,"W.M.Keck observatory adaptive optics program," in Proc.of SPIE,1994.
    [26]N.Hubin,B.Theodore,P.Petitjean,and B.Delabre,"Adaptive ooptics system for the very large telescope," in Proc.ofSPIE,1994.
    [27]L.A.Thompson,"University of Illinois seeing improvement system(UnlSIS):an adaptive optics instrument for the Mt.Wilson 2.5m telescope," in Proc.of SPIE,1994.
    [28]L.Noethe,G.Andreoni,F.Franza,P.Giordano,F.Merkie,and R.N.Wilson,"Latest development of active optics of the ESO NTT and the implication for the ESO VLT,"Proc.ofSPIE,vol.1542,pp.293-296,1991.
    [29]T.Hovsepian,"Design and tests of the VLT M1 mirror passive and active supporting system," in Proc.of SPIE,pp.424-435.
    [30]"http://www.hq.eso.org/."
    [31]"http://www.eso.org/public/outreach/press-rel/."
    [32]"http://subarutelescope.org/Observing/Telescope/Parameters."
    [33]S.Oya,A.Bouvier,O.Guyon,M.Watanabe,Y.Hayano,and Hideki,"Performance of the deformable mirror for Subaru LGSAO," in Proc.of SPIE,2006,pp.62724S-8.
    [34]H.Takami,M.Watanabe,N.Takato,S.Colley,and M.Eldred,"Laser guide star AO project at the Subaru Telescope," Proc.ofSPIE,vol.5490,pp.837-9,2004.
    [35]S.Oya,O.Guyon,M.Watanabe,Y.Hayano,H.Takami,and M.Iye,"Deformable mirror design of Subaru LGSAO system," in Proc.of SPIE 2004,pp.1546-1555.
    [36]"http://www.gemini.edu."
    [37]"http://www.gemini.edu/sciops/instruments/uhaos/uhaoslndex.html."
    [38]"http://www.gemini.edu/project/announcements/press/pr2003-2background.html."
    [39]"http://www.keckobservatory.org/."
    [40]"http://www.keckobservatory.org/support/magazine/2007/dec/07dec_2.htm."
    [41]D.Gavel,"MEMS for the Next Generation of Giant Astronomical Telescopes," in Proc.of SPIE,2006,pp.611307-611311.
    [42]D.Gavel,"MEMS Development for Astronomical Instrumentation at the Lick Observatory for adaptive optics," in Proc.of SPIE,2007,pp.646702-7.
    [43]苏定强等,”主动光学-新一代大型望远镜的关键技术,”天文学进展,vol.17(1),pp.1-13.1999.
    [44]曾志革等,”能动薄主镜技术模拟研究,”强激光与粒子束,vol.8(1),1996.
    [45]曾志革等,”能动薄主镜受均匀冲击载荷的计算模拟,”光电工程,vol.23(6),1996.
    [46]曾志革等,”分立式变形反射镜薄镜面的应力分析方法研究,”光学精密工程,vol.5(5),1997.
    [47]王金堂,”小卫星高分辨率轻型CCD相机及其关键技术,”现代小卫星技术(二),vol. 航空工业总公司小卫星论证组,1996.
    [48]许冰and姜文汉,”自适应光学在小卫星上的应用,”微小卫星应用技术学术讨论文集,vol.11,1997.
    [49]M.M.M.,"Mirrors for optical telescopes," Opt.Eng.,vol.31(4),pp.701-710,1992.
    [50]牛晓明and卢锷等,“空间光学系统的热分析,”精密工程,vol.4(6),pp.54-60,1996.
    [51]赵鹏and吴清文,”航天相机主镜热特性研究,”光学精密工程,vol.5,pp.64-68,1997.
    [52]吴清文and卢锷等,”主镜稳定温度场特性分析,”光学精密工程,vol.4,pp.47-53,1996.
    [53]贾榕凯,”哈勃空间望远镜,”云光技术,vol.3,p.28-36,1991.
    [54]沈人杰,”哈勃空间望远镜,”国外空间动态,vol.8,p.15-17,1990.
