用户名: 密码: 验证码:
聚氨酯包埋硝化菌颗粒的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物固定化技术具有处理效率高、稳定性强、生物浓度高和固液分离效果好等优点,最近几十年逐渐引入水处理领域并得到了广泛的关注和应用,但是目前大多处于实验室试验阶段,实现大规模工业化应用的较少,主要原因是常用的固定化载体性能不稳定、价格较高、使用寿命较短、难以适应水处理系统中的长期连续运行。本文根据聚氨酯水凝胶的特点,合成了一种新型聚氨酯丙烯酸酯大分子单体作为包埋载体,以硝化细菌作为被包埋微生物,对聚氨酯包埋硝化菌颗粒的制备和应用进行了系统地研究。
     采用大单体合成技术,以异佛尔酮二异氰酸酯(IPDI)、甲基丙烯酸羟乙酯(HEMA)和聚醚多元醇(PMPO)为原料分步合成了一种新型聚氨酯丙烯酸酯大分子单体,并利用元素分析、红外光谱和核磁共振图谱对聚氨酯预聚体进行了表征,确定所得预聚体为结构规整分子量均一的大分子单体。对影响该大分子单体合成的各因素进行了分析,确定以二月桂酸二丁基锡催化剂,适宜的反应温度和反应时间分别是65℃和4 h。重点对IPDI/PEG/HEMA大分子单体分步合成反应的动力学进行了探讨,确定了反应级数和反应基团的顺序,表明IPDI与PMPO和IPDI聚氨酯中间体与HEMA的反应均为二级反应,对应的反应速率常数分别0.0165mol/L·min和0.0264 mol/L·min,并计算出其对应的反应活化能分别为55.02 kJ/mol和101.52 kJ/mol。根据实验室的小试结果和反应动力学的理论分析,通过中试放大,建立了一套规模为200吨/年的生产装置。
     在聚氨酯丙烯酸酯大分子单体乳液经自由基聚合形成水凝胶的反应中,选取过硫酸钾(KPS)/四甲基乙二胺(TEMED)作为双组分的氧化还原引发体系,并采用正交试验优化了聚氨酯水凝胶的制备方法,确定最优配比为:大分子单体10%,催化剂TEMED 0.5%,引发剂KPS 1.0%,添加剂粉末活性炭3%。利用红外光谱和扫描电镜对聚氨酯凝胶颗粒的结构进行了分析,表明聚氨酯水凝胶网络结构稳定且形成孔洞并具有较大的比表面积。根据Arrhenius公式估算了聚氨酯凝胶颗粒的使用寿命,在25℃,pH 6-8的环境,凝胶颗粒可以稳定运行长达20年。
     在水凝胶制备的基础上,考察了固定化试剂和操作条件对硝化菌活性的影响,确定聚氨酯包埋硝化菌颗粒的工业化生产流程为:在特制模具中将10%聚氨酯乳液、3%粉末活性炭和MLSS 2.0×104 mg/L硝化菌浓缩液混合均匀,加入催化剂TEMED 0.5%,引发剂KPS 1.0%,在25℃下反应10 min,并将得到规整凝胶体放入专业切粒机中切成3×3×3 mm的立方体,清洗,即得到聚氨酯包埋硝化菌颗粒的成品。分别采取了间歇和连续两种驯化方式恢复包埋硝化菌颗粒的活性,结果说明连续提高进水氨氮浓度的驯化方式较为理想,氨氧化速率可较快达到350mg-N/L-pellet·h。利用扫描电子显微镜(SEM)对驯化前后的包埋颗粒内的微生物进行分析,并对聚氨酯载体的经济性进行了评价,聚氨酯包埋颗粒的运行成本较低,适合工业化应用。
     包埋硝化菌颗粒应用于模拟废水中氨氮的去除,分别研究了包埋硝化菌颗粒在不同初始氨氮浓度中的硝化动力学,在高浓度条件下,为零级反应,反应动力学常数为329.7mg-N/L-pellet·h;而在低浓度条件下,则为一级反应,反应动力学常数为24.72/L-pellet·h.并引入灵敏度分析法,分别考察了高、低氨氮浓度条件下,各个环境因素对包埋硝化菌颗粒硝化特性的影响,确定了最佳操作点分别为:pH=9,DO=4 mg/L,温度为30℃(低浓度);pH=8,DO=6 mg/L,温度为30℃(高浓度)。与游离态硝化菌相比较,表明包埋硝化菌颗粒在更宽的pH和温度范围内都具有明显的优势。连续去除模拟废水中氨氮运行结果说明包埋硝化菌颗粒在不同浓度的模拟废水处理中均具有较高的氨氮去除效率。最后将包埋硝化菌颗粒应用于各种实际废水处理中以去除氨氮,运行结果表明氨氮去除效果良好,在多数情况下氨氮去除率都能达到80%,实验结果表明本文中提出的聚氨酯包埋硝化菌颗粒具有良好的应用前景。
The microorganisms, after being immobilized, can be kept in the reactor more effectively for an unlimited period time so that they can be used continuously and repeatedly. Cell immobilizing processes have been receiving the increasing attention in the field of water treatment in the recent decades. Although the immobilized microorganism technology was carried out over a wide range of research area, it was still in the laboratory tests and was difficult for large-scale industrial applications. The key point was that the current carrier materials were not stability. Therefore, a novel cell entrapment method that involves mild gelation and strong gel structure is desired.
