用户名: 密码: 验证码:
基于Micro-PIV方法的微槽群热沉内流动与传热的可视化实验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微尺度传热是当今传热传质领域研究的重点,基于微尺度传热原理所设计的新型冷却方式已经广泛用于大功率电力电子设备元器件、中低温余热利用、大功率激光器冷却以及LED设备的冷却中。开放式毛细微槽群复合相变换热是微尺度传热领域中的一种,其相变换热的原理是液体在微槽群自身的结构所形成的毛细压力梯度下流动,在扩展弯月面区域形成具有高强度蒸发能力的薄液膜区域和厚液膜区域的核态沸腾的高强度复合相变换热。目前微槽群复合相变冷却方式已经得到国内外学者的广泛重视,进行了大量研究并取得了一些重要成果。
     本文利用Micro-PIV设备对硼硅玻璃材质的矩形毛细微槽群热沉内的弯月面的形状进行可视化实验研究。研究了矩形毛细微槽群热沉在纯蒸发换热状态下,水平放置、倾斜15°、25°和35°时,不同热流密度条件下,微槽群内轴向截面处自适应段、渐缩段和三角区域流动段的弯月面的形状沿轴向的变化情况,并对弯月面形状的实验数据进行拟合处理;对弯月面形状沿轴向分布进行了三维图的绘制;研究了不同热流密度以及不同倾斜角度条件下弯月面的曲率半径沿轴向的变化情况。结果表明:在有热流密度输入时,矩形毛细微槽群热沉内弯月面的形状呈近抛物线形,水平槽内弯月面形状沿轴向是不变的;热流密度的增加对弯月面形状改变有较大影响;水平微槽内弯月面的平均曲率沿轴向基本保持不变,倾斜的微槽内弯月面的平均曲率沿轴向增加;在相同热流密度和相同倾斜角的条件下,三角区域流动段的弯月面沿轴向方向上逐渐向槽的角落退缩。
     利用Micro-PIV技术对硼硅玻璃和紫铜为基体材料的矩形微槽群热沉内的液体的速度场以及液体流动形态进行了可视化研究,研究了自适应段、渐缩段和三角区域流动段的速度场以及液体的截面积的变化情况并进行了分析;研究了切向方向上截面的速度矢量分布;研究了微槽在不同倾斜角度下槽内液体的流动状态,验证了前人的假设。结果表明:微槽内液体在无外力驱动条件下仅靠毛细力驱动,液体的流速很低,流动状态为层流状态;薄液膜区域的流速要远小于厚液膜区域的流速;矩形毛细微槽群热沉内的液体的流动状态验证了槽内存在自适应段和三角区域流动段;液体与微槽侧壁和槽底所围成的截面积沿轴向方向减小;自适应段和渐缩段的液体截面积拟合的结果为截面积沿轴向呈二次曲线分布;倾斜角越大,数据拟合的曲线的曲率越大,液体的截面积变化也越大;在相同轴向截面处液体的截面积随着倾斜角的增大而减小。三角区域流动段的液体的截面积沿轴向呈线性分布,液体截面积逐渐减小。
     研究了纯蒸发状态下的倾斜矩形毛细微槽内液体的流动特性并进行公式推导。根据前人提出的微槽内液体的轴向流动特性的理论模型进行修正,并与实验测量到的液膜厚度、曲率半径以及自适应段和渐缩段液体的润湿长度等实验数据进行对比,从而揭示矩形毛细微槽内弯月面的液体的液膜特性。
     利用高速摄影仪和红外热成像仪对饱和沸腾条件下矩形毛细微槽群热沉内汽泡动力学行为、三相接触线的波动时间以及微槽表面的温度分布等进行可视化实验研究,得到了汽泡破裂导致的三相接触线波动过程、不同热流密度条件下汽泡破裂导致的三相接触线形状的变化、热流密度对三相接触线的波动时间以及汽泡周期的影响、过热度对汽泡的脱离频率的影响、热流密度对汽泡破裂的当量直径的影响以及微槽温度表面的分布等规律。研究结果表明:汽泡的破裂使得三相接触线发生周期性的波动。随着热流密度的增大,接触线的振幅增大,波长变长,波动的更剧烈,接触线的波动传播的范围更广;接触线的波动时间随着热流密度的增加先增加后减小,存在一个峰值;汽泡的生命周期随着热流密度的增加而变短。汽泡破裂的当量直径随热流密度的增加而增大。在热流密度保持不变时,相同槽深条件下,汽泡的当量直径随槽宽的增加而增大;微槽群热沉表面的温度分布呈现波动趋势,存在温度的波峰值和波谷值;微槽表面平均温度随热流密度的升高而升高。汽泡破裂时汽化核心区域的温度在微槽表面3D温度分布图中出现波峰值。
Microscale heat transfer is the main focus in the heat and mass transfer, and new cooling methods based on the microscale heat transfer have been widely utilized in high-power electronical components, low temperature waste heat utilization, high-power laser cooling and LED equipment. Combined phase-change heat transfer in open capillary microgrooves heat sinks is one kind of microscale heat transfer, and its principle of combined phase-change heat transfer in open capillary microgrooves heat sinks is driving fluid to flow along the axial direction of the microgrooves by capillary pressure difference due to the structure of the microgrooves, and forming thin liquid film where there exists high evaporating heat transfer coefficient and thick liquid film where nucleate boiling exists with high phase-change heat transfer coefficient. More attention has been paid to this new cooling method and more research has also been constructed and a lot of results have been achieved.
