用户名: 密码: 验证码:
超精密激光三维测量与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三坐标测量机以其精度高、柔性强等特点在现代化的生产和先进制造、航空航天和国防等领域中起着越来越重要的作用。随着科学技术的进步和国家对国防事业的重视,特别是未来武器装备的发展,如新“机”、“弹”、“星”种的不断发展,其中的一些关键精密零部件的结构越来越复杂、精度越来越高,对三坐标测量机的测量精度的要求也越来越高。本论文正是针对提高三坐标测量机的测量精度开展研究工作。
     提高测量精度不仅包括减小三坐标测量机的机械结构误差、测头的探测误差,还包括减小由环境条件和使用条件带来的测量不确定度等。本论文提出了以三个坐标方向上分别使用激光干涉仪进行位移检测、并配用三维传感器式精密测头的三坐标测量系统。论文通过对激光三坐标测量系统、三维传感器式测头、实时位置控制系统、误差补偿技术和小环境控制技术的研究,提高三坐标测量机的检测精度。
     本课题的研究内容主要包括:(1)超精密三维测量系统机械结构技术研究;(2)超精密激光位置检测与测量控制技术研究;(3)高精度三维电感模拟量测头系统研究;(4)三维测量过程与结果的数据处理技术研究;(5)三维测量技术的误差分离与补偿技术研究;(6)小环境控制技术研究。
     本论文的创新性体现在:
     1、设计并研制一种符合运动学原理、阿贝原则、动力学装配要求、且刚性好的机械结构;本系统核心的精密气浮导轨采用小孔节流技术,实现了导轨运动精度优于0.05μm /500mm,刚性提高到250N/μm。
     2、采用He-Ne激光干涉仪作为在线位置检测替代了传统的光栅尺测量技术,并稳定地实现纳米级实时位置检测和闭环控制,其位置检测分辨率达到0.01μm,实时性优于2ms。
     3、研制了采用精密电感位移检测技术的高精度三维测头,实现保持沿法线方向触测的点位测量和连续扫描测量,并提出了几何元素修正(多次迭代)的方法实现对测头的误差补偿,使测头的空间测量不确定度减小到0.2μm。
     4、采用一种多CPU分布式实时位置控制算法以及减速折线近似、在线位置修正和平滑处理等技术,有效地提高了位置随动系统的实时性和空间跟踪性能,实现了高精度位置的动态控制和实时测量。
Coordinate Measuring Machines (CMMs) are playing more and more important role in modern production, advanced manufacture technology, aviation, space flight, and national defense industries since they possess high measuring accuracy and flexibility. With the rapid development of science and technology, more attention paid by the government to the national defense, and the development of new airplanes, bombs and satellites, high measurement accuracy and capability of measuring parts with complicated forms are essential for CMMs. This thesis focuses on the enhancement of CMM measurement accuracy.
     The enhancement of measurement accuracy includes reduction of structure and probing errors of the CMM, reduction of the uncertainties caused by the environmental factors during measurement. In this thesis, a CMM with three interferometers used for X, Y, and Z direction displacement measurements and a 3-dimensional inductive analog probe is designed. Based on the study of laser interferometric system, 3-dimensional inductive analog probe, real-time position control system, error compensation technology and small-volume environmental control technology, high measurement accuracy has been achieved.
     The main contents of the thesis include: (1) study on the mechanical structure of the super-accurate CMM, (2) study on the position measurement and control technologies using ultra-accurate laser interferometers, (3) study on high accurate 3-dimensional inductive analog probe, (4) data processing technology in the measurement process and that of the measurement results. (5) study on the coordinate measurement error separation and compensation technologies, (6) study on the small volume environmental control technology.
     The main creative ideas and innovations of the thesis include the follows.