     Based on the characteristics of polyurethane hydrogel and previous research, a novel microorganism immobilization method involving synthesis, gelation of polyurethane prepolymer has been developed. The feasibility of the proposed immobilization method was tested by nitrifying bacteria. Using macro monomer technology, IPDI/PMPO/HEMA prepolymer was synthesized by two-step reaction. The molecular weight and structure of polyurethane prepolymer were characterized by elemental analysis, IR and NMR spectra. Factors affecting prepolymer synthesis reaction were studied respectively to determine the order of group response, the appropriate reaction temperature, reaction time and the category of catalysts. Focus on the IPDI/PEG/HEMA macromonomer reaction kinetics; the reaction order and the order of groups were discussed. The reactions of PMPO and IPDI and IPDI polyurethane were confirmed to be the second-order reaction. The optimum reaction temperature was 65℃and reaction time was 4 h. And the reaction rate constants were 0.0165 mol/L·min and 0.0264 mol/L·min, and the corresponding activation energy were 55.02 kJ/mol and 101.52 kJ/mol, respectively. According to the laboratory test results and the theoretical analysis of reaction kinetics, through the scale-up response, a plant with the production scale of 200 tons/year was established.
     Radical polymerization was triggered by the KPS/TEMED as a two-component redox initiation system. The orthogonal test method was used to determine the best formula of preparation of polyurethane gel. The optimized polyurethane hydrogel contained:polyurethane monomer 10%, a promoter TEMED 1.0%, an initiator KPS 0.5%, an additive powdered activated carbon 3%. The structure of polyurethane hydrogels was characterized by IR spectra and scanning electron microscopy. According to Arrhenius equation, the lifespan of polyurethane gel pellets was up to 20 years at 25℃, pH 6~8 of the environment.
