用户名: 密码: 验证码:
稀土吸附剂城市污水深度脱氮除磷
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业生产的突飞发展,大量生活污水、工业废水和农用化肥进入河流、湖泊等水体,使水体的氮磷含量增高,过量氮磷会导致水体富营养化。长期以来,城市污水处理厂主要以去除COD和SS为目标,对氮磷等无机污染物的去除效果往往不佳,因此,有效控制和降低污水中氮磷的浓度以及微污染水体深度处理已成为现代污水处理领域中的新课题。本项目是在前期研究的基础上进一步深化和完善,采用吸附法对城市污水进行深度处理,同时脱氮和除磷,大量削减富营养化污染物排放量。
     本项目主要研究内容为:①改进稀土吸附剂最佳制各方法;②研究脱氮除磷的影响因素,包括:吸附剂最佳用量、溶液最佳pH值范围、吸附过程中溶液体系pH变化、振荡时间、溶液pH值对氧化镧稳定性、吸附时间对氧化镧稳定性、干扰因素等;③研究吸附剂脱氮除磷性能,提出吸附模型;④应用于处理实际生活污水;⑤研究稀土吸附剂最佳再生条件;⑥探讨稀土吸附剂脱氮除磷机理;⑦设计中试装置。
     研究结果表明,改进稀土吸附剂的最佳制备条件是在前期研究稀土吸附剂最佳制备条件的基础上,用NaOH浓溶液替代浓氨水来调浸渍过程中溶液的pH值;脱氮除磷的适宜条件为:研发的稀土吸附剂适于处理pH值在3~7的弱酸性废水,对氨氮浓度为20 mg/l,吸附剂的最佳投加量为3 g/l,氨氮去除率可达97%,对含磷浓度为1.0 mg/l,吸附剂的最佳投加量为0.06 g/l,磷的去除率为99.5%,两者的出水pH值分别都在6~9之间;稀土吸附剂脱氮下平衡吸附容量为6.46 mg/g,动态吸附容量为2.76 mg/g,除磷的平衡吸附容量为16.58 mg/g,动态吸附容量为4.34 mg/g。斜发沸石的阳离子交换顺序为Cs~+>Rb~+>NH_4~+>K~+>Li~+>Ba~(2+)>Sr~(2+)>Mg~(2+),从交换顺序来看,天然斜发沸石对铵离子具有较强的选择吸收能力,干扰阴离子的影响顺序为CO_3~(2-)>SO_4~(2-)>Cl~-,阴离子干扰影响范围在15%以内。
     根据城市污水处理厂的出水水质和稀土吸附剂脱氮除磷的性能参数,探索相关中试工艺控制条件和确定设计参数,设计了处理规模为1 m~3/h的悬浮床吸附器中试装置及其再生配套装置。
With the rapid development of the production of the industry and agriculture, much living sewage industrial sewage and fertilizer flow into the rivers and lakes as leads to increase the content of nitride and phosphate in the water. And too much nitride and phosphate will cause the water abundant in alimentation. For long time, city wastewater factories mainly remove COD and SS and the effect of nitride and phosphate removal is usually not good. So how to control and decrease the concentration of nitride and phosphate in the wastewater and dispose of slightly polluted water has become the new task in the modern wastewater dispose field. This project deepen and make perfect on the basis of the previous research. We dispose city wasterwater deeply through adsorption, and at the same time, we remove the nitride and phosphate, thus decrease much of the nutriment.
    The main content of the project is described as follows:
    (1) Improve the best preparation method of rare earth adsorbent. (2) Study the influential factors of nitride and phosphate removal, including: the best adsorbent dosage, best pH range of the solution, pH value of the solution changes in the process of adsorption, surge time, effect of pH value of the solution on the stability of lanthanum trioxide, effect of absoption time on the stability of lanthanum trioxide and interfere factors. (3) Study the adsorbent's capability of nitride and phosphate removal and bring forward the adsorption model. (4) Apply in actual living wastewater disposal. (5) Study the optional conditions of the adsorbent regeneration. (6) Study the principle of nitride and phosphate removal by the rare earth adsorbent. (7) Design the medium experiment settings.