    [55]D.Gallagher and J.Beckert,"Ground testing of the wide field/planetary camera or "bringing Hubble back into focus"," AIAA,pp.94-2625.
    [56]J.W.Bilbro and D.Coulter,"Next generation space telescope technology.," AIAA,pp.96-4271.
    [57]J.Burge,S.DeRigne,R.Angel,B.Cuerden,S.Clapp,G.Rivlis,P.Woida,and P.Gohman,"NGST Mirror System Demonstrator from the University of Arizona," in Proc.of SPIE,2001,pp.27-38.
    [58]D.Redding,S.Basinger,A.E.Lowman,and A.Kissil,"Wavefront Sensing and Control for a Next Generation Space Telescope," in Proc.of SPIE,1998,pp.758-772.
    [59]H.S.Stockman and J.C.Mather,"The Next Generation Space Telescope," International Astronomical Union symposium(Provided by NASA),pp.1-8,2001.
    [60]P.S.Davil and A.E.Lowman,"Optical design of the developmental cryogenic active telescope testbed," in Proc.of SPIE,1998,pp.141-152.
    [61]D.R.Coulter,"Technology development for the next generation space telescope:an overview," in Proc.of SPIE,1998,pp.106-113.
    [62]J.Z.Liang,D.R.Williams,and D.T.Miller,"Supernormal vision and high-resolution retinal imaging through adaptive optics," J.Opt.Soc.Am.A,pp.2884-2992,1997.
    [63]R.A and W.D.R.,"The arrangement of the three cone classes in the living human eyes,"Nature,vol.397,pp.520-522,1999.
    [64]姜春晖,”自适应光学系统对活体人眼视网膜的初步观察,”in眼科学.vol.博士 上海:复旦大学,2003.
    [65]Y.Zhang and A.Roorda,"MEMS Deformable Mirror for Ophthalmic Imaging," Proc.of SPIE,vol.6113,p.61130A,2006.
    [66]D.C.Chen,S.M.Jone,D.A.Silva,and S.S.Olivier,"High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction," Proc.ofSPIE,vol.6426,p.64261L,2007.
    [67]B.L.Edwards and S.A.Townes,"Overview of the mars laser communications demonstration project."
    [68]H.Hemmati,"Status of Free-Space Optical Communications Program at JPL," pp. 101-105.
    [69]S.A.Townes and B.L.Edward,"The Mars Laser Communication Demonstration," in IEEE Aerospace Conference Proceedings,2004 pp.1180-16.
    [70]D.M.Boroson,C.-C.Chen,and B.Edwards,"The mars laser communications demonstration project:Truly ultralong-haul optical transport."
    [71]C.Radzewicz,P.Wasylczyk,and W.Wasilewski,"Piezo-driven deformable mirror for femtosecond pulse shaping," Opt.Express,vol.29(2),pp.177-3,2003.
    [72]U.Wittrock and P.Welp,"Adaptive laser resonator control with deformable MOEMS mirrors," in Proc.of SPIE,2006,pp.61130C-13.
    [73]N.Doble,D.T.Miller,G.Yoon,and D.R.Williams,"Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes," Appl.Opt,vol.46,pp.4501-4514,2007.
    [74]E.-H.E.Yang and D.V.Wiberg,"A New Wafer-Level Membrane Transfer Technique for MEMS Deformable Mirrors," in IEEE,2001,pp.80-4.
    [75]G.Reimann,J.Perreault,P.Bierden,and T.Bifano,"Compact adaptive optical compensation systems using continuous silicon deformable mirrors," in Proc.of SPIE 2002,pp.35-6.
    [76]饶伏波,乔大勇,苑伟政,and姜澄宇,”几种分立式微变形镜的性能模拟与比较,”光学仪器,vol.27(5),pp.60-4,2005.
    [77]乔大勇,苑伟政,and饶伏波,”大冲程低PV值的分立式微变形镜结构设计研究,”西北工业大学学报,vol.23(5),pp.637-5,2005.