     1. A new mechanical structure is proposed and designed. This structure complies with the principle of kinematical design, Abbe , meets the dynamics requirements in assembly and possesses good rigidi ty. The core of the structure is the use of precision air-floating guides with small-hole throttle technology, which offers a motion straightness accuracy of 0.05μm /500mm, and a rigidity of 250N/μm。
     2. He-Ne laser interferometers are used in the displacement measurement to replace the traditional grating scales. By using this technique high stable and nanometer precision displacement measurement and closed-loop control have been achieved. The displacement measurement resolution reaches 0.01μm, and the response time is less than 5ms.
     3. A high precision 3-dimensional inductive analog probe is developed to realize the point to point position measurement in the normal direction and continuous scanning measurement. A method for compensating the probe error based on geometric element correction by using repeated iteration is designed. The volumetric measurement uncertainty of the probe has been reduced to 0.2μm.
     4. A multi-CPU distributed real time position control algorithm with deceleration broken-line approximation, and on-line correction and smoothing is developed to achieve dynamic position control and real time measurement with high accuracy, and to improve the space tracking property of the CMM.
引文
[1] Ozono S, Takamasu K, Data Processing and Calibration of Coordinate Measuring Machine, Int. J. Japan Soc. Prec. Eng, 1995, 29(2):105-107
    [2]安卫,国外三坐标测量机技术发展动态,航空精密制造技术,1996,32(4):37-38
    [3]王正强,三坐标测量机的发展现状,现代计量测试,1994,(5):3-5
    [4]曹麟祥,汪慰军,三坐标测量机的现状、发展与未来,宇航计测技术,1996,16(2):15-17
    [5]张国雄等,三坐标测量机,天津:天津大学出版社, 1999
    [6]王为农,王正强,坐标测量机的测量不确定度指标及验收测试,计量技术,1997,(6),11-13
    [7]戚加良,三坐标测量机的选择,计量技术,1994,(9):7-9
    [8] Kunzmann H, Waldele F, Performance of CMMs, Annals of the CIRP,1988, 37(2):633-636
    [9] Pahk H J, et al. Development of Computer-Aided Inspection System with CMM, for Integrated Mold Manufacturing,Annals of the CIRP, 1993, 42(l), 557-560
    [10] Werner A, et al. Reverse Engineering of Free-form Surface. Journal of Material Processing Technology, 1998, 76(3): 128-132
    [11]白作霖等,基于CNC三坐标测量机的自由曲线曲面自动检测及处理系统,西安交通大学学报,1995, 29(10),75-805
    [12] Menq C, Chen F L, Curve and Surface Approximation from CMM Measurement Data,Computer and Industry Engineering, 1996, 30(2), 2ll-225
    [13]英国Renishaw公司产品样本和技术资料
    [14] http://www.zeissmetrology.com/
    [15] www.leitz-metrology.com
    [16] Skalski K, et al. Identification and Geometrical Modeling of Complex Shape Surfaces using Coordinate Measuring Machine and CAD/CAM System, Journal of Materials Processing Technology, 1998, 76(1), 1-3