    Researches show that improving the optional preparation conditions of the rare earth adsorbent is at the basis of previous research and replace the strong ammonia with strong NaOH solution to adjust the pH value in the process of soaking. The optional conditions of nitride and phosphate removal are: the rare earth adsorbent in this research is suitable to handle the wastewater with weak acidity.for the concentration of nitride is 20 mg/1, the optional adsorbent dosage is 3 g/1, the removal rate of ammonia can reach 97%. for the concentration of phosphate is 1.0 mg/1, the optional adsorbent dosage is 0.06 g/l, the removal rate of ammonia can reach 99.5%. And the pH values of these two are between 6~9. The balanced adsorption load of the rare earth adsorbent of nitride removal is 6.46 mg/g and dynamic adsorption load
    
    
    
    is 2.76 mg/g. The balanced adsorption load of the phosphate removal is 16.58 mg/g and dynamic adsorption load is 4.34 mg/g. The cation's exchange order of the natural zeolite is Cs+>Rb+>NH4+>K+>Li+>Ba2+>Sr2+>Mg2+. And from the order, we can see the natural zeolite has the better selective absorption capability of ammonium. The influential order of the interferential anion is CO32->SO42->Cr-, the influential range of anion is below 15%.
    According to the water quality of the water come from the city wastewater factory and the capability parameters of the rare earth adsorbent, I have designed a 1 m3/h medium setting of suspension bed adsorber and assorted regeneration settings.
引文
[1] 金相灿.中国湖泊官营养化.第1版.北京:中国环境科学出版社,1990
    [2] 谢维民,污水除磷技术,环境科学,1989,10(5):63~68
    [3] 国家环境保护总局科技标准司.中国湖泊富营养化及其防治研究.第1版.北京:中国环境科学出版社,2001
    [4] 刘培桐.环境学导论.第1版.北京:高等教育出版社,1985
    [5] 张智,林艳,梁健,水体富营养化及其治理措施,重庆环境科学,2002,24(3):73~76
    [6] 金相灿等.中国湖泊富营养化调查.第1版.北京:中国环境科学出版杜,1990
    [7] K.S. Rajmder. WWE. 1997, Vol.14(8)
    [8] 水上克一,月刊下水道,1980,Vol.3(11)
    [9] Malony, W.E. et al. Water Research, 1974, 6(5): 667
    [10] 杜冬云等,含磷废水的处理,化学工程师,1997,61(4):34~39
    [11] 唐森本,王欢畅,葛碧洲等.环境有机污染化学.第1版.北京:冶金工业出版社,1995
    [12] 唐云梯等译.实用环境保护数据大全.第1版.湖北:湖北人民出版社,1993
    [13] 闫庆松,浅谈水体富营养化,山东环境,1994,2:43
    [14] 陈水勇,吴振明,俞伟波,水体富营养化的形成、危害和防治,环境科学与技术,1999,2:11~15
    [15] 钱大富,马静颖,洪水平,水体富营养化及其防治技术研究进展,青海大学学报(自然科学版),2002,20(1):28~31
    [16] 卢升良,滇池的污染及其控制对策,重庆环境科学,1997,19(3):1~4
    [17] 李伯根,控制滇池生态环境的关键,水资源保护,2002,1:18~22
    [18] 邓春玲.稀土吸附剂废水深度脱磷:[硕士学位论文].昆明:昆明理工大学图书馆.2002
    [19] 徐亚同.废水中氮磷的处理.第1版.上海:华东师范大学出版社.1996
    [21] 孙锦宜.含氮废水处理技术与应用.第1版.北京:化学工业出版社,2003
    [22] 郑兴灿.污水除磷脱氮技术.第1版.北京:中国建筑工业出版社,1998
    [23] 张林生,废水脱氮除磷方法与处理工艺,污染防治技术,1999(4)
    [24] 刘钰畴,污水脱氮技术浅析,有色冶金设计与研究,2002,23(1):26~29