    [78]乔大勇,饶伏波,苑伟政,and姜澄字,”几种mems分立式微变形镜的设计与性能比较,”航空精密制造技术,vol.41(5),p.5-4,2005.
    [79]D.Qiao,W.Yuan,K.Li,X.Li,and F.Rao,"Comparative study on different types of segmented micro deformable mirrors," in Proc.of SPIE,2006,pp.61491H-5.
    [80]J.B.Stewart,T.G.Bifano,and S.Comelissen,"Design and development of a 331-segment tip-tilt-piston mirror array for space-based adaptive optics," Sens.Actuator A-Phys.,vol.138,pp.230 238,2007.
    [81]J.B.Stewart,T.G.Bifano,P.Bierdenc,S.Comelissen,T.Cook,and B.M.Levine,"Design and development of a 329-segment tip-tilt piston mirror array for space-based adaptive optics," in Proc.of SPIE,2006,pp.61130Q1-9.
    [82]T.G.Bifano,M.S.Raji Krishnamoorthy Mali,J.K.Dorton,J.Perreault,N.Vandelli,and M.N.Horenstein,"Continuous-membrane surface-micromachined silicon deformable mirror," Opt.Eng.36(5)1354 1360(May 1997),1997.
    [83]S.A.Comelissen,P.A.Bierden,and T.G.Bifano,"Development of a 4096 element MEMS continuous membrane deformable mirror for high contrast astronomical imaging," in Proc.of SPIE,2006,pp.630606-11.
    [84]R.K.Mali,T.G.Bifano,N.Vandelli,and M.N.Horenstein,"Development of microelectromechanical deformable mirrors for phase modulation of light," Opt.Eng.,vol.36,pp.542-548,1997.
    [85]M.H.Miller,J.A.Perrault,G.G.Parker,B.P.Bettig,and T.G.Bifano,"Simple models for piston-type micromirror behavior," J.Micromech.Microeng.,vol.16,pp.303-313,2006.
    [86]J.A.Perreault,R A.Bierden,M.N.Horenstein,and T.G.Bifano,"Manufacturing of an optical-quality mirror system for adaptive optics," in Proc.of SPIE,2002,pp.13-8.
    [87]J.A.Perreault and T.G.Bifano,"High-resoltion wavefront control using mircomirror arrays," in Solid-State Sensor,Actuator and Microsystems Workshop,0-9640024-5-0 83Hilton Head Island,South Carolina,June 6-10,2004,2004,pp.83-4.
    [88]J.A.Perreault,T.G.Bifano,B.M.Levine,and M.N.Horenstein,"Adaptive optic correction using microelectromechanical deformable mirrors," Opt.Eng.,vol.41(3),pp.561 566,2002.
    [89]I.W.Jung,Y.A.Peter,Y.A.Peter,and O.Solgaard,"Single-crystal-silicon continuous membrane deformable mirror array for adaptive optics in space-based telescopes," IEEE Journal of Selected Topics in Quantum Electronics,vol.13(2),pp.162-167,2007.
    [90]M.A.Helmbrecht,T.Juneau,M.Hart,and N.DoNe,"Segmented MEMS deformable-mirror technology for space applications," in Proc.of SPIE,2006,pp.622305-7.
    [91]M.J.Shepherd,R.G.Cobb,and W.P.Baker,"Low-order actuator influence functions for piezoelectric in-plane actuated tensioned circular deformable mirrors," in Proc.of SPIE,2006,pp.61660E-12.
    [92]"http://www.mernsoptical.com."
    [93]A.N.Simonov,S.Hong,and G.Vdovin,"Piezoelectric deformable mirror with adaptive multiplexing control," Opt.Eng.,vol.45,pp.070501-3,2006.
    [94]"http://www.okotech.com."
    [95]张志伟,杨秉新,and俞信,”自适应在空间光学遥感器上的应用,”航天返回与遥感2000.
    [96]张志伟,俞信,and杨秉新,”自适应光学在空间光学遥感器上的应用,”高技术通迅vol.10(3),pp.48-52,2000.
