用户名: 密码: 验证码:
液体空化强化微通道传热机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子技术与激光技术的迅猛发展,电子芯片与激光二极管列阵等器件的集成度越来越高,其功率热耗不断攀升,在有限空间内及时消除因功率耗散转化的废热已成为制约大功率集成电路技术与激光技术发展的主要瓶颈。面对集成微电子器件日益高涨的热流密度,传统微通道冷却技术面临巨大挑战,加强相关强化换热技术研究,对于提高微通道热沉换热能力,推动相关冷却技术发展具有重要科学意义与实际价值。
     基于上述背景,本文选取微通道热沉为研究对象,以水力空化强化换热为切入点,采用数值模拟、实验研究与可视化观测相结合的手段对微通道热沉耦合水力空化强化换热机理展开研究,以期查明不同尺度与结构下空化泡形成、生长及溃灭的动力学行为特性及其对传热的作用机制,掌握微通道内流体流型随空化参数的变化规律以及流型转换对传热强化的影响规律,全方位多角度揭示液体空化强化微通道传热微观机理,为其实际应用奠定坚实的科学理论基础和提供重要技术支撑。
     论文首先从空泡动力学角度,基于VOF模型和Navier-Stokes方程,对半无限大空间静止流体中近壁面空化泡的生长、溃灭过程及其对壁面传热的影响进行了研究,成功捕捉到了微秒量级内空化泡溃灭瞬间泡壁界面的动态变化过程,获得了由于泡壁界面运动诱发的液体速度场和温度场分布。通过深入分析空化泡壁轮廓、液体流场与热边界层三者之间的内在变化关系,揭示出空化泡溃灭产生的高速微射流是其强化传热的主要微观机制。在此基础上,分析了空化泡与壁面之间的初始无量纲距离、空化泡初始半径以及初始饱和压力等因素对空化泡在单壁面附近动力学特性和传热的影响。
     基于单壁面研究结果,论文进一步对平行双壁面间的空化泡动力学特性及其对传热的影响进行了研究。研究结果表明:由于双壁面的限制作用,空化泡的溃灭过程呈现出了明显不同于单壁面的特征,空化泡在双壁面间的运动将经历两次溃灭过程。第一次溃灭期间,空化泡壁的收缩主要发生在双壁面的对称中心处,形成“哑铃”形状,并最终分割成两个子气泡。第二次溃灭期间,两个子气泡在分别向上、下壁面移动的过程中逐渐收缩,最终被垂直于壁面的液体射流穿透。由于空化泡在平行双壁面间的动力学行为特性与单壁面不同,因此对壁面传热的影响也不尽相同。为此,论文就空化泡初始半径、泡内初始压力以及气泡初始位置等因素对空化泡运动和传热的影响进行了分析和讨论。
     在二维模拟研究的基础上,论文建立了三维空化泡动力学模型,并对空化泡在三维微通道内的动力学特性及其对传热过程的影响进行了研究。研究结果显示,空化泡在三维微通道内的生长、溃灭过程与单壁面和平行双壁面存在明显的差异。由于通道四周壁面的限制,空化泡的生长主要朝着通道出口方向,形成椭球状。在溃灭阶段,空化泡壁首先沿着生长的反方向收缩,待空化泡形成扁平形状后,开始自壁面向通道中心收缩,形成“橄榄”状。由于空化泡自身的热阻较大,与空化泡壁贴近的通道壁面区域内的传热条件将恶化,而在液体射流引起局部漩涡流动的区域,传热得到强化。在此基础上,进一步分析了空化泡初始半径与初始位置等因素对空化泡在微通道内的运动和传热过程的影响。
     为了从实验角度对液体空化强化微通道换热进行研究,论文采用AutoCAD与三维Inventor实体建模相结合的方法,设计了内置矩形和渐缩-渐扩形限流结构的两种铜基微通道热沉,并搭建了可视化实验测试平台,分别对两种微通道热沉在各种空化数、雷诺数以及热流密度工况下的空化流动特性和传热特性进行了研究,掌握了各种因素对空化流型和传热的影响规律,阐明了两种不同空化结构的流动阻力与传热特性差异,为微通道内空化强化换热结构的优化设计奠定了理论基础。在实验研究的基础上,论文进一步探索了常规空化模型在微通道空化流动与传热模拟研究中的应用。数值模拟得到的空化流型与实验观察到的结果较为吻合,表明常规空化模型对于微通道内空化流动的模拟具有一定的适应性。但是,受制于空化模型的不足,传热模拟结果不理想,论文对其原因进行了具体分析并提出了改进的方向。
With the rapid development of integrated microelectronic technology and laser technology, the integration level of laser diode arrays and electronic chips highly increases, and the power also continuously rises. Timely elimination of the waste heat in the limited space has become a major bottleneck in the development of high-power integrated circuit technology and laser technology. With the rising heat flux in integrated microelectronic devices, the traditional micro-channel cooling technology faces enormous challenges. The research of related heat transfer enhancement methods is important to improve the cooling technology, and has important scientific significance and practical value.