    [17]赵美蓉,天津大学博士论文,1996
    [18]吴文炳,三坐标测量机发展现状和趋势,航空精密制造技术,1991, 27(5), 11-16
    [19] http://www.ims.com/
    [20] http://www.brownandsharpe.com
    [21] http://www.sios.de/
    [22]航空303所,SZCJ-866计量型三坐标测量机技术总结报告,1998
    [23]美国API公司,激光干涉仪技术资料,2002
    [24]张士栋,敬红,吴晓峰,标准总线IEEE-488在坐标测量机中的应用,航空精密制造技术,1994, 30(1):24-27
    [25]吴晓峰,一种智能式光栅莫尔条纹信号800细分与计数新方法,电子测量与仪器学报, 1991, 20(1):41-43
    [26]王瑞康等,在三坐标测量机上基本几何要素的测量和计算,航空计测技术,1992, 22(1):2-8
    [27]张国雄,误差修正—提高坐标测量机精度的重要方向,机床,1986,46(1):37-41
    [28]张国雄,三次元测量的机误差补偿,机械月刊,1994,36(2):132-136
    [29]吴晓峰,一种分布式实时位置控制算法及其在坐标测量系统中的应用,信息与控制,1992,26(6):374-376
    [30] Sutherland, A. T., Wright, D. A., Optimizing a Servo System for a Coordinate Measuring Machine, Precision Engineering, 1987, 9(4):222-226
    [31]段文泽,电气传动控制系统及其工程设计,重庆大学出版社,1986
    [32]吴晓峰,坐标测量机最佳伺服系统UNIDEA的开发应用,中国仪器仪表学会机械量测试仪器学会第一届全国三坐标测量机学术会论文集,北京,1990, 54-60
    [33]解学书,最优控制——理论与应用,清华大学出版社,1986
    [34]罗兴权,关于准确定位的初步探索,自动化学报,1986,23(1):68-70
    [35]吴晓峰,一种三维光栅传感器式牵引测头的研制与分析,《仪器仪表学报》,1992,13(4):162-165
    [36]张爱萍,套装式双片簧三维模拟测头的研制,《仪器仪表学报》,1996,17(2):87-89
    [37]王瑞康,在三坐标测量机上几何要素的测量和计算,航空计测技术,1992,12(4):195-197
    [38] Lindmayer H, Vom Messraum zur Messzelle-Automatisierfes Messen mit Koordinatenmessgeraeten, 1987, VDI-E 129-131, 7-13
    [39] Engeln-Muellges G, Reutter F, Formelansammlung zur Numerischen Mathematik mit BASIC-Programmer, BI-Hochschultaschenbuecher, Mannheim, Wien, Zuerich, 1983, 286-290
    [40] Tiller W, Hanson E G, Offset of Two-Dimensional Profiles, IEEE Computer Graphics and Application, 1984, 275-279
    [41] Roth T, Tastsysteme und Antastuerfahren, Vortrag VDI-Seminar Mehrkoordinaten-Messtechnik, Aacher, 1987, 360-365
    [42] Weckenmann A, Goch G, Sprongborn H-D, Korrekfurder Taststiftbiegung bei Messung mit Mehrkoordinaten-Messgeraeten, Feinwerktechnik & Messtechnik, 1988,87:28-35
    [43] Pfeifer T, Ermittlung der Messunsicherheit von 3-D Tastsystemen, Technisches Messen,1979,46
    [44] Shacham M, Numerical Solution of Constrained Nonlinear Algebraic Algebraic Equations, International Journal for Numerical Methods in Engineering,1986,23:235-239
    [45] Leitz, PMM Service Manual, 1992
    [46] www.leitz-metrology.com
    [47] http://www.zeissmetrology.com/
    [48]张德芬,几何参数坐标测量方法的研究,博士学位论文,天津大学, 1992
    [49]穆玉海,高速三坐标测量机动态误差补偿技术的研究,博士后研究工作报告,天津大学,1996
    [50]张国雄,对具有固化数据处理软件的三坐标测量机误差修正技术,《计量学报》,1991,12(1):1-6
    [51]中国航空精密机械研究所,QUINDOS基本测量编程手册,1996
    [52]中国航空精密机械研究所,QUINDOS形位公差测量编程手册,1996
    [53] DEA, UNIDEA Control System, 1995
    [54]张国雄等,三坐标测量机,天津大学出版社,2000
    [55]金篆芷,王明时,现代传感技术,电子工业出版社,1996
    [56]高国军,陈康宁,CMM测量中检测点数据和分布的规划方法,上海交通大学学报,1999,33(9):1164-1166
    [57]苏显谕等,三维面测量技术的进展,物理,1996,25(10):614-620