    [97]俞信,”自适应光学进展及展望,”光电技术,vol.3,p.2-6,1993.
    [98]于洋and曹根瑞,”主动光学反射镜面形的校正能力及其优化设计,”北京理工大学学报,vol.23(2),pp.229-5,2003.
    [99]江月松,王森,赵达尊,曹根瑞,and俞信,”微型自适应光学系统的波前重构算法,”光学技术,vol.27(3),pp.220-3,2001.
    [100]张志伟,马骏,and俞信,“微小型自适应光学系统及其在星载光学遥感器上的应用,”红外与激光工程,2000.
    [101]陈珂,赵达尊,and俞信,“微机械薄膜变形镜光学影响函数矩阵的测试与研究,”高技术通迅,pp.22-26,2000.
    [102]杨强,朱建平,and曹根瑞,”双压电变形反射镜的优化设计,”光学学报,vol.19(9),pp.1163-7,1999.
    [103]杨强and曹根瑞,”13单元双压电晶片变形反射镜控制电极的优化设计,”光学技术, vol.5,p.15-20,1996.
    [104]饶伏波,乔大勇,and苑伟政,”自适应光学系统MEMS微变形镜的研究,”纳米技术与精密工程,vol.2(4),pp.288-6,2004.
    [105]Y.YU,W.YUAN,and D.QIAO,"Effects of residual stresses on mechanical properties of segmented micro deformable mirrors," in Proc.of SPIE,2006,pp.614919-1.
    [106]佘洪斌,陈海清,竺子民,李俊,and王忠,”用于自适应光学系统的几种新型可变形反射镜,”半导体技术,vol.29(5),pp.64-4,2004.
    [107]余洪斌,陈海清,竺子民,李俊,张大成,and李.婷,“一种新型微变形镜键合技术,”光电工程,vol.31(8),pp.12-4,2004.
    [108]余洪斌,陈海清,竺子民,张大成,and李.婷,“星载自适应光学系统新型可变形反射镜的研究,”压民与声光,vol.27(4),pp.352-4,2005.
    [109]方迪,陈海清,李俊,and余洪斌,“微变形反射镜主要性能测试研究,”光学仪器,vol.27(3),pp.21-6,2005.
    [110]余洪斌,陈海清,张大成,竺子民,and李婷,“基于硅微加工技术的新型变形反射镜”强激光与粒子束,vol.16(7),pp.825-5,2004.
    [111]余洪斌,陈海清,竺子民,张大成,and李婷,“基于MEMS技术的一种新型可变形反射镜,”半导体学报,vol.25(9),pp.1154-5,2004.
    [112]向东,陈海清,王青玲,and陈家凤,”带透明电极可变形反射镜的研制,”光电子.激光,vol.17(7),pp.849-5,2006.
    [113]J.Li*,H.Chen,E W,and H.Li,"[华中科大]_Real time phase correction of optical images using adaptive optics system based on MEMS technology," in Proc.of SPIE,2007,pp.62792V-6.
    [114]Y.Hishinuma and E.-H.E.Yang,"Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror," J.Microelectromech.Syst.,vol.15(2),pp.370-379,2006.
    [115]E.-H.Yang,Y.Hishinuma,and J.-G Cheng,"Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane," J.Microelectromech.Syst.,vol.15(5),pp.1214-1225,2006.
    [116]P.Wnuk and C.Radzewicz,"Bimorph piezo deformable mirror for femtosecond pulse shaping," Opt.Express,vol.13(11),pp.4154-6,2005.
    [117]D.A.Horsley,H.Park,S.P.Laut,and J.S.Werner,"Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry," Sens.Actuator A-Phys.,2006.
    [118]F.Forbes,E Roddier,G.Poczulp,C.Pinches,G.Sweeny,and R.Dueckl.,"Segmented bimorph deformable mirror," J.Phys.E:Sci.Instrum.,vol.22,pp.402-405,1999.
    [119]H.Moini,"Systematic design of a deformable mirror with low-order wavefront compensation capability," Opt.Eng.,vol.35(7),pp.2012-5,1996.