     In this work, visualization investigation of the meniscus shape in rectangular capillary microgrooves heat sinks with substrate material of borosilicate glass is conducted with Micro-PFV method. Investigations of the meniscus shape of accommodation, recession and corner flow stages in rectangular microgrooves heat sinks varying with axis under the condition of inclined angle of0,15degrees,25degrees and35degrees with different heat fluxes when the pure evaporation occurs in the rectangular capillary microgrooves heat sinks; data of the meniscus shape are fitted with parabolic curves, and3D profiles of the meniscus shape along the axis of the microgrooves are also attained. Curvature of the meniscus shape along axis of microgrooves is also investigated. Results show that the meniscus shape in rectangular microgrooves heat sinks is quasi-parabolic with heat flux added from below; the meniscus shape does not change along the axis in horizontal microgrooves; heat flux has great influence on the meniscus shape; the curvature of meniscus shape in horizontal microgrooves heat sinks does not vary along the axis, while the curvature of the meniscus shape in inclined microgrooves heat sinks increases along the axis; the meniscus shape of corner flow stage gradually recedes to the corner of the microgroove under the condition of the same heat flux and inclined angle.
     Visualization research on fluid velocity and flow patterns of rectangular microgrooves heat sinks with substrate material of borosilicate glass and red copper is constructed with Micro-PIV method. Velocity vectors and cross-section area of the liquid in accommodation, recession and corner flow stages are investigated; the velocity distribution in the tangential direction is also studied; flow patterns in different inclined angles are investigated and assumptions by Carton and Stroes have been confirmed. Results show that fluid in microgrooves driven only by capillary pressure difference flows very slowly and is under laminar flow; velocity in thin liquid film region is far less than that in thick liquid film region; the flow pattern confirms that there exist accommodation and corner flow stages; liquid cross-section area decreases along the axis; the fitted curves of the liquid cross-section area along the axis is a conic distribution; curvature of the curves increases with the inclined angle as well as the cross-section area; liquid cross-section area decreases with inclined angle in the same cross-section. The liquid cross-section area in corner flow stage along the axis is a linear distribution and cross-section decreases.
     The flow characteristics in inclined rectangular microgrooves heat sinks under pure evaporation condition are investigated theoretically, and the axial flow model in rectangular microgrooves heat sinks is revised. The analytical results are compared with the experimental results, such as thickness of the liquid film of the meniscus, curvature and the liquid length of accommodation stage and recession stage, and the liquid film characteristics of the meniscus are derived.
     Bubble dynamic behaviors and fluctuation of triple-phase contact line and the temperature distribution on the microgrooves are investigated by high speed camera and thermal infrared imager. The fluctuation of the triple-phase contact line caused by bubble-burst, the change of the shape of triple-phase contact line due to bubble-burst under different heat flux, impact of heat flux on fluctuation time of triple-phase contact line, bubble period, bubble-burst equivalent diameter and temperature distribution, influence of superheat on bubble departure frequency are all investigated. Results show that bubble-burst makes triple-phase contact line fluctuate periodically; with increase of the heat flux, the amplitude of the triple-phase contact line increases and wavelength elongates, so fluctuation becomes violent and the fluctuation region gets wider; fluctuation time first increases and then decreases, and there exists a peak value; the bubble period decreases with heat flux; bubble-burst equivalent diameter increases with heat flux; bubble-burst equivalent diameter increases with the microgroove width under the condition of the same heat flux and microgroove depth; temperature of the surface of the microgrooves heat sinks shows a trend of fluctuation, and there exist peak and trough values; the mean temperature of the surface of the microgrooves increases with heat flux; temperature of the region of the bubble-burst shows a peak value in nucleate site in3D temperature profiles.
引文
[1]Handbook, Military, Reliability prediction of electronic equipment[M], USA Department of Defense, MILHDBK-217F, Notice 2.10.1 (1991).
    [2]姚寿广,马哲树,罗林,陈如冰,电子电器设备中高效热管散热技术的研究现状及发展[J],华东船舶工业学院学报,2003,8(4):9-12.
    [3]杨世铭,陶文铨,,传热学,高等教育出版社,1998.
    [4]K. S. Jin, S. W. Lee, Air cooling technology for electronic equipment, CRC Press,1996.
    [5]A. Zebib, Y. K. Wo, A two-dimensional conjugate heat transfer model for forced air cooling of an electronic device[J], Journal of Electronic Packaging,1989,111(1):41-45.
