用户名: 密码: 验证码:
利用水钢工业废渣生产微晶玻璃的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007年,水城钢铁(集团)公司已达到产钢300万吨,钢材285万元的年生产能力,销售收入超过100亿元。计划在2010年前年产钢能力达到500万吨,销售收入达到200亿元;2007年9月,水钢作为西部钢铁加工基地已获国家批准,规划在盘县鸡场坪乡建设二期工程,钢生产能力为550万吨。目前,水钢每年要产生大量的固体废弃物,总量约270万吨,其中高炉炉渣160万吨、钢渣60万吨、粉煤灰40万吨、转炉污泥(干基)10万吨,在水钢两期技改工程完成后,固体废弃物总量将是现在的2.5倍。
     水钢建厂以来,都对“三废”进行了不同程度的回收利用。特别是1995年以来,对这方面的投入最大。近年来,回收利用的品种及数量又有了新的增加和提高,除了水、煤气、中低压蒸汽等资源的再利用外,固体废弃物也进行了资源化回收利用:主要以回收铁素资源为主,同时从水渣、粉煤灰、转炉尾渣、转炉污泥中回收利用了CaO、Al_2O_3、MgO、SiO_2等非金属元素。但非金属元素回收利用总量未达到35万吨,利用率不足15%,综合利用率也仅为18.52%,与国内50%的综合利用率相比有较大差距,不仅在数量上,在资源化的技术水平上也远落后于国内一般水平。而国外的固体废弃物资源化利用起步早,技术先进,回收途径和渠道多,涉及领域宽,已发展成为一个成熟的产业(一个回收加工企业往往是跨多行业的集团),它与产生废弃物的企业形成了完整的产业链。发展至今,欧美、日本等国的回收利用率都在95%以上,不仅在发展的同时未破坏生态,而且资源利用率高,经济发展质量好,已形成良性循环。
     随着科学发展观的进一步落实和循环经济发展的深化,国内已掀起了固体废弃物资源化利用的热潮,这不仅是国家宏观调控的成果,同时,也是企业在激烈的市场竞争中降低成本的必然选择,济钢等钢铁集团已在近几年摸索实践中取得了瞩目的成就,有的钢铁集团循环经济收益达到总利润的30%,而水钢还处于落后的水平。因此,我们有必要大力提高固体废弃物资源化利用的技术水平,探索新的应用领域、拓展新的发展渠道。利用水钢工业废渣生产微晶玻璃是其中一个课题,它的成功应用必将产生重大而深远的影响。
     微晶玻璃内部结构即有结晶相,又有玻璃体,它集中了玻璃和陶瓷的优点,是一类新材料。它有光、电、热、磁等方面的优良特性,它的机械强度高、耐磨损、耐腐蚀、电绝缘性好、介电常数稳定、热稳定性好、耐高温、光泽质感好,广泛应用于航天、电力、电子、机械、生物医学、建筑、耐磨防腐等领域,目前,世界上已成功研制和应用了上千个品种,发展前景广阔。
     本文通过总结水钢固体废弃物利用现状和分析水钢固体废弃物资源化利用的迫切需求,阐明了利用工业废渣生产微晶玻璃的必要性;探索了利用水钢产生的高炉矿渣、钢渣、粉煤灰生产矿渣微晶玻璃的技术可行性;对矿渣微晶玻璃的市场现状及前景进行了分析。并且对于水钢利用高炉矿渣等固体废弃物生产微晶玻璃所要解决的问题进行了剖析。
2007, Shuicheng Iron and Steel (Group) Company has reached 3 million tons of steel production, steel production capacity of 2.85 million yuan, sales income of more than 10 billion yuan. Plan in 2010 before an annual output of steel capacity of 5 million tons and sales revenue reached 20 billion yuan; September 2007, as the water of the western state iron and steel processing base has been approved, planning Pingxiang in Panxian farm building two projects, Steel production capacity of 5.5 million tons. At present, the water of steel per year to generate a lot of solid waste, the total amount of about 2.7 million tons, of which 1.6 million tons blast furnace slag, slag 600,000 tons, 400,000 tons of fly ash, converter sludge (dry) 100,000 tons, In the water of two technical transformation project is completed, the total solid waste is now 2.5 times.