    [120]M.Glanc,E.Gendron,F.Lacombe,and D.Lafaille,"Towards wide-field retinal imaging with adaptive optics," Opt.Commun.,vol.230,pp.225-238,2004.
    [121]A.Chellabi,Y.Stepanenko,and S.Dost,"A new control algorithm for bimorph mirrors," in IEEE, 1995, pp. 569-5.
    [122] J. M. Redmond, P. S. Barne, and T. D. Henson, "Distributed Sensing and Shape Control of Piezoelectric Bimorph Mirrors," 1999.
    [123] S.Sakarya, G.Vdovin, and P.M.Sarro, "Technology for integrated spatial light modulators based on refective membranes," in Proc. of SPIE, 2002, pp. 21-8.
    [124] Y. Zhou and T. Bifano, "Characterization of contour shapes achievable with a MEMS deformable mirror," 2006.
    [125] H. Lee, M. H. Miller, and T. G. Bifano, "CMOS chip planarization by chemical mechanical polishing for a vertically stacked metal MEMS integration," J. Micromech. Microeng., vol. 2004, pp. 108-115,2004.
    [126] H. Zhu, P. Bierden, S. Cornelissen, and T. Bifano, "Design and fabrication of reflective spatial light modulators for high-dynamic-range wavefront control," in Proc. of SPIE, 2004, pp. 39-7.
    [127] M. Horensteina, S. Pappasa, A. Fishov, and T. G. Bifano, "Electrostatic micromirrors for subaperturing in an adaptive optics system," Journal of Electrostatics (Elsevier), vol. 54, pp. 321-332,2002.
    [128] T. G. Bifano, H. T. Johnson, P. Bierden, and R. K. Mali, "Elimination of stress-induced curvature in thin-film structures," J. Microelectromech. Syst., vol. 11(5), pp. 592-6,2002.
    [129] T. G. Bifano, "High-speed wavefront control using MEMS micromirrors," 2005.
    [130] T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, "Microelectromechanical deformable mirrors," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5(1), pp. 83-7,1999.
    [131] S. Olivier, P. Bierden, and T. Bifano, "Micro-electromechanical systems spatial light modulator development," in Proc. of SPIE, 2000, p. 6.
    [132] T. Bifano, P. Bierdenb, and J. Perreault, "Micromachined deformable mirrors for dynamic wavefront control," in Proc. of SPIE, 2004, pp. 1-16.
    [133] T. Weyraucha, M. A. Vorontsova, T. G. Bifano, A. Tuantranontd, and V. M. Brightd, "Performance evaluation of micromachined mirror arrays for adaptive optics," in Proc. of SPIE, 2000, pp. 32-10.
    [134] R. H. Webb, M. J. Albanese, Y. Zhou, and T. Bifano, "A Stroke amplifier for deformable mirrors," Appl. Optics, vol. 43, p. 4,2004.
    [135] "http://www.bostonmicromachines.com."
    [136] "http://www.agiloptics.com."
    [137] J. D. Mansell, S. Sinha, and R. L. Byer, "Deformable Mirror Development at Stanford University," in Proc. of SPIE, 2002, pp. 1-12.
    [138] E.-H. Yang and K. Shcheglov, "A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes," in Proc. of SPIE 2003, pp. 703-8.
    [139] E.-H. Yang and D. V. Wiberg, "A wafer-scale membrane transfer Process for the fabrication of optical quality, large continuous membranes," J. Microelectromech. Syst., vol. 12(6), pp. 804-12,2003.
    [140]E.-H.Yang,K.Shcheglova,and S.Trolier-McKinstryb,"Concept,Modeling and Fabrication Techniques for Large-Stroke Piezoelectric Unimorph Deformable Mirrors,"2003.
    [141]Y.Hishinuma and E.-H.E.Yang,"Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT unimorph actuators,"IEEE-Tranducer05 The 13th International Conference on Solid-State Sensors,Actuators and Microsystems,Seoul,Korea,June 5-9,2005,pp.1167-4,2005.