    [58]杜颖,李真,三维曲面的非接触测量技术,光学精密工程,1999,7(7):2-2
    [59]王建利,智能三坐标测量机中关键技术的研究,天津大学博士论文,1998
    [60]坐标测量机验收检测标准ISO10360-2,2000
    [61]段文泽,电气传动控制系统及其工程设计,重庆大学出版社,1986
    [62]吴晓峰,坐标测量机最佳伺服系统UNIDEA的开发应用,中国仪器仪表学会机械量测试仪器学会第一届全国三坐标测量机学术会论文集,北京,1990, 54-60
    [63]解学书,最优控制——理论与应用,清华大学出版社,1986
    [64]罗兴权,关于准确定位的初步探索,自动化学报,1986,23(1):68-70
    [65]吴晓峰,一种三维光栅传感器式牵引测头的研制与分析,《仪器仪表学报》,1992,13(4):162-165
    [66]张爱萍,套装式双片簧三维模拟测头的研制,《仪器仪表学报》,1996,17(2):87-89
    [67]王瑞康,在三坐标测量机上几何要素的测量和计算,航空计测技术,1992,12(4):195-197
    [68] Tiller W, Hanson E G, Offset of Two-Dimensional Profiles, IEEE Computer Graphics and Application, 1984, 275-279
    [69] Roth T, Tastsysteme und Antastuerfahren, Vortrag VDI-Seminar Mehrkoordinaten-Messtechnik, Aacher, 1987, 360-365
    [70] Weckenmann A, Goch G, Sprongborn H-D, Korrekfurder Taststiftbiegung bei Messung mit Mehrkoordinaten-Messgeraeten, Feinwerktechnik & Messtechnik, 1988,87:28-35
    [71] Pfeifer T, Ermittlung der Messunsicherheit von 3-D Tastsystemen,
    [72] Pahk H J, et al. Development of Computer-Aided Inspection System with CMM, for Integrated Mold Manufacturing,Annals of the CIRP, 1993, 42(l), 557-560
    [73] Werner A, et al. Reverse Engineering of Free-form Surface. Journal of Material Processing Technology, 1998, 76(3): 128-132
    [74]白作霖等,基于CNC三坐标测量机的自由曲线曲面自动检测及处理系统,西安交通大学学报,1995, 29(10),75-805
    [75] Menq C, Chen F L, Curve and Surface Approximation from CMM Measurement Data,Computer and Industry Engineering, 1996, 30(2), 2ll-225
    [76]英国Renishaw公司产品样本和技术资料
    [77] http://www.zeissmetrology.com/
    [78] www.leitz-metrology.com
    [79] Skalski K, et al. Identification and Geometrical Modeling of Complex Shape Surfaces using Coordinate Measuring Machine and CAD/CAM System, Journal of Materials Processing Technology, 1998, 76(1), 1-3
    [80] Kunzmann H, Waldele F, Performance of CMMs, Annals of the CIRP,1988, 37(2):633-636
    [81] Pahk H J, et al. Development of Computer-Aided Inspection System with CMM, for Integrated Mold Manufacturing,Annals of the CIRP, 1993, 42(l), 557-560
    [82] Werner A, et al. Reverse Engineering of Free-form Surface. Journal of Material Processing Technology, 1998, 76(3): 128-132
    [83]白作霖等,基于CNC三坐标测量机的自由曲线曲面自动检测及处理系统,西安交通大学学报,1995, 29(10),75-805
    [84] Menq C, Chen F L, Curve and Surface Approximation from CMM Measurement Data,Computer and Industry Engineering, 1996, 30(2), 2ll-225
    [85]刘月明,刘君华,张少君,微悬臂梁探测器的理论模型及优化设计,光学学报,2001,21(6):744-748
    [86] Voe D L,Pisano A P. Modeling and optimal design of piezoelectric cantilever microactuators. Journal of Microelectromechanical System, 1997, 6(3): 266-270.
    [87] Lee H C, Huang R S. Study on field-emission array pressure sensors. Sensors and Actuators, 1993, 34 (2): 137-140.