     Since the construction of water, are the "three wastes" of the different levels of recycling. In recent years, the recovery of the species and the number has increased and a new increase, in addition to water, gas, steam and other low pressure in the re-use of resources, solid waste is also a resource recycling: The main resources to recover ferrite Oriented, while water from the slag, fly ash, converter tailings, converter sludge recycling in the CaO, Al2O3, MgO, SiO2, and other non-metallic element. However, non-metallic element recycling does not meet the total 350,000 tons, less than 15 percent utilization rate, comprehensive utilization was only 18.52 percent, 50 percent of the domestic and comprehensive utilization rate greater than the gap, not only in quantity, in The skill level of resources is also far behind the national average. The foreign solid waste starting as early as the use of resources, advanced technologies, recycling means and channels, involved in wide areas, has developed into a mature industry (a recovery of processing enterprises is often more cross-industry Group), have abandoned it and Of the enterprise formed a complete industrial chain. Today, Europe and the United States, Japan and other countries in the utilization of the recovery of more than 95 percent, not only in the development of the destruction of ecology, resource utilization and high quality economic development, has formed a virtuous circle.
     With the scientific concept of development and further implementation of the deepening cycle of economic development, China has set off a solid waste utilization of the resources boom, this is not only the results of national macro-control, at the same time, enterprises are also in fierce competition in the market to reduce the cost of Natural choice, such as iron and steel Jinan Iron and Steel Group has explored in recent years has been the practice of the achievements of attention, some Iron and Steel Group cycle of economic benefits to the total profits of 30 percent, while steel is still in the water level behind. Therefore, we need to greatly improve the solid waste of resources and the use of technology to explore new application areas and expand the development of new channels. The use of industrial waste water produced glass-ceramic is one of the issues, and its successful application will have a significant and far-reaching implications.
     Glass-ceramic that is the internal structure of crystalline phase, there vitreous, which focused on the merits of glass and ceramic, is a kind of new materials. Its bright, electricity, heat, magnetic, and other aspects of the fine, its high mechanical strength, wear resistance, corrosion resistance, electrical insulation, and dielectric constant stability, good thermal stability, high temperature, shiny texture, and wide Used in aerospace, power, electronic, mechanical, biomedical, construction, anti-corrosion and other wear-resistant areas, at present, the world has successfully developed and applied the thousands of varieties, are broad prospects for development.
     By summing up of solid waste, water use and analysis of the status quo of solid waste, water resources utilization of the urgent need to clarify the use of glass-ceramic production of industrial waste residue the necessity of exploring the use of water for the steel blast furnace slag, steel, powder PFA production of slag glass-ceramic technical feasibility of slag glass-ceramic market status and prospects of an analysis. And the use of water, such as blast furnace slag glass-ceramic production of solid waste that must be resolved in the analysis of the issue.
引文
[1]朱桂林,孙树彬,赵群等.冶金渣资源化利用的现状和发展趋势[J].中国资源综合利用,2002(3):29-32.
    [2]赵中一,赵丽华.固体废弃物处理技术现状[J].环境科学动态,2002(3):26-27.
    [3]何水清.钢铁厂固体废物处理与利用[J].中国资源综合利用.2001(4):16-18.
    [4]马军,邹真勤.国内外钢铁企业固体废弃物资源化利用及技术新进展[J].2006:1002-177904-0032-02.
    [5]潘守芹.新型玻璃[M].上海:同济大学出版社,1992。
    [6]曹文聪,杨树森等.普通硅酸盐工艺学[M].武汉:武汉工业大学出版社,1996.
    [7]王雄,吴引淳.冶金炉渣资源化探讨[J].河南冶金,2006(9):21-24。
    [8]Topping J A.The fabrication of glass-ceramic materials based on blast fumace slag-a review[J].Journal of the Canadian Ceramic Sociery,1976,45:63.
    [9]赵运才,肖汉宁,何芳魁.玻璃陶瓷材料发展的回顾与展望[J].中国陶瓷.2001,37(3)40-43.
    [10]2007年全国建筑陶瓷产业发展形势分析.中研网讯2008-01-13
    [11]张磊,中国石材工业保持年均两位数增长.新华网2008-4-09
    [12]新型装饰材料:微品玻璃的特点及应用.中国玻璃网2008-04-23
    [13]我国石材行业发展解析.中国建材网2008-02-01
    [14]刘智伟.利用高炉矿渣生产微晶玻璃的可行性分析.山东冶金.2007-02.13
    [15]微晶玻璃石材待崛起,微晶石材现状及发展方向.中国建材网2008-04-22
    [16]陈国华,刘心宇.矿渣微品玻璃的制备及展望[J].全国性建材科技期刊-陶瓷,2002(4)16-20.
    [17]Hisashi.Endo,Yoshikazu Nagayoshi,Kenji Suzuki.Production of class Ceramics form Sewage sludge [J].Water Science Techndogh,1997,36(11)235 -241.
