用户名: 密码: 验证码:
低温高性能混凝土性能与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对低温高性能混凝土在深井井壁建设中应用的工程背景,对低温高性能混凝土的力学特性及抗冻性进行了研究。对C100高性能混凝土采用一次冻结法冻结,利用扫描电镜、压汞测孔法及工业CT技术等先进实验测试手段对低温高性能混凝土的微观形貌、孔隙结构等进行了研究,并进行了宏观力学试验;数值模拟了井筒的受力情况及工程原位实验测试力学性能;利用不同载荷下低温高性能混凝土试件的损伤分形维数描述了裂纹扩展情况。通过研究得出:利用本地原材料成功配制出的C100高性能混凝土在低温条件下仍具有较高的抗压强度和较好的抗冻性,从微细观结构方面解释了掺合料的作用机理;为研究高性能混凝土由微观结构到宏观力学性能的关系提供了试验方法及理论依据。研究表明:C100高性能混凝土能够满足低温施工需要,具有较好的社会经济效益。
Based on the engineering background of high performance concrete (HPC) applications in the deep well construction at low-temperature, the mechanical properties and frost resistance of HPC are investigated. Many experiment methods, such as scanning electronic microscopy, mercury intrusion porosimetry, industrial CT and other advanced technologies, have been used to research on the microstructure and pore structure of C100 HPC which is frozen one time or freeze-thaw many times. And then the macro-mechanical test of C100 HPC is carried out. The force distribution of the shaft is simulated through numerical analysis. The crack development of C100 HPC at low temperatures with different loads is described by damage fractal dimensions. The study results show that C100 HPC at low temperatures, which is prepared by the local raw material, has high compressive strength and good frost resistance and the mechanism of admixtures is explained in the view of the micro-structure. The thesis provides test methods and theoretical basis to study the performance of HPC. The conclusion is that C100 HPC can meet the requirement of the low-temperature construction work, which will bring many social beneficial results.
引文
1.吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    2. M EHTA P K. Concrete durability:fifty year's progress[A].Proceeding of 2nd International Conference on Concrete Durability[C].ACISP126-1,1991:1-33.
    3. A performance specification for durable concrete[J].Construction and Building Materials,1996,10(5):375-379.
    4.卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,1997,27(5):1-6.
    5.洪定海,潘祖强.华南海港钢筋混凝土码头锈蚀调查报告[J].水运工程,1982,(2):1-7.
    6.陈剑雄,石宁,张旭日.高掺量复合矿物掺合料自密实混凝土耐久性研究[J],混凝土,2005(1)
    7.唐伟.高强自密实混凝土的试验研究[J].四川建筑科学研究,2005(2)
    8.H.索默编,冯乃谦,等译.高性能混凝土的耐久性[M].北京:中国科学出版社,1998.
    9.庞煜霞 楼宏铭 邱学青 杨东杰等,改性木素磺酸盐高效减水剂对水泥水化及混凝土耐久性的影响[J].四川大学学报(工程科学版),2005,37(1):74-77.
    10.程云虹,刘斌.混凝土结构耐久性研究现状及趋势[J].东北大学学报(自然科学版),2003,24(6):600-605.
    11.邱学青,杨东杰,王晓东.改性木素磺酸盐高效减水剂GCL1-3A性能研究[J].化学建材,2001,40(2):40-44.
    12.覃维祖.混凝土结构耐久性的整体论[J].建筑技术,2003,34(1):19-22.
    13.全国水工混凝土建筑物耐久性及病害处理调查报告.水利水电科学研究所,1986.
    14吴中伟.高性能混凝土及其矿物细掺料[J].建筑技术,1999(3):160-162.
    15廉慧珍,路新瀛.我国混凝土工程发展中的几个问题[J].建筑技术,2001(1):10-15.
    16 MehtaPK,High Performance Concretefor the Future. Proceedings International Congresson High Performance Concrete [A]. Brazil University of SantaCatarina,1996 (6):225-242.
    17 Mehta PK. Durability-critical Issues for the Future[J]. Concrete International,1997(7):27-33.
    18[日]岩崎训明.混凝土的特性[M].尹家辛,李景星译.北京:中国铁道出版社,1990.
    19黄国兴,惠荣炎.混凝土的收缩[M].北京:中国铁道出版社,1990.
    20 Mindess Sidney, Young J Francis混凝土[M].方秋清等译.北京:中国建筑工业出版社,1989.
    21王红春.南水北调中线工程高性能混凝土干缩性能和绝热温升特性研究[D].南京:河海大学,2004.