    [6]I. E. Mouromtseff, Water and forced-air cooling of vacuum tubes nonelectronic problems in electronic tubes[J], Proceedings of the IRE,1942,30(4):190-205.
    [7]C. W. Argento, Y. K. Joshi, M. D. Osterman, Forced convection air-cooling of a commercial electronic chassis:an experimental and computational case study[J], Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, 1996,19(2):248-257.
    [8]D. S. Steinberg. Cooling techniques for electronic equipment[M]. New York, Wiley-Interscience,1980.
    [9]J. Yang, L. Chow, M. Pais, Nucleate boiling heat transfer in spraying cooling[J], ASME J. Heat Transfer,1996,118:668-671.
    [10]B. Horacek, K. T. Kiger, J. Kim, Single nozzle spray cooling heat transfer mechanisms[J], Int. J. Heat Mass Transfer,2005,48:1425-1438.
    [11]I. Mudawar, K.A. Estes, Optimizing and predicting CHF in spray cooling of a square surface[J], J. Heat Transfer-Trans. ASME,1996,118 (3):672-679.
    [12]R. H. Chen, L. C. Chow, J. E. Navedo, Optimal spray characteristics in water spray cooling[J], Int. J. Heat Mass Transfer,2004,47 (23):5095-5099.
    [13]Y. B. Tan, J. L. Xie, F. Duan, T. N. Wong, K. C. Toh, K. F. Choo, P. K. Chan, Y. S. Chua, Multi-nozzle spray cooling for high heat flux applications in a closed loop system[J], Appl. Therm. Eng.,2013,54 (2):372-379.
    [14]J. L. Xie, Y. B. Tan, F. Duan, K. Ranjith, T. N. Wong, K. C. Toh, K. F. Choo, P. K. Chan, Study of heat transfer enhancement for structured surfaces in spray cooling[J], Appl. Therm. Eng.,2013,59 (1):464-472.
    [15]R. H. Chen, L. C. Chow, J. E. Navedo, Effects of spray characteristics on critical heat flux in subcooled water spray cooling[J], Int. J. Heat Mass Transfer,2002,45 (19): 4033-4043.
    [16]G. Mahan, B. Sales, J. Sharp, Thermoelectric materials:new approaches to an old problem[J], Phys Today,1997,3:42-47.
    [17]J. Chen, J. A. Schouten, Comment on a new approach to optimum design in thermoelectric cooling systems [J], J. Appl. Phys,1997,82:6368-6369.
    [18]J. Chen, B. Lin, H. Wang, G Lin, Optimal design of a multi-couple thermoelectric generator[J], Semicond Sci Technol,2000,15:184-188.
    [19]B. J. Huang, C. J. Chen, C. L. Duang, A design method for a thermoelectric cooler[J], Int J Refrig,2000,23:208-218.
    [20]G. S. Nolas, H. J. Goldsmid, A comparison of projected thermoelectric and thermionic refrigerators[J], J. Appl. Phys,1999,85:4066-4070.
    [21]A. C. Msset, C. Michel, A. Maignan. Misfit-layered cobaltite with an anisotropic giant magnetoresistance:Ca3Co4O[J], Phy. Rev. B.2000,62:166-175.
    [22]R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit [J], Nature,2001,413:597-602.
    [23]K. J. Landecker, Improvement of the performance of Peltier junctions for thermoelectric cooling[J], Phy. C:Solid St. Phys,1970,3:2146-2150.
    [24]J. W. Straehle, S. Rath, T. Hans, T.Metzger, R. P. Huebener, S. Kemmler-Sack, Prospects for Peltier cooling of the cuprate superconductors[C],17th International Conference on Therrnoelectrics,1998,491-494.
    [25]J. Esarte, J. M. Blanco, F. Mendia, F. Pena, Improving cooling devices for the hot face of Peltier pellets based on phase change fluids [J], Appl. Therm. Eng.,2006, (26):967-973.
    [26]马同泽,侯增祺,吴文铣,热管[M],北京,科学出版社,1983.
    [27]Y. Tang, P. Chen, X. W. Wang, Experimental investigation into the performance of heat pipe with micro grooves fabricated by extrusion-ploughing process[J], Energy Convers Manage,2010,51:1849-1854.
    [28]X. W. Wang, Y. Tang, P. Chen, Investigation into performance of a heat pipe with micro grooves fabricated by extrusion-ploughing process[J], Energy Convers Manage,2009,50: 1384-1388.
    [29]Y. W. Chang, C. H. Cheng, J. C. Wang, S. L. Chen, Heat pipe for cooling of electronic equipment[J], Energy Convers Manage,2008,49:3398-3404.
    [30]G. G. Duffy, M. S. N. Kazi, X. D. Chen, Heat transfer to fibre suspensions in annular flow[C], Proceedings of 28th CHEMECA Conference, Perth, Australia,2000, Paper C-4.2 366-369.