     Based on the above background, hydrodynamic cavitation enhanced heat transfer in the micro-channel heat sink has been investigated. In the present work, by combining the numerical method and visualized experiments, studies are conducted to reveal the bubble dynamics and its effects on the heat transfer. Also, the effects of flow pattern and several cavitation parameters on the heat transfer enhancement are studied. The results lay a solid foundation of scientific theory and provide important technical support for its practical application.
     In this paper, the cavitation bubble dynamics near a heated wall is firstly studied based on the VOF model and the Navier-Stokes equations. The change of bubble profiles happened within microseconds and has been successfully captured. The corresponding velocity fields and temperature fields were also obtained. Through an in-depth analysis about the intrinsic relationship among the bubble profiles, liquid velocity fields and temperature layer, the impinging of micro-jet in the bubble collapse is found to be the main reason for the heat transfer enhancement. On this basis, effects of non-dimensional distance between the bubble center and the wall, initial bubble radius and bubble pressure on bubble behavior and heat transfer are analyzed.
     Further, the bubble dynamics between parallel heated walls and its effects on heat transfer are studied. The results show that due to the limitation of the two walls the bubble behaviors show a totally different characteristic. The bubble between the two parallel walls will experience two collapse processes. In the first collapse, the bubble shrinks mainly occurred in the center direction of the double walls. Therefore, a "dumbbell" shaped bubble will be formed, and finally the bubble is split into two sub-bubbles. In the second collapse, the sub-bubbles continuously shrink and are finally penetrated by micro-jets. Because of the differences of dynamic behavior, effects of the bubble behaviors on the heat transfer are totally different. Thus, parameters of the bubble initial radius, initial pressure and initial position on the cavitation bubble motion and heat transfer are analyzed and discussed in details.
     On the basis of the two-dimensional simulation, a three-dimensional dynamic model of the cavitation bubble is established for the study of bubble dynamics in the micro-channel and its impact on the heat transfer. The results show that the cavitation bubble growth and collapse behaviors is different from its process near the single wall and between the two parallel walls. Due to the limitation of channel walls, the cavitation bubble grows primarily towards the channel exit direction and forms an ellipsoid. In the collapse process, cavitation bubble firstly shrinks in the opposite direction as the growth process. When the bubble contracts to a flat shape, it shrinks from the bottom and top channel wall surfaces to the center and forms an "olive" shape. Due to the thermal resistance induced by the bubble itself, in the bubble faced region heat transfer conditions are deteriorated. However, in the region of vortex liquid jet flow, heat transfer is strengthened. On this basis, the bubble initial radius, the initial bubble position and other factors on cavitation bubble behaviors and its effects on the heat transfer are further investigated.
     The AutoCAD and Inventor are employed for the design of visualized experiment platform. The cooper-based micro-channels contain two kinds of flow restricted structures, a rectangular shaped and a two diverging shaped respectively. The flow characteristics and heat transfer performance under the two restricted structures are studied. The effects of Reynolds number, cavitation number and heat flux on the flow patterns and heat transfer are investigated, which lay the theoretical foundation for optimization designs. On the basis of experimental studies, the paper further explores the application of cavitation model in the simulation of micro-channel cavitating flow with surface heat transfer. The flow pattern obtained by the calculation is in accordance with the experimental results. It indicates that the present model is generally applicable for the cavitation flow in micro-channels. However, subject to the imperfection of the model, heat transfer simulation results are not satisfactory. The improvement advices has been proposed based on the further analysis.