     According to effects of the immobilized reagents and operating conditions on the activity of nitrifying bacteria, we have established the following optimal preparation processes. Nitrifying bacteria concentrate (MLSS 2.0×104 mg/L) was mixed with 10% prepolymer emulsion, a promoter TEMED 1.0%, an initiator KPS 0.5% and an additive powdered activated carbon 3% in a special mold. The mixture was allowed to stand for about 10 min at a temperature of 25℃. The resulting polymerized gel carrier was cut into 3×3×3 mm cubes and then washed thoroughly with distilled water. Thus polyurethane immobilized nitrifying bacteria pellets were obtained. The intermittent and continuous domestication ways were adopted to restore the activity of immobilized nitrifying bacteria pellets, and the results confirmed that the method of continuously improving ammonia concentration was better for pellets domestication and ammonia oxidation rate could reach 350 mg-N/L-pellet·h rapidly. The SEM pictures showed the quantity of the ammonia oxidation bacteria increased substantially during the acclimation. Nitrification kinetics of immobilized nitrifying bacteria pellets in different initial ammonia concentration was studied. Nitrification reaction of immobilized pellets was followed zero-order reaction at the high concentration and first-order reaction at low concentration. Based on the sensitivity analysis, effects of different environmental factors for free and immobilized nitrifying bacteria were investigated under high and low ammonia concentration. The immobilized nitrifying bacteria showed advantage nitrification performance than the free nitrifying bacteria. The optimal operating point were:pH=9, DO=4 mg/L, temperature 30℃(low concentration); pH=8, DO=6 mg/L, temperature 30℃(High concentrations). The results of continuous operation to remove ammonia by immobilized nitrifying bacteria pellets confirmed that immobilized pellets had high ammonia removal efficiency in wastewater treatment system.
     The immobilized nitrifying bacteria pellets were used for nitrogen removal in various actual wastewaters, and the operation results showed ideal ammonia removal efficiency. The result verified that the polyurethane immobilized-cell method developed in this study has great potential for a variety of applications.
引文
[1]Rozan T. F., Lassman M. E., Ridge D. P., et al. Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers [J]. Nature,2000,406: 879-882.
    [2]Schiermeier Q. Studies assess risks of drugs in water cycle [J]. Nature,2003,424: 5.
    [3]中华人民共和国环境保护部,2009年中国环境状况公报[N].中国环境报.2010-05-31.
    [4]Gilmore K. R., Husovitz K. J., Holst T., et al. Influence of organic and ammonia loading on nitrifier activity and nitrification performance for a two-stage biological aerated filter system [J]. Water Science and Technology,1999,39(7):227-234.
    [5]Judd S. A review of fouling of membrane bioreactors in sewage treatment [J]. Water Science and Technology,2004,49 (2):229-235.
    [6]Li T.W., Peng Y. Z., Wang Y. Y, et al. Experimental study on sequencing batch biofilm reactor with biological filtration (SBBR-BF) for wastewater treatment [J]. Water Science and Technology,2003,48(11-12):299-307.
    [7]Barnes D., Bliss P.J. Biological control of nitrogen in wastewater treatment [M]. New York:E. & F. N. Spon in London.1983:32-33.
    [8]Hanaki K., Wantawin C., Ohgaki S. Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor [J]. Water Research,1990,24:289-296.
    [9]王建龙.生物固定化技术与水污染控制工程[M].北京:科学出版社.2002.
    [10]Tanaka K., Nakao M., Mori N., et al. Application of immobilized nitrifiers gel to removal of high ammonium nitrogen [J]. Water Science and Technology,1994, 29(9):241-250.
    [11]Liao W. L., Tseng D. H., Tsai Y. C., et al. Microbial removal of polycyclic aromatic hydrocarbons by phanerochaete chrysosporium [J]. Water Science and Technology, 1997,35(8):255-264.
    [12]Komancova M., Jurova I., Kochankova L., et al. Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp.2 [J]. Chemosphere, 2003,50(1):537-543.
    [13]Wang C. C., Lee C. M., Lu C.J., et al. Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria [J]. Chemosphere,2000,41(11):1873-1879.
    [14]Wang J. L., Quan X. C., Han L. P., et al. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii [J]. Water Research,2002,36(5): 2288-2296.
    [15]Leenen EJTM, Santos VAP, Grolle KCF, et al. Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment [J]. Water Research,1996,30(12):2985-2996.
    [16]Karel S. F., Libicki S. B., Robertson C. R. The immobilization of whole cells: Engineering principles [J]. Chemical Engineering Science,1985,40(8):1321-1354.