    [88]韩建强,朱长纯,刘君华,共振法确定热激励微梁共振器厚度及残余应变,2003,26(4):328-332
    [89] Jensenius H, Thaysen J, Rasmussen A et al. Gas sensor based on micromachined cantilevers with integrated read-out, Appl. Phys. Lett., 2000,76: 2615-2623.
    [90] Fritz J, Baller M K, Lang H P et al. Translating Biomolecular Recognition into Nanomechanies. Science 288: 316-319.
    [91]周嘉,黎坡,黄宜平等,压电共振式微悬臂梁气体传感器,压电与声光,2003,25(5):358-362
    [92] Riethmuller W, Benecke W. IEEE Trans. Electron Devices, 1988, 35(6):758-762.
    [93] Thundat T, Warmack R, Chen G et al. Thermal and ambient-induced deflection of scanning force microscope cantilevers[J]. Appl. Phys. Lett., 1994, 64: 21-23.
    [94] Sarid D. Scanning force microscopy with applications to electric, magnetic andatomic forces, Oxford university press, 1994.
    [95]白春礼,田芳,罗克,扫描力显微术,北京,科学出版社,2000
    [96] Britton C L,Warmack R J,S F Smith et a1. Battery-powered wireless MEMS sensors for high-sensitivity chemical and biological sensing. Advanced Research in VLSI, 1999.Proceedings.20th Anniversary Conference on, 1999: 359—368.
    [97] Roelofs A, Bottger U et al. Differentiating 180o and 90o switching of ferroelectric domains with three-dimensional piezoresponse force microscopy. Appl.Phys.Let., 2000,Vol.77, N021:3444-3446.
    [98] Takai M. Electron emission from gated silicide field emiter arrays. American Vacuum Society, 1998: 790-792.
    [99] Chen G, Warmack R, Thundat T et al, Resonance response of scanning force microscopy cantilevers. Rev. Sci. Ins., 1994, 65:2532-2537.
    [100] Sun X Q,ZHOU S F,CARR W N. A surface micromachined latching accelerometer. International Conference on So1id-State Sensors and Actuators, 1997: 1189-1192.
    [101] Yang J L et a1. Mechanical behavior of ultrathin microcantilever. Sensors and Actuators, 2000, A82: 102-107.
    [102] Britton C L, Warmack R J, Smith S F et al. Cantilever sensor array bibliography. Appl. Phys.Lett. 2000, 87: 3978-3988.
    [103] Vincent Tabard-Cossa, Michel Godin, Beaulieu L. Y. et al. A differential microcantilever-based system for measuring surface stress changes induced by electrochemical reactions [J]. Sensors and Actuators, 2005, B107: 233-241
    [104]杨冰,杨银堂等,PZT压电薄膜在微传感器中的应用,传感器技术,2003,22(12):73-77
    [105] Gardner J W et al, A brief history of electronic nose, Sensors and Actuators B, 1994,18-19:211-220.
    [106] Minne S C, Manalis S R, Atalar A. Contact imaging in the atomic force microscope using a higher order flexural mode combined with a new sensor. Appl. Phys. Lett., 2000, 68 (10): 1427-1429.
    [107] Johann Mertens, Eric Finot, Thomas Thundat et al. Effects of temperature and pressure on microcantilever resonance response [J]. Ultramicroscopy, 2003, 97: 119-126.
    [108] Hansen K, Ji H, Guanghua W et al. Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches, Analytical Chemistry, 2001, 73:1567-1571
    [109] Tomayo J, Humphris A D L, Malloy A M et al, Chemical sensors and biosensors in liquid environment based on microcantilevers, Ultramicroscopy, 2001, 86: 167-180.
    [110] Itoh T, Lee C, Suga T. Deflection detection and feedback actuation using a self-excited piezoelectric Pb(Zr,Ti)O3 microcantilever for dynamic scanning forcemicroscopy. Appl.Phys.Lett., 1996, 69(14): 2036-2038.