引文
[1]姚寿广,马哲树,罗林,陈如冰.电子电器设备中高效热管散热技术的研究现状及发展.华东船舶工业学院学报(自然科学版).2003,17(4):9212
    [2]杨洪海.电子设备的散热问题与新型冷却技术的应用.新技术新工艺.2006(5):71-72
    [3]齐永强,何雅玲.电子设备热设计的初步研究.现代电子技术.2003(1):73-76
    [4]高翔,凌惠琴,李明,毛大立.CPU散热技术的最新研究进展.上海交通大学学报.2007,41(4):48-52
    [5]孙梅,苏周,王景芹,赵红东.高功率半导体激光器阵列微通道热沉的温度.光电工程.2010(1):106-109
    [6]曹三松.高功率半导体激光器评述.激光技术.2000,24(4):203-206
    [7]刘一兵,黄新民,刘安宁,肖宏志.基于电子散热新技术的研究.低温与超导.2008,36(3):54-57
    [8]李庆友,王文,周根明.电子元器件散热方法研究.电子器件.2006,28(4):937-941
    [9]余小玲,冯全科.电力电子设备常用散热方式的散热能力分析.变频器世界.2009(7):76-78
    [10]简弃非,梁荣光.半导体制冷效率及空间冷量传递特性试验研究.华南理工大学学报:自然科学版.2001,29(5):72-75
    [11]C. Brennen. Cavity Surface Wave Patterns and General Appearance. Journal of Fluid Mechanics. 1970,44 (01):33-49
    [12]C.E. Brennen. Cavitation and Bubble Dynamics. Cambridge University Press, 2013
    [13]E.B. Flint, K.S. Suslick. The Temperature of Cavitation. Science. 1991,253 (5026): 1397-1399
    [14]J. Berlan, F. Trabelsi, H. Delmas, A. Wilhelm, J. Petrignani. Oxidative Degradation of Phenol in Aqueous Media Using Ultrasound. Ultrasonics Sonochemistry. 1994,1 (2): S97-S102
    [15]魏群,高孟理.水力空化及其研究进展.湖南城市学院学报:自然科学版.2005,13(4):22-25
    [16]李志义,张晓冬,刘学武,刘东学.水力空化及其对化工过程的强化作用.化学工程. 2004,32(4):27-29
    [17]陈利军,吴纯德,张捷鑫.水力空化技术在饮用水消毒中的应用.水处理技术.2007,33(3):45-48
    [18]陈利军,吴纯德,张捷鑫.水力空化在水处理中的应用研究进展.生态科学.2007,25(5):476-479
    [19]邓洁.多孔板水力空化装置及其强化效应的实验研究[D]:湖南大学.2008
    [20]张晓冬,李志义,武君,刘学武,刘东学,夏远景.水力空化对化学反应的强化效应.化工学报.2005,56(2):262-265
    [21]沈银华,邓松圣,张攀锋.空化射流降解机理研究.贵州化工.2008,32(1):25-27
    [22]邓松圣,李赵杰,张福伦,史永刚.空化射流降解毒性有机物实验研究.后勤工程学院学报.2009,25(6):46-49
    [23]M.A. Kelkar, P.R. Gogate, A.B. Pandit. Intensification of Esterification of Acids for Synthesis of Biodiesel Using Acoustic and Hydrodynamic Cavitation. Ultrasonics Sonochemistry. 2008,15 (3):188-194
    [24]K.K. Jyoti, A.B. Pandit. Hybrid Cavitation Methods for Water Disinfection: Simultaneous Use of Chemicals with Cavitation. Ultrasonics Sonochemistry. 2003,10 (4-5):255-264
    [25]P.R. Gogate. Application of Cavitational Reactors for Water Disinfection: Current Status and Path Forward. Journal of Environmental Management. 2007,85 (4):801-815
    [26]D.B. Tuckerman, R. Pease. High-Performance Heat Sinking for Vlsi. Electron Device Letters, IEEE. 1981,2 (5):126-129
    [27]张颖,王蔚,田丽,刘晓为,李玲.微流动的尺寸效应.微纳电子技术.2008,45(1):33-37
    [28]凌智勇,丁建宁.微流动的研究现状及影响因素.江苏大学学报:自然科学版.2002,23(6):1-5
    [29]S.G. Kandlikar. Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels. Experimental Thermal and Fluid Science. 2002,26 (2):389-407
    [30]S.G. Kandlikar. Heat Transfer Mechanisms During Flow Boiling in Microchannels. In: ASME 2003 1st International Conference on Microchannels and Minichannels: American Society of Mechanical Engineers, 2003:33-46
    [31]S.G. Kandlikar, W.J. Grande. Evolution of Microchannel Flow Passages--Thermohydraulic Performance and Fabrication Technology. Heat Transfer Engineering. 2003,24 (1):3-17