    [142]Y.Hishinuma,E.-H.E.Yang,B.M.Levine,and E.Bloemhof,"Piezoelectric unimorph MEMS deformable mirror for ultra-large telescopes," in Proc.of SPIE,2005,pp.21-9.
    [143]"http://www.imagine-optic.com."
    [144]"http://www.cilas.com."
    [145]"http://www.xinetics.com."
    [146]E.Dalimier and C.Dainty,"Comparative analysis of deformable mirrors for ocular adaptive optics," Opt.Express,vol.13(11),pp.4275-11,2005.
    [147]E.Daly,E.Dalimier,and C.Dainty,"Requirements for MEMS Mirrors for Adaptive Optics in the Eye," in Proc.of SPIE,2006,pp.611309-8.
    [148]N.Doble,"Use of a microelectromechanical mirror for adaptive optics in human eyes,"Opt.Lett.,vol.27,pp.1537-1539,2002.
    [149]N.Doble,M.Helmbrecht,M.Hart,and T.Juneau,"Advanced wavefront correction.technology for the next generation of adaptive optics equipped ophthalmic instrumentation," in Proc.of SPIE,2006,pp.125-8.
    [150]S.Li and S.Chen,"Analytical analysis of a circular PZT actuator for valveless micropumps," Sens.ActuatorA-Phys.,vol.104,pp.151 161,2003.
    [151]H.Hofer,P.Artal,B.Singer,J.L.Aragon,and D.R.Williams,"Dynamics of the eye's wave aberration," J.Opt.Soc.Am.A,vol.18,pp.497 506,2001.
    [152]L.Diaz-Santana,C.Torti,I.Munro,P.Gasson,and C.Dainty,"Benefit of higher closed-loop bandwidths in ocular adaptive optics," Opt.Express,vol.11,pp.2597-2605,2003.
    [153]D.Gavel,"Laboratory for Adaptive Optics at UC Santa Cruz:Project Status and Plans,"Proc.ofSPIE,vol.6272,pp.62721U-11,2006.
    [154]G.Yi,Z.Wu,and M.Sayer,"Preparation ofPb(Zr,Ti)O3 thin films by sol gel processing:electrical,optical,and electro-optic properties," J.Appl.Phys.,vol.64,pp.2717 2724,1988.
    [155]S.Otsubo,T.Maeda,and T.Minamikawa,"Preparation of Pb(Zr0.52Ti0.48)O3 films by laser ablation," Jpn.J.Appl.Phys.,vol.29,pp.L133 L136,1990.
    [156]T.Hioki,M.Akiyama,T.Ueda,Y.Onozuka,and K.Suzuki,"Preparation of Pb(Zr,Ti)O3thin films by plasma-assisted sputtering," Jpn.J.Appl.Phys.,vol.38,pp.5375 5377,1999.
    [157]Y.-C.Hsua,C.-C.Wu,C.-C.Lee,G.Z.Cao,and I.Y.Shen,"Demonstration and characterization of PZT thin-film sensors and actuators for meso- and micro-structures," Sens.Actuator A-Phys.,vol.116,pp.369-377,2004.
    [158]L.-S.Jang and K.-C.Kuo,"Fabrication and Characterization of PZT Thick Films for Sensing and Actuation," Sensors,vol.7,pp.493-507,2007.
    [159]K.Yao,X.J.He,Y.Xu,and M.Chen,"Screen-printed piezoelectric ceramic thick films with sintering additives introduced through a liquid-phase approach," Sens.Actuator A-Phys.,vol.118,pp.342-348,2005.
    [160]T.T.Kwon,Y.B.Kim,K.Eom,D.S.Yoon,H.l.lee,and T.S.Kim,"Fabrication of stabilized piezoelectric thick film for silicon-based MEMS device," Appl.Phys.A,vol.88,pp.627 632 2007.