    22邢有红.复合外加剂对石屑混凝土主要性能的影响研究[D].南京:河海大学,2005.
    23林宝玉,吴绍章.混凝土工程新材料设计与施工[M].北京:中国水利水电出版社,1998.51-72.
    24混凝土结构的耐久性综合调查报告.混凝土结构耐久性综合调查组,1990.1.
    25吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    26黄士元,蒋家奋.近代混凝土技术[M].西安:陕西科学技术出版社,1998.
    27赵国藩.高性能混凝土发展简介[J].施工技术,2002(4):1-2,16.
    28吴彤.自组织方法论研究[M].北京:清华大学出版社,2001.3-14.
    29王东生,曹磊.混沌、分形及其应用[M].合肥:中国科学技术大学出版社,1995:93-103.
    30 B.B.Mandelbrot.How Longis the Coast of Britain, Statistical Self Similarityanc Fractional Dimension. Science.1967,(155):636-638.
    31 B.B.Mandelbrot. Fractals:Form, Chance and Dimension. Freeman, San Fr ancisco.19 77:1-20.
    32 B.B.Mandelbrot.The Fractal Geometry of Nature. New York. WH.Freeman.1982:1-25.
    33 张济忠.分形[M].北京:清华大学出版社,1995:118.
    34 洪伯潜.我国深井快速建井综合技术[J].煤炭科学技术,2006(1).
    35 陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社.
    36 混凝土的高性能与高耐久性混凝土的研究与应用鉴定材料.深圳市恒高混凝土实业有限公司,1997(7).
    37 冯乃廉.陆新瀛等耐久性100年以上高性能混凝土[M].混凝土与水泥制品,1998(4).
    38 蔡昊.混凝土抗冻耐久性预测模型[D].北京:清华大学,1998.
    39 H SMuller, K Rubner.高强混凝土-微观特征及有关耐久性[M].冯乃廉,丁建彤等译.北京:科学出版社,1998.
    40 纪细煌.高强混凝土的断裂与内部结构关系研究[D].北京:清华大学,1994.
    41 候君伟,等.现浇混凝土建筑结构施工手册[M].北京:机械工业出版社,2003.
    42 牛学超,杨仁树,经来旺.高强混凝土在立井井壁中的应用及展望[J].中国矿业,2004,(11):51-55.
    43 赵国藩.高性能混凝土发展简介[J].施工技术,2002(4):12-16.
    44 过镇海,张秀琴.混凝土受拉应力-应变全曲线的试验研究.建筑结构学报[J].1988(4):45-53.
    45 袁志芬,王正中,赵斌.混凝土非线性本构模型的构建[J].西北农林科技大学学报(自然科学版).2001,29(3):111-114.
    46 朱卫中.负温高强混凝土技术研究进展[J].低温建筑技术.2005,106(4):1-4.
    47 朱卫中.C50级负温高强混凝土抗冻临界强度研究[J].低温建筑技术.1997(3):30-35.
    48 刘环宇,李晓,曾钱帮,等.兖州矿区立井井筒非采动破裂的非线性预测与判别方法[J].工程地质学报.2005.12(z1):529-532.
    49 琚宜文,刘宏伟,王桂梁,等.卸压套壁法加固井壁的力学机理与工程应用[J].岩石力学与工程学报.2003,22(5):773-777.
    50 姚直书,程华,孙文若.深厚表土层中高强复合井壁结构的试验研究[J].岩土力学.2003,24(5):739-743
    51 周国庆,刘雨忠,冯学武,等.围土注浆缓释和抑制井壁附加力效应及应用[J].岩土工程学报,2005,27(7):742-745.
    52 刘希亮,张廷顺.井壁竖直附加力与底部含水层应变的关系研究[J].矿山压力与顶板管理,2003,20(4):1-3.
    53 刘希亮,罗静.高应力下接触面抗剪特性影响因素分析[J].山东大学学报(工学版),2003,33(4):461-466.
    54 吕恒林,崔广心.钢筋混凝土井壁与深厚围岩(土)耦合机理的研究[J].煤炭学报.2001,26(5):501-506.
    55 陈建奎,王栋民.高性能混凝土(HPC)配合比设计新法——全计算法[J].硅酸盐学报.2000,28(2):194-196.
    56 Larrard F. A Survey of Recent Researches Performed in the French'LCPC (Laboratorial Central des ponts of Chaussees) Network on High Performance Concrete. Proceedings of High Strength Concrete, Lillehammer, Norway,1993:20-24.