    [32]G. Celata, M. Cumo, S. McPhail, G. Zummo. Hydrodynamic Behaviour and Influence of Channel Wall Roughness and Hydrophobicity in Microchannels. In: ASME 2004 2nd International Conference on Microchannels and Minichannels: American Society of Mechanical Engineers, 2004: 237-243
    [33]G. Celata, G. Morini, V. Marconi, S. McPhail, G. Zummo. Using Viscous Heating to Determine the Friction Factor in Microchannels-an Experimental Validation. Experimental Thermal and Fluid Science. 2006,30 (8):725-731
    [34]G.P. Celata, M. Cumo, M. Guglielmi, G. Zummo. Experimental Investigation of Hydraulic and Single-Phase Heat Transfer in 0.130-Mm Capillary Tube. Microscale Thermophysical Engineering. 2002,6 (2):85-97
    [35]P.A. Kew, K. Cornwell. Correlations for the Prediction of Boiling Heat Transfer in Small-Diameter Channels. Applied Thermal Engineering. 1997,17 (8):705-715
    [36]王国栋.微通道内稳定流动沸腾的换热特性及沸腾不稳定性研究:上海交通大学.2010
    [37]W. Peiyi, W. Little. Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-Thomson Refrigerators. Cryogenics. 1983,23 (5):273-277
    [38]蒋洁,郝英立,施明恒.矩形微通道中流体流动阻力和换热特性实验研究.热科学与技术.2006,5(3):189-194
    [39]J.C. Harley, Y. Huang, H.H. Bau, J.N. Zemel. Gas Flow in Micro-Channels. Journal of Fluid Mechanics. 1995,284:257-274
    [40]王补宣.V形微槽内沸腾液体的流动阻力特性.工程热物理学报.1998,19(3):345-349
    [41]B. Wang, X. Peng. Experimental Investigation on Liquid Forced-Convection Heat Transfer through Microchannels. International Journal of Heat and Mass Transfer. 1994,37: 73-82
    [42]C.-Y. Yang. Friction Characteristics of Water, R-134a, and Air in Small Tubes. Microscale Thermophysical Engineering. 2003,7 (4):335-348
    [43]云和明,程林,王立秋,曲燕.光滑矩形微通道液体单相流动和传热的数值研究.工程热物理学报.2008(z2):33-36
    [44]J. Pfahler, J. Harley, H. Bau, J. Zemel. Liquid Transport in Micron and Submicron Channels. Sensors and Actuators A: Physical. 1989,22 (1):431-434
    [45]X. Peng, G. Peterson. Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures. International Journal of Heat and Mass Transfer. 1996,39 (12): 2599-2608
    [46]W. Qu, G.M. Mala, D. Li. Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels. International Journal of Heat and Mass Transfer. 2000,43 (21): 3925-3936
    [47]H. Wu, P. Cheng. An Experimental Study of Convective Heat Transfer in Silicon Microchannels with Different Surface Conditions. International Journal.of Heat and Mass Transfer. 2003,46 (14):2547-2556
    [48]W. Owhaib, B. Palm. Experimental Investigation of Single-Phase Convective Heat Transfer in Circular Microchannels. Experimental Thermal and Fluid Science. 2004,28 (2):105-110
    [49]G. Celata, M. Cumo, V. Marconi, S. McPhail, G. Zummo. Microtube Liquid Single-Phase Heat Transfer in Laminar Flow. International Journal of Heat and Mass Transfer.2006, 49 (19):3538-3546
    [50]杨迎春,陈永平,施明恒,肖春梅,吴嘉峰,张程宾.恒壁温下梯形硅微通道热沉流动换热特性.东南大学学报:自然科学版.2008,38(4):647-650
    [51]徐斌,陆向迅,吴建,王洋,薛宏.微通道流体物性对流动与传热影响的数值模拟和实验研究.水动力学研究与进展:A辑.2009(6)
    [52]R. Knight, J. Goodling, D. Hall. Optimal Thermal Design of Forced Convection Heat Sinks-Analytical. Journal of Electronic Packaging. 1991,113 (3):313-321