    [161]B.Xu,D.White,J.Zesch,A.Rodkin,S.Buhler,J.Fitch,and K.Littau,"Characteristics of lead zirconate titanate ferroelectric thick films from a screen-printing laser transfer method," Appl.Phys.Lett.,vol.87,p.192902,2005.
    [162]K.Tanaka,T.Konishi,M.Ide,and S.Sugiyama,"Wafer bonding of lead zirconate titanate to Si using an intermediate gold layer for microdevice application," J.Micromech.Microeng.,vol.16,pp.815 820,2006.
    [163]K.Tanaka,T.Konishi,M.Ide,Z.Meng,and S.Sugiyama,"Fabrication of Microdevices Using Bulk Ceramics of Lead Zirconate Titanate," Jpn.J.Appl.Phys.,vol.44,pp.7068-7071,2005.
    [164]K.L.Zheng,J.Lu,and J.R.Chu,"A Novel Wet Etching Process of Pb(Zr,Ti)O3 Thin Films for Applications in Microelectromechanical System," Jpn.J.Appl.Phys.,vol.43,pp.3934-3937,2004.
    [165]倪振华,振动力学.西安交通大学出版社,1998.
    [166]"American Piezo Ceramics,Mackeyville,PA."
    [167]D.L.DeVoe and A.P.Pisano,"Modeling and Optimal Design of Piezoelectric Cantilever Microactuators," J.Microelectromech.Syst.,vol.6(3),pp.266-270,1997.
    [168]H.D.Chen,K.R.Udayakumar,L.E.Cross,J.J.Bernstein,and L.C.Niles,"Dielectric,ferroelectric,and piezoelectric properties of lead zirconate titanate thick films on silicon substrates," J.Appl.Phys.,vol.77,pp.3349-3353 1995.
    [169]A.Benc,G.Draz,M.Hrovat,J.Holc,and M.Kosec,"Electrical properties and chemical compatibility of PZT thick film on Ni substrates," J.Mater.Sci.,vol.38,pp.3769-3774,2003.
    [170]R.Maas,M.Koch,N.R.Harris,N.M.White,and A.G.R.Evans,"Thick-film printing of PZT onto silicon," Mater.Lett.,vol.31,pp.109-I12,1997.
    [171]H.Jacobsen,H.-J.Quenzer,B.Wagner,K.Ortner,and T.Jung,"Thick PZT layers deposited by gas flow sputtering," Sens.Actuator A-Phys.,vol.135 pp.23 27,2007.
    [172]R.A.Dorey and R.W.Whatmore,"Electroceramic Thick Film Fabrication for MEMS," J.Electroceram.,vol.12,pp.19-32,2004.
    [173]蒋震宇,缪泓,张青川,and伍小平,”调制度分析在等步长相移法相位展开中的应用”光学学报,vol.24,pp.1032-1038,2004.
    [174]崔玉国,孙宝元,and懂维杰,“压电陶瓷执行器迟滞与非线性成因分析,”光学精密 工程vol.11(3),2003.
    [175]L.Zhu,P.-C.Sun,D.-U.Bartsch,W.R.Freeman,and Y.Fainman,"Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror," Appl.Optics,vol.38,pp.6019-6026,1999.
    [176]R.A.Carreras and D.K.Marker,"Proposed adaptive optics control loop for a continuous face sheet,MEMS based deformable membrane mirror," in Proc.of SPIE.vol.6306,2006,pp.630607-9.
    [177]L.Zhu,P.-C.Sun,D.-U.Bartsch,W.R.Freeman,and Y.Fainman,"Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,"Appl.Optics vol.38,pp.168-176,1999.
    [178]T.F.Miyahira,H.N.Becker,S.S.McClure,L.D.Edmonds,and A.H.Johnston,"Total Dose Degradation of MEMS Optical Mirrors," IEEE Transactions on Nuclear Science,vol.50,pp.1860-1866,2003.
    [179]X.-H.Xu,B.-Q.Li,Y.Feng,and J.-R.Chu,"Design,fabrication and characterization of bulk PZT actuated MEMS deformable mirror," J Micromech.Microeng.,vol.17,pp.2439-2446,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700