    57 Regourd M M. Microstructure of High Performance Concrete, High Performance Concrete[M], E& FN SPON,1992.
    58 Bache H H. Densified Cement/Ultrafine Particle Based Concrete. Second International Conf. on Super Plasticizers in Concrete[M], Ottawa,1981.
    59 Soutsos M N, Domone P L J.Design of High Strength Concrete Mixes with Normal Weight Aggregates[C]. Proc. of the 3rd International Symposium on Utilization of High Strength Concrete, Lillehammer, Norway.
    60 Domone P L J, Soutsos M N. An Approach to the Proportioning of High Strength Concrete Mixes. Concrete International,1994.
    61 Carbonari B T et al. A Synthetic Approach for the Experimental Optimization of High Strength Concrete.4th International Symposium on Utilization of HSC/HPC[C], Paris,1996.
    62 Sedran T, de Larrard F. RENE-LCPC; Software to Optimize the Mix Design of High Performance Concrete. 4th International Symposium on Utilization of HSC/HPC, Paris[C],1996.
    63 Dustan M R H. Fly-ash as the Fourth Constituent of Concrete Mix. Proceeding of Fourth International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolana in Concrete[C], Istanbul, Turkey,1992.
    64 Day K W. Conference Mix Design, Quality Control an Specification. E& F Spon, an Imprint of Chapman& Hall[M],1995.
    65 Robinson, G. S. Behavior of concrete in biaxial compression. Proceedings of ASCE, Struc. Div, Feb.1967:71-86.
    67 Kupfer, H., Hilsdorf, H. K. Behavior of concrete under biaxial stresses. Journal of ACI,1969,66(8):656-666.
    68 Newman, J. B. Apparatus for testing concrete under multiaxial states of stress. Magazine of Concret Research,1974,26(89):221-238.
    69 Van Mier, J. G. M. Strain-softening of concrete under multiaxial Loading Conditions. Doctorial Thesis. Eindhven University of Technology The Netherlands,1984.
    70 Bugukozturk, O. Nonlinear analysis of reinforced concrete structure, Computer and Structrue, Vol.7,1977.
    71 Mills L. L., Zimmerman, R. M. Compressive strength of concrete under multiaxial losding conditions.Journal of ACI,1970:802-807.
    72敬忠.三轴拉压强度试验和混凝土破坏准则的研究.清华大学硕士学位论文,1989.
    73王传志,过镇海,张秀琴等.二轴三轴受压混凝土强度试验研究[M].北京:清华大学出版社,1988.
    74过镇海,张秀琴.混凝土应力-应变全曲线的实验研究明.建筑结构学报,1982,(1):1-12.
    75过镇海,张秀琴.混凝土受拉应力-应变全曲线试验研究[J].建筑结构学报,1988,(4):45-53.
    76 Mehta P K, Monteiro P J M. Concrete:Structrue, Properties, and Materials. Pretice-Hall, Englewood Cliffs, NJ,1993.
    77 T. C. Powers. A wording hypothesis for further studies of frost resistance of concrete. ACI Journal, 1945(41):245-272.
    78 T. C. Powers. Void spacing as a basis of long term chloride concentration in concrete. Materials and Structure,1994,27.
    79 T. C. Powers and R. A. Helmuth. Theory of volume change in hardened Portland cement paste during Freezing. Proceeding, Highway Research Board,1953(32):285-297.
    80陈联荣,黄士元.混凝土的抗冻性及其气泡结构[J].上海建材学院学报,1989:4.
    81蒲心诚,王勇威.超高强高性能混凝土的孔结构与界面结构研究[J].混凝土与水泥制品.2004(3)
    81王强,阎培渝.大掺量矿渣复合胶凝材料的硬化浆体形貌特征[J].电子显微学.2008,27(4):306-310.
    82张慧.C100高强高性能混凝土的制备及性能研究[D].北京:中国矿业大学(北京),1991.
    83姚燕.新型高性能混凝土耐久性的研究与工程应用[M].北京.中国建材工业出版社.2004.
    84袁润章.胶凝材料学(第二版)[M].武汉:武汉工业大学出版社.1996.
    85 ACI Manual of Concrete Practice[M], American Concrete Institute,1987.
    86冯乃谦.高性能混凝土[M].北京:建筑工业出版社,1996.
    87赵铁军,朱金铨,冯乃谦.混凝土孔隙分析中的表征参数[C].全国水泥基复合材料科学与技术学术讨论会论文,北京,1999:99-102.