    [17]Hais I.M. Biospecific sorption, Prague,1910:Emil Starkenstein (1884-1942) [J]. Journal of Chromatography B:Biomedical Sciences and Applications,1986, 376(11):5-9.
    [18]Campbell D.H., Luescher E.L., Lerman L.S. Immunologic adsorbents. I. Isolation of antibody by means of a cellulose-protein antigen [J]. Proceedings of the National Academy of Sciences,1951,37:575.
    [19]Grubhofer N., Schleith L. Modifizierte Ionenaustauscher als spezifische Adsorbentien [J]. Naturwissenschaften,1953,40:508.
    [20]Hattori T., Furusaka J. Chemical activities of E.coli adsorbed on a resin [J]. Journal of Biochemistry,1959,48:831.
    [21]千烟一郎著,胡宝华译.固定化酶[M].石家庄:河北人民出版社.1981.
    [22]Atkinson B, Mavituna F. Biochemical engineering and biotechnology handbook [M]. New York:Macmillan, Nature Press in London,1991:768.
    [23]沈耀良.固定化微生物污水处理技术[M].北京:北京化学工业出版社.2002.
    [24]刘宏斌,刘转年,金奇庭.固定化微生物在废水处理中的应用[J].环境污染治理技术与设备,2002,3(5):61-65.
    [25]杨文英,董学畅.细胞固定化及其在工业中的应用[J].云南民族学院学报(自然科学版),2001,10(3):406-410.
    [26]成庆利,滑冰.固定化细胞研究进展[J].河南教育学院学报(自然科学版),2003,12(2):53-54.
    [27]崔明超,陈繁忠,傅家谟等.固定化微生物技术在废水处理中的研究进展[J].化工环保,2003,23(5):261-264.
    [28]王里奥,崔志强,钱宗琴等.微生物固定化的发展及在废水处理中的应用[J].重庆大学学报,2004,27(3):126-129.
    [29]王新,李培军,宋守志等.固定化微生物技术在环境工程中的应用研究进展[J].环境污染与防治,2005,27(7),535-537.
    [30]何景就,傅良俊DEAE-纤维素固定化葡萄糖异构酶[J].中国科学技术大学学报,1982,02.
    [31]陈秀琳.CM-纤维素固定化脂肪酶的研究[J].海峡药学,2005,17(1):35-37.
    [32]Nagadomi H., Kitamura T., Watanabe M., et al. Simultaneous removal of chemical oxygen demand (COD), phosphate, nitrate and H2S in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic bacteria [J]. Biotechnology Letters.2000,22(17):1369-1374.
    [33]Bonin P., Rontani J. F., Bordenave L. Metabolic differences between attached and free-living marine bacteria:inadequacy of liquid cultures for describing in situ bacterial activity [J]. FEMS Microbiology Letters,2001,194(1):111-119.
    [34]朱文芳,李伟光,王志华等.固定化细胞技术处理低浓度甲醇废水的研究[J].工业水处理.2002,22(7):18-21.
    [35]朱文芳,李伟光,吕炳南等.固定化除油工程菌处理含油废水研究[J].中国给水排水.2003,19(11):39-40.
    [36]林维晟,林旖宏.细胞固定化技术在城市污水处理中的应用[J].南平师专学报,2005,24(2):70-73.
    [37]肖美燕,徐尔尼,陈志文.包埋法固定化细胞技术的研究进展[J].食品科学,2003,24(4):158-161.
    [38]崔明超,陈繁忠,傅家谟等.固定化微生物技术在废水处理中的研究进展[J].化工环保,2003,23(5):261-64.
    [39]白凤武.无载体固定化细胞的研究进展[J].生物工程进展,2000,20(2):32-36.
    [40]胡勇有,高健.微生物絮凝剂的研究与应用进展[J].环境科学进展,1999,7(4):24-29.