    [31]G. G. Duffy, S. N. Kazi, X. D. Chen, Heat transfer and pressure drop characteristics of suspensions of synthetic and wood pulp fibres in annular flow[J], Appl. Therm. Eng., 2011,31:2971-2980.
    [32]G. G. Duffy, M. S. N. Kazi, X. D. Chen, Heat transfer coefficient-a new way to monitor wood pulp quality[C], Proceedings of 54th Annual Appita Conference, Melbourne, Australia,2000, Paper 4B12(2):605-614.
    [33]M. S. N. Kazi, G G. Duffy, X. D. Chen, Heat transfer in the drag reducing regime of wood pulp fibre suspensions[J], Chem. Eng. J.,1999,73 (3):247-253.
    [34]J. Z. Lin, W. F. Zhang, Z. S. Yu, Numerical research on the orientation distribution of fibers immersed in laminar and turbulent pipe flows[J], Aerosol Sci.,2004,35:63-82.
    [35]J. Lin, X. Shi, Z. Yu, The motion of fibers in an evolving mixing layer[J], Int. J. Multiphase Flow.,2003,29 (8):1355-1372.
    [36]J. A. Olson, R. J. Kerekes, The motion of fibers in turbulent flow[J], J. Fluid Mech.,1998, 377:47-64.
    [37]J. Z. Lin, L. X. Zhang, W. F. Zhang, Rheological behavior of fiber suspensions in a turbulent channel flow[J], J. Colloid Interface Sci.,2006,296,721-728.
    [38]J. Z. Lin, Z. Y. Gao, K. Zhou, T. L. Chan, Mathematical modeling of turbulent fiber suspension and successive iteration solution in the channel flow[J], Appl. Math. Model, 2006,30:1010-1020.
    [39]Z. M. Lu, B. C. Khoo, H. S. Dou, P. T. Nhan, K. S. Yeo, Numerical simulation of fibre suspension flowthrough an axisymmetric contraction and expansion passages by Brownian configuration field method[J], Chem. Eng. Sci.,2006,61:4998-5009.
    [40]Z. J. You, J.Z. Lin, Z.S. Yu, Hydrodynamic instability of fiber suspensions in channel flows[J], Fluid Dyn. Res.,2004,34:251-271.
    [41]H. Niskanen, H. Eloranta, J. Tuomela, J. Hamalainen, On the orientation of probability distribution of flexible fibres in a contracting channel flow[J], Int. J. Multiphase Flow, 2011,37:336-345.
    [42]X. G. Hu, D. W. Tang, Experimental investigation on flow and thermal characteristics of a micro phase-change cooling system with a microgroove evaporator [J], International Journal of Thermal Sciences,2007,46(11):1163-1171.
    [43]X. G. Hu, Y. H. Zhao, X. H. Yan, T. Tsuruta, A novel micro cooling system for electronic device by using micro capillary groove evaporator [J], Journal of Enhanced Heat Transfer, 2004,11(4):407-416.
    [44]Y. H. Zhao, X. G. Hu, T. Tsuruta, K. Yamamoto, Phase-change heat transfer in micro capillary grooves[J], Journal of Enhanced Heat Transfer,2004,11(4):315-324.
    [45]Y. H. Zhao, Y. H. Diao, T. Tsuruta, N. Hideo, Heat transfer in nucleate pool boiling of binary and ternary refrigerant mixtures[J], Journal of Chinese Chemical Engineering, 2004,12(3):351-356.
    [46]D. W. Zhou, X. G Hu, D. Y. Liu, Local convective heat transfer from a horizontal tube in an acoustic cavitation field[J], J. of Thermal Science,2004,13(4):338-343.
    [47]Y. Zhong, A. M. Jacobi, J. G. Georgiadis, Effects of surface chemistry and groove geometry on wetting characteristics and droplet motion of water condensate on surfaces with rectangular microgrooves[J], International Journal of Heat and Mass Transfer,2013, 57(2):629-641.
    [48]M. A. Rahman, A. M. Jacobi, Drainage of frost melt water from vertical brass surfaces with parallel microgrooves[J], International Journal of Heat and Mass Transfer,2012, 55(5):1596-1605.
    [49]T. A. Shedd, T. A. Newell, P. K. Lee. The effects of the number and angle of microgrooves on the liquid film in horizontal annular two-phase flow[J], International journal of heat and mass transfer,2003,46(22):4179-4189.
    [50]T. S. Sheu, P. P. Ding, I. Lo, P. H. Chen, Effect of surface characteristics on capillary flow in triangular microgrooves[J], Experimental thermal and fluid science,2000,22(1): 103-110.
    [51]B. V. Derjaguin, Z. M. Zorin, Optical study of the absorption and surface condensation of vapours in the vicinity of saturation on a smooth surface[C], Proc.2nd International Congress on Surface Activity London,1957,2:145-152.