    [25] Sabeha Kesraoul-Ould, Christopher cheeseman, and Roger Perry. Effects of Conditioning and Treatment of Chabazite and Clinoptilolite Prior to Lead and Cadmium Removal. Environ. Sci. Technol, 1993, 27:1108~1116
    [26] 肖举强,于连群,李桂荣,活化沸石去除水中氨氮的研究,兰州铁道学院学报.1995,
    
    14(1):79~82
    [27] 赵庆良,化学沉淀法去除垃圾渗滤液中的氨氮,环境科学,1999,5
    [28] 沈耀良,王宝贞.废水生物处理新技术理论与应用.第1版.北京:中国环境科学出版社,1999
    [29] 王凯军,贾立敏.城市污水生物处理新技术开发与应用.第1版.北京:化学工业出版社,2001
    [30] 冯生华.城市中小型污水处理厂的建设与管理.第1版.北京:化学工业出版社,2001
    [31] 章非娟等.生物脱氮技术.第1版.北京:中国环境科学出版社,1992
    [32] M. J. Haron et al. Preparation of Basic Yttrium Carbonate for Phosphate Removal. Water Environmental Research, 1997, 69(5): 1047
    [33] K. Urano, et al. Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. 1. preparation method and adsorption capacity of a new adsorbent. Ind. Eng. Chem. Res., 1991, 30:1893~1896
    [34] K. Urano, et al. Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. 2. adsorption rates and breakthrough curves. Ind. Eng. Chem. Res., 1991, 30:1897~1899
    [35] K. Urano, et al. Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. 3. desorption of phosphate and regeneration of adsorbemt. Ind. Eng. Chem. Res., 1992, 31:1510~1513
    [36] K. Urano, et al. Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. 3. recovery of phosphate and aluminum from desorbing solution. Ind. Eng. Chem. Res., 1992, 31:1513~1515
    [37] 丁文明,黄霞,废水吸附法除磷的研究进展,环境污染治理技术与设备,2002,3(10):23~27
    [38] 杜冬云等,含磷废水的处理,化学工程师,1997,61(4):34~39
    [39] 杨宝林,污水除磷技术的应用,西南给排水,1990,4:15~19
    [40] [日]宗宫功.污水除磷脱氮技术.第1版.北京:中国环境科学出版社,1978
    [41] 郝晓地等,欧洲水环境控磷策略与污水除磷技术(上),给水排水,1998,24(8):69~73
    [42] Brattebo H. Phosphorous removal by granular activated alumina. Wat. Res., 1986, 20(8):977~986
    [43] 孙家寿,刘新星,天然沸石复合吸附剂处理含磷废水的研究,离子交换与吸附,1992,8(1):20~25
    [44] 孙家寿,吸附法处理模拟含磷废水,上海环境科学,1993,12(3):12~17
    [45] 丁文明,黄霞,张力平,水合氧化镧吸附除磷的试验研究,环境科学,2003,24(5):
    
    110~113
    [46] 谢维民等,水处理技术,1989,28(9):7
    [47] Zoltek, J Jr., Jour. WPCF, 1974, 16(11): 2498
    [48] Hano T et al. Removal of phosphorus from wastewater by activated alumina adsorbent. Wat. Sci. Tech., 1997, 35(7):39~46
    [49] Urano K et al. Process development for removal and recovery of phosphorous from wastewater by a new adsorbent. Ind. Eng. Chem. Res., 1991, 30:1893~1899
    [50] Xie, W.M. et al., Environ. Tech. Lett., 1987, 8(11): 589
    [51] Levin, G. V.et al., J. WPCF, 1972, 44(10): 1940
    [52] Marais, G.V.R, et al., IAWPR Post Conference Seminar on Phosphate Removal in Biological Treatmint Process, 1982
    [53] 钱易.现代废水处理新技术.第1版.北京:中国科学技术出版社,1993
    [54] 1964,5:785
    [55] 国家环境保护局编.工业污染治理技术丛书(废气卷).第1版.北京:中国环境科学出版社,1996