    [41]谢海宁.厌氧颗粒污泥形成影响因素研究[硕士论文].上海:上海师范大学.2007.
    [42]严小军.细胞固定化的方法和应用[J].海洋科学,1993(3):22-25.
    [43]王玉建,李红玉.固定化微生物在废水处理中的研究及进展[J].生物技术,2006(1):94-96.
    [44]Mansfeld J., Schellenberger A., Rombach J. Application of polystyrene-bound invertase to continuous sucrose hydrolysis on pilot scale [J]. Biotechnology and Bioengineering,1992,40(9):997-1003.
    [45]杨秀山,李军,田沈等.固定化甲烷八叠球菌及处理高浓度有机废水的研究[J].环境科学学报,2003,23(2):282-284.
    [46]宋秀兰,田建民,康静文.固定化胶质红环菌在好氧条件下降解吲哚的研究[J].环境科学学报,2001,21(4):510-512.
    [47]Tanaka, K.,Nakao, M., Mori, N.,et al. Application of immobilized nitrifiers gel to removal of high ammonium nitrogen [J]. Water Science & Technology,1994,29(9): 241-250.
    [48]Leenen E. J. T. M., Dos Santos V. A. P., Grolle K. C. F., et al. Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment [J]. Water Research,1996,30(12):2985-2996.
    [49]Tischer W., Wedekind F. Immobilized enzymes:methods and applicatons [J]. Topics in current chemstry,1999,200:95-126.
    [50]Park J. K., Chang H. N. Microencapsulation of microbial cells [J]. Biotechnology Advances,2000,18(4):303-319.
    [51]Kourkoutas Y, Bekatorou A., Banat I. M., et al. Immobilization technologies and support materials suitable in alcohol beverages production:a review [J]. Food Microbiology,2004,21(4):377-397.
    [52]肖美燕,徐尔尼,陈志文.包埋法固定化细胞技术的研究进展[J].食品科学,2003,24(4):158-161.
    [53]袁定重,张秋禹,侯振宇等.固定化酶载体材料的最新研究进展[J].材料导报,2006,20(1):69-72.
    [54]Bullock C. Immobilized enzymes [J]. Science Progress,1995,78:119-134.
    [55]Chaplin M., Bucke C. Enzyme technology [M]. Cambridge:Cambridge University Press,1990.
    [56]Krajewska B. Application of chitin-and chitosanbased materials for enzym e immobilizations:a review [J]. Enzyme and Microbial Technology,2004,35(2-3): 126-139.
    [57]Wiseman A. Designer enzyme and cell applications in industry and in environmental monitoring [J]. Journal of Chemical Technology & Biotechnology, 1993,56(1):3-13
    [58]Kin P. Therapeutic potential of immobilized enzymes [J]. NATO ASI Series, Ser. E, 1993,252:191-200.
    [59]张克旭,张永志.用海藻酸钙固定化赖氨酸菌增殖细胞的初步研究[J].生物工程学报,1986,2(3):66-69.
    [60]汪涛,朱惟德.用正交试验法优化聚丙烯酰胺水凝胶的机械性能[J].上海大学学报(自然科学版),2001,7(1):60-64.
    [61]Yankov D. Diffusion of glucose and maltose in polyacrylamide gel [J]. Enzyme and Microbial Technology,2004,34(6):603-610.
    [62]黄蓓,孙建中,李伟等.聚丙烯酰胺-聚乙二醇对L-天门冬酰胺酶的包埋研究[J].高校化学工程学报,2003,17(4):431-437.
    [63]张洁辉,陈锐,郑邦乾等.多孔聚丙烯酰胺共聚物固定厌氧微生物的研究[J].四川大学学报(工程科学版),2000,32(2):74-77.
    [64]Lozinsky V. I., Zubov A. L., Titova E. F. Swelling behavior of poly(vinyl alcohol) cryogels employed as matrices for cell immobilization [J]. Enzyme and Microbial Technology,1996,18(8):561-569.