    [53]A. Weisberg, H.H. Bau, J. Zemel. Analysis of Microchannels for Integrated Cooling. International Journal of Heat and Mass Transfer. 1992,35 (10):2465-2474
    [54]A.G. Fedorov, R. Viskanta. Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging. International Journal of Heat and Mass Transfer. 2000,43 (3):399-415
    [55]P.-S. Lee, S.V. Garimella. Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios. International Journal of Heat and Mass Transfer. 2006,49 (17-18):3060-3067
    [56]J. Li, G. Peterson, P. Cheng. Three-Dimensional Analysis of Heat Transfer in a Micro-Heat Sink with Single Phase Flow. International Journal of Heat and Mass Transfer. 2004,47 (19):4215-4231
    [57]Z. Li, X. Huai, Y. Tao, H. Chen. Effects of Thermal Property Variations on the Liquid Flow and Heat Transfer in Microchannel Heat Sinks. Applied Thermal Engineering. 2007,27 (17-18):2803-2814
    [58]Z. Li, W.-Q. Tao, Y.-L. He. A Numerical Study of Laminar Convective Heat Transfer in Microchannel with Non-Circular Cross-Section. In: ASME 3rd International Conference on Microchannels and Minichannels: American Society of Mechanical Engineers, 2005: 351-360
    [59]W. Qu, I. Mudawar. Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink. International Journal of Heat and Mass Transfer. 2002,45 (12):2549-2565
    [60]R. Muwanga, R. MacDonald, I. Hassan. Characteristics of Flow Boiling Oscillations in Silicon Microchannel Heat Sinks. Journal of Heat Transfer. 2007,129 (10):1341-1351
    [61]C. Huh, M.H. Kim. An Experimental Investigation of Flow Boiling in an Asymmetrically Heated Rectangular Microchannel. Experimental Thermal and Fluid Science. 2006,30 (8):775-784
    [62]C. Huh, J. Kim, M.H. Kim. Flow Pattern Transition Instability During Flow Boiling in a Single Microchannel. International Journal of Heat and Mass Transfer. 2007,50 (5): 1049-1060
    [63]W. Qu, I. Mudawar. Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks. International Journal of Heat and Mass Transfer.2003,46 (15):2737-2753
    [64]S.G. Kandlikar, D.A. Willistein, J. Borrelli. Experimental Evaluation of Pressure Drop Elements and Fabricated Nucleation Sites for Stabilizing Flow Boiling in Minichannels and Microchannels. Sat.2005,8 (8):1-1
    [65]高秋生.对液体空化机理的进一步探讨.河海大学学报:自然科学版.1999,27(5):63-67
    [66]R. Knapp, J. Daily, F. HAMMITY.空化与空蚀:北京:水利出版社,1981
    [67]杨庆,张建民,戴光清,王海云,崔春亮.脉动压力对空化的影响.四川大学学报:工程科学版.2004,36(4):19-21
    [68]F.E. Fox, K.F. Herzfeld. Gas Bubbles with Organic Skin as Cavitation Nuclei. The Journal of the Acoustical Society of America. 2005,26 (6):984-989
    [69]L. Bernd. Cavitation, Tensile Strength and the Surface Films of Gas Nuclei. In: Proceedings of the Sixth Naval Hydrodynamics Symposium, ARC-136, Office of Naval Research, Washington, DC, 1966
    [70]E.N. Harvey, D. Barnes, W.D. McElroy, A. Whiteley, D. Pease, K. Cooper. Bubble Formation in Animals. I. Physical Factors. Journal of Cellular and Comparative Physiology. 1944,24 (1):1-22