    88 P. Mehta. Study on Blended Portland Cement Containing Santirin Earth[J]. Cement and Concrete Research,1981,1:575-579.
    89廉惠珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1993.11.
    90 L. S. Fan, G.Q. Yang, D. J. Lee, Some aspects of high-pressure phenomena of bubbles in liquids and liquid_solid suspensions, Chem. Eng. Sci.54 (1999) 4681-4709.
    91 W. Warsito, M. Ohkawa, N. Kawata. Cross-sectional distributions of gas and solid holdups in slurry bubble column investigated by ultrasonic computed tomography, Chem. Eng. Sci.54(1999)4711-4728.
    92 W. Warsito, L. S. Fan. Neural network based multi-criterion optimization image reconstruction technique for imaging two and.Three-phase flow systems using electrical capacitance tomography, Meas. Sci. Technol. 12(2001)2198-2210.
    93 Morgan I L, et al. Examination of concrete by computerized tomography[J]. ACI Journal,1980, 77(l):23-27.
    94 Oral Buyukozturk. Imaging concrete structures[J]. NDT&E. Iternational,1998,31(4):233-243.
    95 John S L, Denis T K, Surendra P S. Measuring three-dimensional damage inconcrete under compression[J].ACI Materials Journal,2001,98(6):465-475.
    96 Stock S R, Naik N K, Wilkinson A P, et al. X_ ray microtomography(micro CT) of the progression of sulfate attack of cement paste[J]. Cement and Concrete Research,2002,32(10):1673-1675.
    97 Chotard T J,Boncoeur_ Mantel M P, Smith A, et al. Aplication of X_ ray computed tomography to characterise early hydration calcium aluminate cement[J]. Cement&Concrete Composites,2003, 25(1):145-152.
    98 Lawer J S, Keane D, Shah S P. Measuring three-dimensional damage in concrete under compression[J].ACI Materials Journal,2001,98(6):465-475.
    99陈厚群,丁卫华,党发宁,等.混凝土CT图象中等效裂纹区域的定量分析[J],中国水利水电科学研究院学报.2006.4(1),1-7.
    100尹小涛,葛修润,党发宁,等.基于CT试验的混凝土破损机理生态学研究[J].混凝土,2006(8):21-24.
    101周尚志,党发宁,等.基于单轴压缩CT实验条件下混凝土破裂分形特征分析[J].水利发电学报,2006(10):112-117.
    102陈厚群,丁卫华,蒲毅彬,等.单轴压缩条件下混凝土细观破裂过程的X射线CT实时观测[J].水利学报,2006,37(9):1044-1050.
    103 J.勒迈特.损伤力学教程[M].倪金刚,陶春虎译,北京:科学出版社,1996:13-15.
    104 Kuntz M., Dyskin A., Lavallee P., The stress-strain state and potential crack trajectories in 2D elastic brittle material from steady-state flow experiment HERON 1998, Vol.43 No 3:127-136.
    105余天庆,混凝土的分段线性损伤模型,岩石、混凝土断裂与强度,1985(2):14-160.
    106钱济成,周建方.混凝土的两种损伤模型及应用[J],河海大学学报,1989(3):40-47.
    107王德怀.高性能混凝土配合比设计与质量控制的计算机化[D].北京:清华大学,1996.
    108谢和平,钱平皋.大理岩微孔隙演化的分型特征[J].力学与实践.1995.
    109 I. Odler. M. Robler. Investigations on the Relationship Between Porosity Structure and Strength of Hardened Cement-Ⅲ Effect of Clinker Composition and Gypsum Addition. C. C. R.1987,17(1).
    110尚晓江,苏建宇,等ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2006.
    111李裕春,时党勇,赵远ANSYS 11.0/LS-DYNA理论基础与工程实践[M].北京:中国水利水电出版社,2008.
    112李裕春,时党勇,赵远ANSYS 9.0/LS-DYNA理论基础与工程实践[M].北京:中国水利水电出版社,2006.
    113何涛,杨竞,金鑫ANSYS 10.0/LS-DYNA非线性有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    114时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显示动力分析[M].北京:清华大学出版社,2005.
    115谢和平.分形-岩石力学导论[M].北京:科学出版社,1996:15-29.
    116谢和平,鞠阳.混凝土微细观损伤断裂的分形行为[J].煤炭学报.1997(12).
    117郭剑飞.混凝土孔结构与强度关系理论研究[D].杭州:浙江大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700