用户名: 密码: 验证码:
基于DSP的主变压器冷却系统控制装置的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有的主变压器强油循环风冷却系统一般都采用传统的继电式控制装置,这种传统的控制装置逻辑控制功能低下、无通讯和保护功能、自动化水平低,已不能适应变电所综合自动化与变电所无人值班的要求。基于DSP的主变压器冷却系统控制装置正是针对这一应用需求而开发的。
     基于DSP的主变压器冷却系统控制装置从工程应用实际出发,采用先进的DSP技术与CPLD的结合,实现了冷却装置的自动控制。装置将两路冷却器电源和冷却风扇组通过电气上独立的两个系统分开控制,充分发挥DSP的快速高精度的运算优势和CPLD开发灵活、结构简单、稳定可靠的优势,不但具有比传统继电式控制装置更多的智能控制功能,而且实现了冷却器电源电压和风扇电流的实时测量和风扇电机保护,带有符合电力103规约(IEC 60870-5-103:1997)的通讯接口和远程监控软件,在实现多种控制、保护、通信功能的前提下,保证了装置的抗干扰能力和恶劣气候适应能力。
     文章从变压器冷却系统基本原理着手,介绍了冷却装置的总体设计,围绕双系统控制模式和硬件框架介绍了系统功能和网络构成。在硬件设计中研究了机箱结构设计和母版、电源板、开出板、CPU板电路设计及其抗干扰措施,重点介绍了CPU板的准同步采样电路、开入/开出电路设计和CPLD逻辑电路设计。在软件设计中研究了DSP实时操作系统移植、电压/电流采集和计算、风扇电机保护算法、冷却器控制逻辑、上位机程序设计、通讯规约设计。装置测试中重点介绍了装置的测试方法和结论,并总结了设计中的经验。文章结尾给出了结论和展望。
     冷却装置通过了电磁兼容试验和高低温试验,有效解决恶劣环境稳定运行的难题。该装置功能完善、运行可靠、自动化程度高、对提高变电所综合自动化水平及推动变电所无人值班工作的实施具有重要的意义。
The controlling devices of main transformer wind cooling system generally used traditional relay-control device which is provided with Logic Control dysfunction, no communication and protection, and has low level of automation, has unable to meet with the requirements of integrated substation automation and unmanned substation. Intelligent controlling device of main transformer wind cooling system is the view of this development and application needs.
     Considering the intelligent controlling device of main transformer wind cooling system is from the practical application of engineering, the use of advanced DSP technology and CPLD, to achieve automatic control of a cooling device, the two-way cooler installations and cooler fan group in the devices are controlled separately through the independent electric double-systems, which bring into full play advantages of rapid, high-precision computing of DSP, and flexible development, simple structure, stability and reliability of CPLD. DSP not only bears much more intelligent control function than traditional relay-control device, but also realizes real-time measurement and fan motor protection for cooler supply voltage and current fans, complying with the statute of electricity 103( IEC 60870-5-103:1997 ) communication interface and remote monitoring platform. It will actualize multiple control, protection and communications functions, and ensure anti-jamming devices and adaptation to adverse whether.
     This thesis beginning with the basic principle of transformer cooling system, introduced cooling device overall design, and presented system function and network-structure encircling dual-mode system control and hardware framework. The third chapter recommended mechanism structure design and mastering, power, out board, CPU circuit board design and anti-interference measures on the hardware design, and focused on CPU board quasi-synchronous sampling circuit, in/out circuit design and CPLD logic circuit design. The fourth chapter talked about software on DSP’s real-time operating system migration, voltage/current collection and calculation, the fan motor protection algorithm, cooler control logic and PC program design, and the statute of communications design. The fifth focused on device testing methods and conclusions, and summed up the experience in the design. At the end of the article is the conclusion and prospects.
     Cooling device got rigorous electromagnetic compatibility tests and high and low temperature tests, come to effective solution to stable operation in harsh environment. This device is provided with reliable operation, a high degree of automation and perfect functions, which have great significance to the improvement of integrated substation automation and the promotion of unmanned substation work.
引文
[1] 变压器手册编写组. 电力变压器手册. 辽宁: 辽宁科学技术出版社, 1989, 13-15
    [2] 陶瑜. 电网运行中220kv大型变压器风冷却器的改造. 变压器, 1992, 2(5): 19-21
    [3] Pwashabaugh A, Zahn M. A chemical reaction-based boundary condition for flow electrifaction. IEEE Trans D&EI, 1997, 4(6): 688
    [4] Boger A et al. Diagnosis tests of voltage oil-paper insulation system (in particular insulation) using Dcdielectromentrics. CIGRE, 1990, 15(8): 33
    [5] 李强. 强迫油循环变压器冷却器控制箱的改造. 变压器, 1997, 34(2): 36
    [6] 张顺林, 丁强. 微机保护在大型泵站的应用. 继电器, 2000, 28(6): 27-30
    [7] Sokolov etc. V Effective methods of assessmeng of insulation system condiitons in power transformers: a wiew based on practical experience. In: Proceeding of the CIGRE Regional meeting. London, 1999, 659
    [8] joshi, Sanjay B, Supinski, Mark R. Development of a generic PC-based programmable logic controller simulator. International Journal of Production Research. 1992, 30(1): 151-168
    [9] 余明, 吴新振, 邓忠. 基于Kohonen网络的电力变压器故障诊断方法. 变压器, 1997, 34(8):28-30
    [10] 罗军明. 基于温度预测的变压器油温测控的研制: [西安交通大学硕士学位论文]. 西安: 西安交通大学, 2001, 34-35
    [11] 王维俭, 侯炳蕴. 大型机组继电保护理论基础. 北京: 水利电力出版社, 1989, 17
    [12] Mao P L, Aggarwal P K. A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network, IEEE Trans. Power Delievery, 2001, 16(4):654-660
    [13] 魏小龙. MSP430系列单片机接口技术及系统设计实例. 北京: 北京航空航天大学出版社, 2002, 30
    [14] Holte R C,Acker L E,Porter B W. Concept learning and the problem of small disjuncts, Proc. 11th Int'l Joint Conf. Artificial Intelligence, 1989, 813-818.