    [52]M. Potash, Jr., P. C. Wayner, Jr., Evaporation from a two-dimensional extended meniscus[J], Int. J. Heat Mass Transfer,1972,15:1851-1863.
    [53]A. Mirzamoghadam, I. Catton, A physical model of the evaporating meniscus[J], ASME Journal of Heat Transfer,1988,110:201-207.
    [54]P. C. Wayner, Jr., Y. K. Kao, L. V. Lacroix, The interline heat transfer coefficient of an evaporating wetting film[J], Int. J. Heat Mass Transfer,1976,19:487-492.
    [55]P. C. Wayner, Jr., Adsorption and capillary condensation at the contact line in change of phase heat transfer[J], Int. J. Heat Mass Transfer,1982,25:707-713.
    [56]J. A. Schonberg, P. C. Wayner, Analytical solution for the integral contact line evaporative heat sink[J], J.Thermophysics,1990,6:128-134.
    [57]P. C. Wayner, Jr. Thermal and mechanical effects in the spreading of a liquid film due to a change in the apparent finite contact angle[J], Journal of Heat transfer, Transaction of the ASME,1994,116(4):938-945.
    [58]A. J. Jiao, R. Riegler, H. B. Ma, G. P. Peterson, Thin film evaporation effect on heat transport capability in a grooved heat pipe[J], Microfluid Nanofluid,200,1:227-233.
    [59]A. J. Jiao, H. B. Ma, J. K. Critser, Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves[J], International Journal of Heat and Mass Transfer,2007,50:2905-2911.
    [60]J. M. Ha,G. P. Peterson, The interline heat transfer of evaporating thin films along a micro grooved surface[J], Journal of heat transfer,1996,118(3):747-755.
    [61]H. B. Ma, G. P. Peterson, Temperature variation and heat transfer in triangular grooves with an evaporating film[J], Journal of Thermophysics and Heat Transfer,1997, 11(1):9097.
    [62]E. C. Stephan, C. A. Busse, Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls[J], Int. J. Heat Mass Transfer,1992,35:383-391.
    [63]H. Wang, S. V. Garimella, J. Y. Murthy, Characteristics of an evaporating thin film in a microchannel[J]. International Journal of Heat and Mass Transfer,2007,50(19): 3933-3942.
    [64]H. Wang, S. V. Garimella, J. Y. Murthy, An analytical solution for the total heat transfer in the thin-film region of an evaporating meniscus [J], International Journal of Heat and Mass Transfer,2008,15:6317-6322.
    [65]C. Y. Ji, Y. Y. Yan, A molecular dynamics simulation of liquid-vapor-solid system near triple-phase contact line of flow boiling in a microchannel[J], Applied Thermal Engineering,2008,28:195-202.
    [66]P. S. Ayyaswamy, I. Catton, D. K. Edwards, Capillary flow in triangular grooves[J], Journal of Applied Mechanics, Transactions of the ASME,1974,41(2):332-336.
    [67]F. J. Renk, P. C. Wayner Jr., An evaporating ethanol meniscus:part Ⅱ analytical studies[J], ASME Journal of Heat Transfer,1979,101:59-62.
    [68]F. J. Renk, P. C. Wayner Jr., An evaporating ethanol meniscus:part Ⅰ. experimental studies[J], ASME Journal of Heat Transfer,1979,101:55-58.
    [69]S. DasGupta, J. A. Schonberg, P. C.Wayner,Jr., Investigation of an evaporating extended meniscus based on the augmented Young-Laplace equation[J], Journal of Heat Transfer, Transactions of the ASME,1993,115:201-208.
    [70]G. P. Peterson, J. M. Ha, Capillary performance of evaporation flow in micro grooves:an approximate analytical approach and experimental investigation[J], Journal of Heat Transfer 1998,120:743-750.
    [71]F. W. Holm, S. P. Goplen, Heat transfer in the meniscus thin-film transition region[J], ASME Journal of Heat Transfer,1979,101:543-547.
    [72]X. Xu, V. P. Carey, Film evaporation from a micro-grooved surface:an approximate heat transfer model and its comparison with experimental data[J], J. Thermophys and Heat Transfer,1990,4(4):512-520.
    [73]M. Sujanani, P. Wayner, Microcomputer-enhanced optical investigation of transport processes with phase change in near-equilibrium thin liquid films [J], Journal of colloid and interface science,1991,143:472-488.
    [74]G. P. Peterson, H. B. Ma, Theoretical analysis of the maximum heat transport in triangular grooves:a study of idealized micro heat pipes[J], Journal of Heat Transfer,1996,118(3): 731-739.
    [75]H. B. Ma, G. P. Peterson, Experimental investigation of the maximum heat Transport in triangular grooves[J], Journal of Heat Transfer, Transactions of the ASME,1996,118: 740-746.
    [76]D. Khrustalev, A. Faghri, Heat transfer in the inverted meniscus type evaporator at high heat fluxes[J], International Journal of Heat Mass Transfer,1995,38(16):3091-3101.