    [111] Umeda N, Ishizaki S, Uwai H et al. Scanning attractive force microscope using photothermal vibration [J]. Sci. Technol. , 1991, B9:1318
    [112] Ashley Norris, Mohamed Saafi and Peter Romine. Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems(MEMS) sensors[J]. Construction and Building Material, 2006, 05:47-51.
    [113] Shen F., Lu P., O’Shea S J. et al. Thermal effects on coated resonant microcantilevers [J]. Sensors and Actuators, 2001, A95: 17-23.
    [114] Johann Mertens, Eric Finot, Thomas Thundat et al. Effects of temperature and pressure on microcantilever resonance response [J]. Ultramicroscopy, 2003, 97: 119-126.
    [115] Jerman H. Electrically-actived Micromachined diaphragm valves, Proc. Micro System Technologies 90(Berlin), 1990: 806-811
    [116] Jorge Amirola, Angel Rodriguez, Luis Castaner ea al. Micromachined silicon microcantilevers for gas sensing applications with capacitive. Sensors and Actuators,2005,B111-112: 247-253
    [117] Y Martin, C C Williams, V B Elings. Atomic force microscope-force mapping and profiling on a sub 100-Α& scale. J. Appl. Phys, 1987, 61: 4723-4729
    [118] Q D Zhong, D Inniss, K Kjoller et al. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. 1993, 290: L688-L692
    [119] C A Putman, K O Vanderwerf, B G Degrooth et al, Tapping mode atomic force microscopy in liquid, 1994, 64: 2454-2456
    [120] B Ancykowski, D Kruger, Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects, Phys. Rev. B., 1996, 53(23): 15485-15488
    [121] A Kuhle, A H Sorensen, J Bohr, Contrast artifacts in tapping tip atomic force microscopy, 1997, 81: 6592-6596
    [122] D Kruger, B Anczykowski, Experimental evaluation of probe–sample force in tapping mode scanning force microscopy, Ann. Phys.,1997, 6:34-36
    [123] N Sasaki, M Tsukada, The relation between resonance curves and tip-surface interaction potential in noncontact atomic-force microscopy, J. Appl. Phys., 1998, 37(Part 2):L533-L535
    [124] N Sasaki, M Tsukada, R Tamura, Dynamics of the cantilever in noncontactatomic force microscopy, Appl. Phys. A: Mater. Sci. Process, 1998, 66(S1): 287-291
    [125] O Behrendt, F Oulevey, D Gourdon, Intermittent contact: tapping or hammering?, Appl. Phys. A: Mater. Sci. Process, 1998, 66(S1): 219-221
    [126] M Labardi, Apparent and actual damping in dynamic force spectroscopy, Probe Microsc, 1998, 1:215-217
    [127] R Boisgard, D Michel, J P Aime, Hysteresis generated by attractive interaction: oscillating behavior of a vibrating tip-microlever system near a surface, Sur. Sci., 1998, 401(2):199-205
    [128] J P Aime, R Boisgard, L Nony, Nonlinear dynamic behavior of an oscillating tip-microlever system and contrast at the atomic scale, Phys. Rev. Lett., 82:3388-3391
    [129] T Albrecht, P Grutter, D Horne et al. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys, 1991, 69: 668-673
    [130] S Morita, R Wiesendanger, E Meyer, Noncontact Atomic Force Microscopy, Berlin: Springer-Verlag, 2002
    [131] F J Giessibl, Advances in atomic force microscopy, Rev. Mod. Phys, 2003, 75: 949-983
    [132] B Gotsmann, D Kruger, H Fuchs, Tip-sample interactions in scanning force microscopy using the frequency-modulation technique: Experiments and computer simulation, Europhys. Lett, 1997, 39(2):153-158
    [133] B Gotsmann, B Ancykowski, C Seidel, Determination of tip–sample interaction forces from measured dynamic force spectroscopy curves, Appl. Surf. Sci.,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700