    [15] 王世儒, 王金金, 冯有前等. 计算方法. 西安: 西安电子科技大学出版社, 2004, 53
    [16] Glenn Swift, Tom S Molinski, Waldemar Lehn. A Fundamental Approach to Tansformer Thermal Modeling-Part I: Theory and Equivalent Circuit. IEEETRANSACTIONS ON PWER DELIVERY. 2001, 16(2): 124
    [17] 周玉兰,王玉玲,赵曼勇. 2004年全国电网继电保护与安全自动装置运行情况. 电网技术, 2005, 29(16): 42-43
    [18] 王维俭. 发电机变压器继电保护应用. 北京: 中国电力出版社, 1998, 32
    [19] Syed M I, Wu T, Ledwich G. A novel fuzzy logic approach to transformer fault diagnosis. Dielectrics and Electrical Insulation, 2000, 7(2): 177-186
    [20] 贺家李, 宋从矩. 电力系统继电保护原理. 北京: 中国电力出版社,1994, 10
    [21] 诸嘉慧, 袁新枚, 邱阿瑞等. 大型水轮发电机转子偏心对单元件横差保护影响的分析. 见: 2004全国电力主设备保护学术研讨会论文集. 南京:中国电机工程学会, 2004, 30-33
    [22] 王维俭,桂林等. 大型水轮发电机微机型主保护设计方法再商榷. 继电器, 2002, 30(9): 1-6
    [23] 桂林, 王维俭, 孙宇光等. 大型发电机主保护配置方案的定量化设计. 见: 2004年全国电力主设备保护学术研讨会论文集, 南京:中国电机工程学会, 2004, 1-7
    [24] 林湘宁, 刘沛, 刘世明. 变压器有载合闸的超饱和现象及对变压器差动保护的影响. 中国电机工程学报, 2002, 22(3):6-11
    [25] 朱声石. 差动保护采用P级电流互感器的问题. 继电器, 2000, 28(7): 4-7
    [26] Birlasekaran S, Datveniza M. Micro-discharges from particale in transformer oi1. IEEE TranS EI, 1997, 11(4): 162
    [27] 王舜, 韩学义. WFB-100型微机发变组保护应用. 继电器, 2002, 30(8): 58-60
    [28] Yuguangsun, xianghengwang, LinGui. Optimized design of main Protection configuration scheme for interal faults Shawan generation. International Conference on Electrical Machines and Systems, 2005, 3(27):2306-2311
    [29] Mcchefaske C K. Correlating Power transformer tank vibration characteristic to winding looseness. INSIGHT. 1995, 37(8): 599
    [30] 赵振宁, 陈锋. 以可靠性为中心的检修在电力公司中的应用. 华北电力技术, 2003(3): 20-23
    [31] 许靖, 王晶, 高峰等. 电力设备状态检修技术研究综述. 电网技术, 2000, 24(8):48-52
    [32] 郭碧红, 杨晓洪. 我国电力设备在线监测技术的开发应用状况分析. 电网技术, 1999, 23(8): 65-67
    [33] 段智兵. 变电站综合自动化系统通讯网结构及RS-485接口的应用要点. 广东输电与变电技术, 2005, (1): 25
    [34] 郑旭, 蔡旭. 基于uC/OS-II的TMS320LF2407串行通信的研究与实现. 工业控制计算机, 2005, 18(7): 9-10
    [35] 赵青平. 关于主变压器冷却系统改造情况的分析. 天津电力技术, 1994, 2: 36-37
    [36] 邓世杰. 大型变压器风冷却系统的自动控制. 变压器, 2003. 40(10): 23-25
    [37] 刘世民, 林湘宁, 杨春明等. 变压器主保护中的自适应方案[J]. 继电器, 2001, 29(3): 39-42
    [38] 颜世钢, 魏殿杰. 一种新型强油循环风冷变压器冷却自控装置的研制. 电力自动化设备, 2002, 22(8): 57
    [39] 黄辉,姚尧. 基于MSP430的低压电动机保护装置的设计与研究. 大电机技术. 2007, (2): 23-26
    [40] 柯赫震. 硬件和软件相结合提高微机保护抗干扰能力的措施. 电气应用, 2005, 24(5): 18-20
    [41] 王玉斌, 王广柱, 刘洪涛. 微机型继电保护测试系统的研制. 继电器, 2002, 28(2): 44-46
    [42] Yang J Z, Liu C W. A precise calculation of power system frequency. IEEE Transactions on Power Delivery, 2001, 16(3): 361-366
    [43] Birlasckaran S. The measurement of charge on single particles in transformer oil. IEEE TranS EI, 1991, 26(6): 1094

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700