    [77]J, M, Ha, G, P. Peterson, Analytical prediction of the axial dryout point for evaporating liquids in triangular microgrooves[J], Journal of heat transfer,1994,116(2):498-503.
    [78]I. Catton, G. R. Stroes, A semi-analytical model to predict the capillary limit of heated inclined triangular capillary grooves[J], Journal of heat transfer,2002,124(1):162-168.
    [79]王晨,刘中良,张广孟,张明,新型微槽道平板热管的实验研究[J],工程热物理学报,2013,34(004):698-701.
    [80]X. G Hu, D. W. Tang. Experimental investigation on flow and thermal characteristics of a micro phase-change cooling system with a microgroove evaporator[J], International Journal of Thermal Sciences,2007,46(11):1163-1171.
    [81]郭朝红,胡学功,唐大伟,矩形微槽横截面换热特性的分析[J],工程热物理学报,2011,32(7):1169-1172.
    [82]C. H. Guo, X. G. Hu, W. Cao, D. Yu, D. W. Tang, Effect of mechanical vibration on flow and heat transfer characteristics in rectangular microgrooves[J]. Applied Thermal Engineering,2013,52(2):385-393.
    [83]王涛,胡学功,唐大伟,张勇,矩形毛细微槽中三角形区域接触线特性的研究,工程热物理学报,2009,30(11):1892-1894.
    [84]Y. H. Zhao, T. Masuoka, T. Tsuruta, Unified theoretical prediction of fully developed nucleate boiling and critical heat flux based on a dynamic microlayer model [J], International Journal of Heat and Mass Transfer,2002,45:3189-3197.
    [85]J. Bonjour, M. Clausse, M. Lallemand, Experimental study of the coalescence phenomenon during nucleate pool boiling[J], Experimental Thermal and Fluid Science, 2000,20:180-187.
    [86]J. F. Klausner, R. Mei, D. M. Bernhard, L. Z. Zeng, Vapor bubble departure in forced convection boiling[J], Int. J. Heat Mass Transfer,1993,36(3):651-662.
    [87]G. E. Thorncroft, J. F. Klausner, R. Mei, An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling[J], International Journal of Heat and Mass Transfer,1998,41:3857-3871.
    [88]T. A. Kowalewski, J. Pakleza, J. B. Chalfen, et al., Visualization of vapor bubble growth[C],9th International symposium on flow visualization, CD-ROM Proceedings. 2000,176:1-9.
    [89]T. Cubaud, M. Tatineni, X. Zhong, C. M. Ho, Bubble Dispenser in microfluidic devices[J], Phys. Rev. E 72,2005,72(3):037302.
    [90]N. Dietrich, S. Poncin, N. Midoux, H. Z. Li, Bubble formation dynamics in various flow-focusing microdevices[J], Langmuir,2008,24(24):13904-13911.
    [91]B. Dollet, W. van Hoeve, J. P. Raven, P. Marmottant, M. Versluis, Role of the channel geometry on the bubble pinch-off in flow-focusing devices[J], Phys. Rev. Lett.,2008, 100(3):034504.
    [92]P. Garstecki, I. Gitlin, W. DiLuzio, G M. Whitesidesa, Formation of monodisperse bubbles in a microfluidic flow-focusing device[J], Appl. Phys. Lett.,2004,85(13): 2649-2651.
    [93]P. Garstecki, H. A. Stone, G. M. Whitesides, Mechanism for flow-rate controlled breakup in confined geometries:a route to monodisperse emulsions[J], Phys. Rev. Lett.2005, 94(16):164501.
    [94]P. Garstecki, A. M. Ganan-Calvo, G M. Whitesides, Formation of bubbles and droplets in microfluidic systems[J]. Bull, Pol. Acad. Sci. Tech. Sci.2005,53,361-372.
    [95]V. S. Ajaev, G. M. Homsy, Steady vapor bubbles in rectangular microchannels[J], Journal of Colloid and Interface Science,2001,240:259-271.
    [96]V. S. Ajaev, G. M. Homsy. Three-dimensional steady vapor bubbles in rectangular microchannels[J], Journal of Colloid and Interface Science,2001,244:180-189.
    [97]H. Y. Li, F. G. Tseng, C. Pan, Bubble dynamics in microchannels. Part II:two parallel microchannels[J], International Journal of Heat and Mass Transfer,2004,47:5591-5601.
    [98]P. C. Lee, F. G Tseng, C. Pan, Bubble dynamics in microchannels. Part I:single microchannel[J], International Journal of Heat and Mass Transfer,2004,47:5575-5589.
    [99]P. C. Lee, F. G. Tseng, C. Pan, Bubble dynamics in microchannels. Part II:two parallel Microchannels[J], International Journal of Heat and Mass Transfer,2004,47:5591-5601.
    [100]Z. J. Edel, A. Mukherjee, Experimental investigation of vapor bubble growth during flow boiling in a microchannel[J], International Journal of Multiphase Flow,2011,37(10): 1257-1265.