    [18]Slot R J,John A.The fabricaton of glass- ceramic materials based on blast furnace slag - A review[J].journal of the Canadian Ceramic Society,1976(45):63-67.
    [19]Khater G A.The use of Saudi slag production of glass-ceramic materials[J].Ceramics International,2002,18(1):59.
    [20]Alonso M,Sainz E.Lopte F A.Preparation of glass-forming matcrials from granulated blast furnace lag[J].Metallurgical and Materials Transactions B.1996.27B:801.
    [21]许超,周世珪.玻璃工艺原理[M].北京,中国建筑工业出版社.1984.7
    [22]Sadegh N,Vachtsevanos GJ.Modeling the glass forming process[J].glass technol,1997,38 (6):216-218.
    [23]作花济夫.玻璃非晶态科学[M].北京:中国建筑工业出版社,1996.
    [24]冯明良,田纯祥.微晶玻璃装饰材料的制备原理.2007-04-11.
    [25]Klemantaski S,Kerrison B.Sla gceramic:a new construction material J.Chemistr and Industry,1966(10):1745.
    [26]滕立东,陈晓峰,赵军.矿渣微晶玻璃核化机理的研究[J].硅酸盐通报,1995(1):14.
    [27]Vecoglu M L.Microstructural characterization and physical properties of a slag-based glass-ceramic crystallized at 950 and1100 ℃[J].Journal of the European Ceramic Society,1998(18):161.
    [28]杨家宽,肖波,王秀萍.利用钢铁炉渣制备微晶玻璃技术[J].有色金属.2003(3)130-139.
    [29]Alonso M,Sainz E,Lopez F A.Preparation of glass2forming materials from granulated blast furnace slag[J].Metallurgical and Materials Transactions B,1996,27B:801.
    [30]袁坚,王德怀,贺文华.微晶玻璃装饰板材的热处理工艺研究[J].山东建材,1997(5):11-13.
    [31]孙方明,诸培南等.热处理对微晶玻璃的晶化和机械强度的影响[J].玻璃与搪瓷,1984,13(2):8.
    [32]吕淑珍,余晓勤.炉渣在微晶玻璃中的应用[J].中国陶瓷,1999(4):24-25.
    [33]程金树,汤李缨,王全,等.钢渣微晶玻璃的研究[J].武汉工业大学学报,1995(4):1-3.
    [34]冯小平,何峰,李立华.CaO-Al_2O_3-SiO_2系统微晶玻璃晶化行为的研究[J],武汉理工大学学报.2001(1):22-25.
    [35]闫浩.利用铜矿尾砂研制微品玻璃[J],中国陶瓷,1999(6):14-18.
    [36]Davies M W,Hazeldean G S F,Robson M J.Nucleation and crystallization in Fe_2S and Fe_2Cr containing glass2ceramics based slag[J].Science of Ceramics,1970(5):15.
    [37]陈禾,梁开明,李力军,等.CaO-Al_2O_3-SiO_2系烧结微晶玻璃的结晶过程[J].清华大学学报,1999(10):15-17.
    [38]孙锦彪,王伟鸣.转炉钢渣利用探讨[J].江苏冶金,2006(6):68-70.
    [39]A garwal G,Speyer RF.Deuitrifying Cupola slag for Use in Abrasive Products J.Jom,1992,44(3)
    [40]陈惠君,董大奎,陈云芳等.钢渣玻璃及微晶玻璃的研究[J].玻璃与搪瓷,1998,16(2):1-7.
    [41]许淑惠,林宏飞.矿渣微晶玻璃产品的研究与开发[J].玻璃与搪瓷.2000,28(2):51-56.
    [42]G.H.Beall,HL,Ritler.Basalt glass ceramics Am[J].Ceram Soc Bull,1996,55(6):579.
    [43]陈国华.差热分析在微晶玻璃中的应用[J].洛阳工业高等专科学校学报,1995,5(4)5-9.
    [44]郝德性.控制玻璃结晶最佳热处理制度的确定方法[M].北京:国家建材工业总局建材研究院,1978.
    [45]肖汉宁,邓春明,彭文琴.工艺条件对钢铁废渣玻璃陶瓷显微结构的影响[J].湖南大学学报,2001,28(1)135-139.
    [46]叶瑞伦,方永汉,陆佩文.无机材料物理化学[M].北京,中国建筑工业出版社.1984-11
    [47]刘保瑶、张小兵.熔融高炉渣制造玄武岩棉的可行性分析[J].矿产综合利用2006(2):44-47.
    [48]陈登福,佐祥均,温良英等.液态高炉渣热量回收利用方法及问题.1008-9241(2006)07-0133-05.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700