    [71]E.N. Harvey, W. McElroy, A. Whiteley, G. Warren, D. Pease. Bubble Formation in Animals. Iii. An Analysis of Gas Tension and Hydrostatic Pressure in Cats. Journal of Cellular and Comparative Physiology. 1944,24 (2):117-132
    [72]E.N. Harvey, A. Whiteley, W. McElroy, D. Pease, D. Barnes. Bubble Formation in Animals. Ii. Gas Nuclei and Their Distribution in Blood and Tissues. Journal of Cellular and Comparative Physiology. 1944,24 (1):23-34
    [73]章昱.水力空化及CFD数值模拟:浙江工业大学硕士毕业论文.2011
    [74]L. Rayleigh. Viii. On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1917,34 (200):94-98
    [75]李永健.空蚀发生过程中表面形貌作用机理研究:北京:清华大学博士毕业论文.2008
    [76]M.S. Plesset, A. Prosperetti. Bubble Dynamics and Cavitation. Annual Review of Fluid Mechanics. 1977,9 (1):145-185
    [77]H. Poritsky. The Collapse or Growth of a Spherical Bubble or Cavity in a Viscous Fluid. Journal of Applied Mechanics-transactions of the Asme, 1951:332-333
    [78]V. Kedrinskii. Kirkwood-Bethe Approximation for an Underwater Explosion with Cylindrical Symmetry. Combustion, Explosion, and Shock Waves. 1972,8 (1):94-100
    [79]F.R. Gilmore. The Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquid.1952
    [80]R.H. Mellen. An Experimental Study of the Collapse of a Spherical Cavity in Water. The Journal of the Acoustical Society of America. 2005,28 (3):447-454
    [81]R.H. Mellen. Ultrasonic Spectrum of Cavitation Noise in Water. Acoustical Society of America Journal. 1954,26:356
    [82]R.D. Ivany, F.G. Hammitt. Cavitation Bubble Collapse in Viscous, Compressible Liquids—Numerical Analysis. Journal of Basic Engineering. 1965,87 (4):977-985
    [83]许卫新.单气泡在自由流场和边界层流场中运动的水动力计算及其空化行为.水动力学研究与进展.1987
    [84]蔡军,淮秀兰,闫润生,李勋锋.湍流作用下水力空化气泡内温度演变的动力学分析.科学通报.2011,56(12):947-955
    [85]张凌新,尹琴,邵雪明.水中气泡溃灭的理论与数值研究.水动力学研究与进展A辑.2012,27(1):127-132
    [86]W. xi Tian, S.-z. Qiu, Y. Ishiwatari, Y. Oka, G.-h. Su. Numerical Solution on Spherical Vacuum Bubble Collapse Using Mps Method. Journal of Engineering for Gas Turbines and Power. 2010,132 (10):102920
    [87]贺照明.机械瓣空化及空泡溃灭研究:清华大学博士毕业论文.2000
    [88]G. Chahine. Experimental and Asymptotic Study of Nonspherical Bubble Collapse. Applied Scientific Research. 1982,38 (1):187-197
    [89]M.S. Plesset, R.B. Chapman. Collapse of an Initially Spherical Vapour Cavity in the Neighbourhood of a Solid Boundary. Journal of Fluid Mechanics. 1971,47 (02): 283-290
    [90]T.M. Mitchell, F.G. Hammitt. Asymmetric Cavitation Bubble Collapse. Journal of Fluids Engineering. 1973,95 (1):29-37
    [91]M. Lenoir. Numerical Simulation of the Collapse of a Cavitation Bubble. Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics. 1976: 274-279
    [92]J. Blake, B. Taib, G. Doherty. Transient Cavities near Boundaries. Part 1. Rigid Boundary. Journal of Fluid Mechanics.1986,170:479-497
    [93]J. Blake, B. Taib, G. Doherty. Transient Cavities near Boundaries Part 2. Free Surface. Journal of Fluid Mechanics.1987,181:197-212
    [94]程晓俊,鲁传敬.二维水翼的局部空泡流研究.应用数学和力学.2000,21(12):1310-1318