    [101]L. Yin, L. Jia, P. Guan, D. Liu, Experimental investigation on bubble confinement and elongation in microchannel flow boiling[J], Experimental Thermal and Fluid Science, 2014,54:290-296.
    [102]曹阳,胡学功,郭朝红,唐大伟,微槽群内汽泡动力学行为对接触线的影响[J],工程热物理学报,2011,32(9):1527-1530.
    [103]X. Z. Fang, X. G. Hu, D. Yu, C. Guo, Experimental study of the heat transfer characteristic in vertical rectangular capillary microgrooves heat sink under an electric field[C], Proceedings of the ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels, JAPAN, June 16-19,2013.
    [104]C. W. Hirt, B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries[J], Journal of Computational Physics,1981,39:201-225.
    [105]V. R. Gopala, B. G. M. van Wachem, Volume of fluid methods for immiscible fluid and free-surface flows[J], Chemical Engineering Journal,2008,141:204-221.
    [106]G Son, V. K. Dhir, N.Ramanujapu, Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface[J], Journal of Heat Transfer-Transactions of the ASME,1999,121:623-631.
    [107]A. Mukherjee, S. G. Kandlikar, Numerical simulation of growth of a vapor bubble during flow boiling of water in a microchannel[C], Microfluidics and Nanofluidics,2005, 1:137-145.
    [108]A. Mukherjee, S. G. Kandlikar, Numerical study of the effect of inlet constriction on bubble growth during flow boiling in microchannels[C], in:3rd International Conference on Microchannels and Minichannels, ICMM2005-75143, Toronto, Ontario, Canada,2005.
    [109]A. Mukherjee, S.G. Kandlikar, Z. J. Edel. Numerical study of bubble growth and wall heat transfer during flow boiling in a microchannel[J], International Journal of Heat and Mass Transfer,2011,54:3702-3718.
    [110]Y. Y. Yan, Y. Q. Zu, A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio [J], Journal of Computational Physics,2007 227:763-775.
    [111]Y. Y. Yan, Y. Q. Zu, Numerical modelling based on lattice Boltzmann method of the behaviour of bubbles flow and coalescence in microchannels[C], in:Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008 (PART A),2008,313-319.
    [112]王昊利,王元, Micro-PIV技术一粒子图像测速技术的新进展[J],力学进展2005,35(1): 77-90.
    [113]J. Santiago, S. Wereley, C. Meinhart, D. Beebe, R. Adrian, A particle image velocimetry system for microfluidics[J], Experiments in Fluids,1998,25:316-319.
    [114]C. D. Meinhart, S. T. Wereley, J. G. Santiago, PIV measurements of a microchannel flow[J], Exp Fluids,1999,27:414-419.
    [115]C. D. Meinhart, S. T Wereley, J. G. Santiago A PIV algorithm for estimating time-averaged velocity fields[J]. Journal of Fluids Engineering,2000,122(2):285-289.
    [116]Hao Li, Randy Ewoldt, Michael G. Olsen. Turbulent and transitional velocity measurements in a rectangular microchannel using microscopic particle image velocimetry [J], Experimental Thermal and Fluid Science,2005,29:435-446.
    [117]G. Silva, N. Leal, V. Semiao. Micro-PIV and CFD characterization of flows in a microchannel:Velocity profiles, surface roughness and Poiseuille numbers [J], International Journal of Heat and Fluid Flow,2008,29:1211-1220.
    [118]G Silva, N. Leal, V. Semiao Determination of microchannels geometric parameters using micro-PIV[J], Chemical engineering research and design,2009,87:298-306.
    [119]张永胜,王金华,利用micro-PIV测量矩形微管道内流量[J],实验流体力学,2011,25(2),92-95.
    [120]金文,张鸿雁,何文博,微通道内流流场的数值模拟及Micro-PIV测量[J],应用基础与工程科学学报,2011,19(3):389-397.
    [121]M. Hoffmann, M. Schluter, N. Rabiger, Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV[J]. Chemical Engineering Science,2006,61(9):2968-2976.
    [122]R. Lima, S. Wada, M. Takeda, K. Tsubota, T. Yamaguchi, In vitro confocal micro-PIV measurements of blood flow in a square microchannel:the effect of the haematocrit on instantaneous velocity profiles[J], Journal of biomechanics,2007,40(12):2752-2757.
    [123]R. Lima, S. Wada, K. Tsubota, T. Yamaguchi, Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel [J]. Measurement Science and Technology,2006,17(4):797-808.
    [124]宁辉,唐远河,邵建斌,基于PIV技术的水中气泡图像测速法[J],纺织高校基础科学学报,2006,19(4):385-388.
    [125]V. van. Steijna, M. T. Kreutzerb, C. R. Kleijna, μ-PIV study of the formation of segmented flow in microfluidic T-junctions[J], Chemical Engineering Science,2007,62: 7505-7514.