    [56] 魏复盛.水和废水监测分析方法.第1版.北京:中国环境科学出版社,1989
    [57] 北京矿冶研究院分析室.矿石及有色金属分析手册.第1版.北京:冶金出版社,1990
    [58] Anderson M.A.等著,刘莲生等译.水溶液吸附化学.第1版.北京:科学出版社,1989
    [59] Melkon Tather, Ayse Erdem-Senalar, Fractal dimension of zeolite surfaces by calculation. Chaos, solutions and fractals, 2001, 12:1145~1155
    [60] Assenov, A.; Vassilev, C.: Kostova, M.: Occurrence, Properties and Utilization of Natural Zeolite, Shery, 1988, 471
    [61] 国家环境保护总局.工业污染治理技术丛书(废水卷).第1版.北京,中国环境科学出版社,1996
    [62] Barrow N J. J Soil Sci., 1979, 30(2):259
    [63] Kuo S et al. Soil Sci., SooAm J, 1974, 38(1):50
    [64] Sharpley a Net al. Soil Sci., Soc Am J, 1977, 28:596
    [65] Cooke I J. J Soil Sci., 1996, 17:56
    [66] Cooke I J et al. Techm Repts Set Int at Energy Agence, 1966, 65:2~7
    [67] 黄春辉.稀土配位化学.第1版.北京:科学出版社,1997
    [68] 王世敏,许祖勋,傅晶.纳米材料制备技术.第1版.北京:化学工业出版社,2002
    [69] 张立德,牟季美.纳米材料和纳米结构.第1版.北京:科学出版社,2002
    [70] Gu. T T., Manes M. J. Phys. Chem., 1982, 86: 4221
    [71] 马刚平等,镧氧化膜硅胶吸附除氟性能研究,中国环境科学,1999,19(4):345~348
    [72] K. Tennakone, K. G. U. Wijayantha. Heavy-metal extraction from aqueous medium with an
    
    immobilized ZiO_2 photocatalyst and a solid sacrificial agent. Journal of Phptpchemistry and Photobiology A: Chemistr 1998, 113:89~92
    [73] Alan Dyer, Kevin J. White. Cation diffusion in the natural zeolite elinoptilolite. Thermochimica Acta, 1999, 340~348
    [74] 潘履让.固体催化剂的设计与制备.第1版.天津:南开大学出版社,1993
    [75] J. Nomura et al. Removal of Fluoride Ion from Wastewater by a Hydrous Cerium Oxide Adsorbent. Am. Chem. Soc. Aymp, 1998, 422
    [76] M. I. Levinbuk, M.L. Pavlov, L. M. Kustov, et al. Physicochemical and catalytic properties of a new type of as-synthesized aluminium-deficient Y zeolite. Applied Catalysis A: General, 1998, 172:177~191
    [77] 江祖成等.稀土元素分析化学.第1版.北京:科学出版社,2000
    [78] 祝自英等,新型稀土催化剂的研究,稀土,1996,17(6):16~18
    [79] 李冬,李云,沸石在水处理中的应用,给水排水,1998,24(7):60~62
    [80] 谈世韶等,镧对氧化铝载体性能的影响,稀土,1988,2:19~25
    [81] 张铨昌等.天然沸石离子交换性能及其应用.第1版.北京:科学出版社,1986
    [82] 北川浩,铃木谦一郎.吸附的基础与设计.第1版.北京:化学工业出版社,1983
    [83] 正交试验设计法编写组.正交试验设计法.第1版.上海:上海科学技术出版社,1996
    [84] 魏先勋.环境工程设计手册(修订版).第1版.湖南:湖南科学技术出版社,2002
    [85] 唐受印,戴友芝等.水处理工程师手册.第1版.北京:化学工业出版社,2000
    [86] 祁鲁梁,李永存,李本高.水处理工艺与运行管理实用手册.第1版.北京:中国石化出版社,2002
    [87] 王绍文。杨景玲.环保设备材料手册.第2版.北京:冶金工业出版社,2000
    [88] [美]R.A.科比特.环境工程标准手册.第1版.北京:科学出版社,2003
    [89] 北京水处理技术与设备研究中心,北京市环境保护科学研究院,国家城市环境污染控制工程技术研究中心.三废处理工程技术手册(废水卷).第1版.北京:化学工业出版社,2002
    [90] 史惠祥.实用环境工程手册污水处理设备.第1版.北京:化学工业出版社,2002
    [91] 严道岸.实用环境工程手册水工艺与工程.第1版.北京:化学工业出版社,2002
    [92] 兰文艺,绍刚.实用环境工程手册水处理材料与药荆.第1版.北京:化学工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700