    [95]王起棣,张慧生.表面张力对固壁近旁空化气泡溃灭特性的影响.复旦学报:自然科学版.2003,42(2):201-207
    [96]张振宇,王起棣,张慧生.表面张力对近固壁二空化泡影响的数值研究.力学学报.2005,37(1):100-104
    [97]E. Samiei, M. Shams, R. Ebrahimi. Numerical Study on Mass Transfer Effects on Spherical Cavitation Bubble Collapse in an Acoustic Field. ASME Conference Proceedings. 2010,2010 (49170):425-433
    [98]N. Ochiai, Y. Iga, M. Nohmi, T. Ikohagi. Numerical Analysis of Nonspherical Bubble Collapse Behavior and Induced Impulsive Pressure During First and Second Collapses near the Wall Boundary. Journal of Fluid Science and Technology. 2011,6 (6):860-874
    [99]胡影影,朱克勤,席葆树.空泡在固壁附近溃灭的数值模拟.水动力学研究与进展(A辑).2004(03)
    [100]胡影影,朱克勤,席葆树.固壁空蚀数值研究.应用力学学报.2004(01)
    [101]胡影影.泡内气体热力学性质对空泡溃灭的影响.力学学报.2005(04)
    [102]V. Minsier, J. De Wilde, J. Proost. Simulation of the Effect of Viscosity on Jet Penetration into a Single Cavitating Bubble. Journal of Applied Physics. 2009,106 (8): 084906
    [103]L. Jing, L. Jian, D. Guangneng. Two-Dimensional Simulation of the Collapse of Vapor Bubbles near a Wall. Journal of Fluids Engineering. 2008,130 (9):091301
    [104]R. Mousavi Belfeh Teymouri, G. Ahmadi. Intensification of the near Wall Collapsing Bubble Induced Jet Using an Opposite Secondary Wall. Journal of Fluid Science and Technology. 2008,3 (1):207-218
    [105]J.-K. Choi, G.L. Chahine. Noise Due to Extreme Bubble Deformation near Inception of Tip Vortex Cavitation. Physics of Fluids (1994-present). 2004,16 (7):2411-2418
    [106]C.F. Naude, A.T. Ellis. On the Mechanism of Cavitation Damage by Non-Hemispherical Cavitations in Contact with a Solid Boundary. The American Society of Mechanical Engineers Journal of Basic Engineering. 1961,83:648-656
    [107]T.B. Benjamin, A.T. Ellis. The Collapse of Cavitation Bubbles and the Pressures Thereby Produced against Solid Boundaries. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1966,260 (1110):221-240
    [108]A. Shima, K. Takayama, Y. Tomita, N. Ohsawa. Mechanism of Impact Pressure Generation from Spark-Generated Bubble Collapse near a Wall. Aiaa Journal. 1983,21: 55-59
    [109]S.-H. Yang, S.-Y. Jaw, K.-C. Yeh. Single Cavitation Bubble Generation and Observation of the Bubble Collapse Flow Induced by a Pressure Wave. Experiments in Fluids.2009, 47 (2):343-355
    [110]H. Ishida, C. Nuntadusit, H. Kimoto, T. Nakagawa, T. Yamamoto. Cavitation Bubble Behavior near Solid Boundaries. Presented at the CAV2001:Fourth International Symposium on Cavitation, 2001
    [111]W. Brunton, J. Hobbs, A. Laird. Investigation of a Cavitating Film Erosion Test. Wear. 1970,16 (4):273-285
    [112]J. Brunton. Deformation of Solids by Impact of Liquids at High Speeds. Erosion and Cavitation, ASTM STP. 1962,307:83
    [113]C.L. Kling, F.G. Hammitt. A Photographic Study of Spark-Induced Cavitation Bubble Collapse. Journal of Basic Engineering. 1972,94 (4):825-832
    [114]W. Lauterborn, H. Bolle. Experimental Investigations of Cavitation-Bubble Collapse in the Neighbourhood of a Solid Boundary. Journal of Fluid Mechanics. 1975,72 (02): 391-399