    [126]X. Frank, N. Dietrich, J. Wu, R. Barraud, H. Z. Li. Bubble nucleation and growth in fluids[J], Chemical Engineering Science,2007,62:7090-7097.
    [127]D. Malsch, M. Kielpinski, R. Merthan, J. Albert, G. Mayera, J. M. Kohler, H. SuBe, M. Stahl, T.Henkel, μPIV-analysis of taylor flow in micro channels [J], Chemical Engineering Journal,2008,135:S166-S172.
    [128]T. Fu, Y. Ma, D. Funfschilling, H. Z. Li, Bubble formation and breakup mechanism in a microfluidic flow-focusing device[J], Chemical Engineering Science,2009,64: 2392-2400.
    [129]T. Fu, Y. Ma, D. Funfschilling, H. Z. Li. Dynamics of bubble breakup in a microfluidic T-junction divergence[J], Chemical Engineering Science,2011,66:4184-4195.
    [130]X. L. Nie, X. G. Hu, D. W. Tang, Modeling study on axial wetting length of meniscus in vertical rectangular microgrooves[J], Applied Thermal Engineering,2013,52(2): 615-622.
    [131]X. L. Nie, X. G. Hu, S. V. Garimella, Heat and Mass Transfer in the Corner Flow Region of Vertical Microgrooves[C], ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. American Society of Mechanical Engineers,2010: 1711-1716.
    [132]FlowMaster, Product manual No.1003005, June 20,2011, www.lavision.com.
    [133]A. Melling, Tracer particles and seeding for particle image velocimetry[J]. Meas. Sci.Technol,1997, (8):1406-1416.
    [134]阮驰,孙传东,白永林,王屹山,任克惠,丰善,水流场PIV测试系统示踪粒子特性研究[J],实验流体力学,2006,02:72-77.
    [135]M. Raffel, Particle image velocimetry:a practical guide[M], Springer,2007.
    [136]李志平,激光粒子图像测量中示踪粒子特性及实验方法研究[D],天津大学,2007.
    [137]A. D. Anastasiou, C. Makatsoris, A. Gavriilidis, A. Mouza, Application of μ-PIV for investigating liquid film characteristics in an open inclined microchannel[J], Experimental Thermal and Fluid Science,2013, vol.44, pp.90-99.
    [138]Nie Xuelei, Theoretical and applied study on flow and combined phase-change heat transfer in microgrooves heat sink, Ph.D. thesis, Graduate University of Chinese Academy of Sciences, Beijing,2012.
    [139]王明权,王宏智.全自动划片机的关键技术研究[J],电子工业专用设备,2007,36(2):28-32.
    [140]张彦君,王睿超,控制景深提高影像测量Z轴测量精度[J],计测技术,2012,32(5):47-49.
    [141]范洁川,流动显示与测量[M],北京:机械工业出版社,1997.9,1603-1618.
    [142]R.H. Nilson, S.W. Tchikanda, S.K. Griffiths, M.J. Martinez, Steady evaporating flow in rectangular microchannels[J], International Journal of Heat and Mass Transfer,2006,4
    [143]G. R. Stroes, I. Catton, A semi analytical model to predict the dryout point in inclined rectangular channels heated from below[C], Proceedings of the 11th international heat transfer conference, Kyongju, Korea,1998,2:133-138.
    [144]J. M. Ha, G P. Peterson, Capillary performance of evaporating flow in the micro grooves: an analytical approach for very small tilt angles[J], ASME J. Heat Transfer,1998, 120:452-457.
    [145]G E. Schneider, R. Devos, Non-dimensional analysis for the heat transport capability of axially-grooved heat pipes including liquid/vapor interaction[J], AIAA Paper No.80-0214,1980.
    [146]Y. P. Peles, S. Haber. A steady state, one dimensional, model for boiling two phase flow in triangular micro-channel[J], International Journal of Multiphase Flow,2000, (26): 1095-1115.
    [147]胡学功,高性能微槽群相变散热系统的研究,中国科学院研究生院博士论文,2005.
    [148]许志影,李晋平,MATLAB及其在图像处理中的应用[J],计算机与现代化,2003,4:64-66.
    [149]G Hetsroni, A. Mosyak, E. Pogrebnyak, et al, Bubble growth in saturated pool boiling in water and surfactant solution[J], International Journal of Multiphase Flow,2006,32: 159-182.
    [150]李云红,孙晓刚,廉继红,红外热像测温技术及其应用研究[J],现代电子技术,2009,32(1):112-115.
    [151]杨立,红外热像仪测温计算与误差分析[J],红外技术,1999,21(4):20-24.
    [152]施明恒,甘永平,马重芳,沸腾与凝结,沸腾和凝结[M],高等教育出版社,1995.
    [153]T. Wang, X. G. Hu, D. W. Tang, C. H. Guo. Infrared thermal image of vapor-liquid interface in capillary microgroove heat sink[J], International Journal of Thermal Sciences, 2011,50(3):274-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700