    [115]T. Mitchell, F.G. Hammitt. On the Effects of Heat Transfer Upon Collapsing Bubbles. Nucl. Sci. Eng. 1974,53 (3):263-276
    [116]黄继汤,陈嘉范.表面张力对单空泡运动特性的影响.水利学报.1996(12):1-7
    [117]黄继汤.液体粘性对空泡生存过程的影响.北京建筑工程学院学报.1994,10(2):124-131
    [118]W. Lauterborn, C.-D. Ohl. Cavitation Bubble Dynamics. Ultrasonics Sonochemistry. 1997,4 (2):65-75
    [119]C.D. Ohl, T. Kurz, R. Geisler, O. Lindau, W. Lauterborn. Bubble Dynamics, Shock Waves and Sonoluminescence. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 1999,357 (1751): 269-294
    [120]R. Pecha, B. Gompf. Microimplosions: Cavitation Collapse and Shock Wave Emission on a Nanosecond Time Scale. Physical Review Letters.2000, 84 (6):1328
    [121]李子丰.空化射流及其在钻井破岩中的应用前景倡.天然气工业.2006
    [122]杨庆,张建民,戴光清,王海云.空化形成机理和比尺效应.水力发电.2004,30(4):56-59
    [123]武君,张晓冬,刘学武,夏远景,李志义.水力空化及应用.化学工业与工程.2004,20(6):387-391
    [124]王智勇,张晓冬,杨会中.文丘里管中空化流场的数值模拟.计算机与应用化学.2006,23(10):939-942
    [125]C. Mishra, Y. Peles. Flow Visualization of Cavitating Flows through a Rectangular Slot Micro-Orifice Ingrained in a Microchannel. Physics of Fluids. 2005,17 (11):3602
    [126]C. Mishra, Y. Peles. Cavitation in Flow through a Micro-Orifice inside a Silicon Microchannel. Physics of Fluids. 2005,17 (1):3601
    [127]J. Rooze, M. Andre, G.-J.S. van der Gulik, D. Fernandez-Rivas, J.G. Gardeniers, E.V. Rebrov, J.C. Schouten, J.T. Keurentjes. Hydrodynamic Cavitation in Micro Channels with Channel Sizes of 100 and 750 Micrometers. Microfluidics and nanofluidics. 2012, 12 (1-4):499-508
    [128]胡权威.硅微文丘里管的水力空化数值模拟与实验系统设计[D]:北京科技大学.2010
    [129]J. Cai, X. Huai, R. Yan, Y. Cheng. Numerical Simulation on Enhancement of Natural Convection Heat Transfer by Acoustic Cavitation in a Square Enclosure. Applied Thermal Engineering.2009,29 (10):1973-1982
    [130]J. Cai, X. Huai, S. Liang, X. Li. Augmentation of Natural Convective Heat Transfer by Acoustic Cavitation. Frontiers of Energy and Power Engineering in China.2010,4 (3): 313-318
    [131]蔡军,徐根花,淮秀兰.文丘里管内水力空化强度影响因素研究.工程热物理学报. 2011,32:178-181
    [132]B. Schneider, A. Kosar, C.-J. Kuo, C. Mishra, G.S. Cole, R.P. Scaringe, Y. Peles. Cavitation Enhanced Heat Transfer in Microchannels. Journal of Heat Transfer. 2006, 128 (12):1293-1301
    [133]B. Schneider, A. Kosar, Y. Peles. Hydrodynamic Cavitation and Boiling in Refrigerant (R-123) Flow inside Microchannels. International Journal of Heat and Mass Transfer. 2007,50 (13):2838-2854
    [134]C. Sun, E. Can, R. Dijkink, D. Lohse, A. Prosperetti. Growth and Collapse of a Vapour Bubble in a Microtube: The Role of Thermal Effects. Journal of Fluid Mechanics. 2009, 632:5
    [135]A. Philipp, W. Lauterborn. Cavitation Erosion by Single Laser-Produced Bubbles. Journal of Fluid Mechanics. 1998,361:75-116
    [136]C.-D. Ohl, M. Arora, R. Dijkink, V. Janve, D. Lohse. Surface Cleaning from Laser-Induced Cavitation Bubbles. Applied Physics Letters. 2006,89 (7): 074102-074102-0741

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700