    [65]Lozinsky V. I., Zubov A. L., Titova E. F. Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization.2. Entrapped cells resemble porous fillers in their effects on the properties of PVA-cryogel carrier [J].1997,20(3):182-190.
    [66]Lozinsky V. I., Plieva F. M. Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization.3. Overview of recent research and developments [J]. Enzyme and Microbial Technology,1998,23(3-4):227-242.
    [67]沈齐英.微生物处理含油废水的实验研究[J].环境科学与技术.2007,30(2):71-73.
    [68]李峰,严伟.聚乙烯醇作为固定化细胞包埋剂的研究[J].中国给水排水,2000,16(12),14-17.
    [69]王蕾,俞毓馨.固定化细胞厌氧-好氧工艺处理四环素结晶母液的实验研究[J].
    [70]Gardin H., Pauss A. K-carrageenan/gelatin gel beads for the co-immobilization of aerobic and anaerobic microbial communities degrading 2,4,6-trichlorophenol under air-limited conditions [J]. Applied Microbiology and Biotechnology,2001, 56(3-4):517-523.
    [71]曹晖,彭珍荣.一种制备珠型固定化细胞颗粒的简易方法[J].微生物学通报,1997,24(4):254.
    [72]陈元彩,蓝惠霞,陈中豪.固定化好氧菌和厌氧颗粒污泥在不同供氧条件下降解氯酚的研究[J].环境科学学报,2005,25(2):172-175.
    [73]陈元彩,蓝惠霞,詹怀宇等.氯酚菌的筛选及其对氯酚的降解[J].中国造纸,2005,24(1):18-21.
    [74]全向春,施汉昌,王建龙等.固定化细胞降解2,4-二氯酚的动力学及其对SBR系统强化效果研究[J].环境科学,2003,23(增刊):36-39.
    [75]谢丹丹,刘月英,吴成林等.固定化啤酒酵母废菌体吸附Pd2+的研究[J].微生物学通报,2003,30(6):29-34.
    [76]潘祖仁.高分子化学[M].北京:化学工业出版社,1996.
    [77]季烽.水性聚氨酯进展[J].上海化工,1998,10:39-41.
    [78]山西省化工研究所.聚氨酯弹性体手册[M].北京:化学工业出版社,2001.
    [79]Nakajima-Kambe T., Shigeno-Akutsu Y., Nomura N., et al. Microbial degradation of polyurethane, polyester polyurethanes and polyther polyurethanes [J]. Applied Microbiology and Biotechnology,1999,51(2):134-140.
    [80]Klein J., Kluge M. Immobilization of microbial cells in polyurethane matrices [J]. Biotechnology Letters,1981,3(2):65-70.
    [81]Anselmo, A. M, Novais J. M. Degradation of phenol by immobilized mycelium of Fusarium flocciferum in continuous culture [J]. Water science & technology,1992, 25(1):161-168.
    [82]Hu Z, Korus R. A., Levinson W. E., et al. Adsorption and biodegradation of pentachlorophenol by polyurethane-immobilized flavobacterium [J]. Environmental Science and Technology,1994,28(3):491-496.
    [83]范轶,丁富新,胡宇华,张文明等.多孔载体存在下生物脱氮技术[J].清华大学学报(自然科学版),2001,41(12):59-61.
    [84]叶正芳,倪晋仁,李彦锋等.污水处理的固定化微生物与游离微生物性能的比较[J].应用基础与工程科学学报,2002,10(4):325-331.
    [85]叶正芳,倪晋仁,李彦锋等.污水高效处理和资源化的固定化微生物技术研究[J].应用基础与工程科学学报,2002,10(4):332-337.
    [86]杨学昊,谭天伟.固定化根霉发酵生产脂肪酶[J].生物工程学报,2004,20(2): 284-286.
    [87]于荣敏,高越,姚新生等.银杏细胞固定化培养及其影响因素考察[J].中草药,2004,35(7):803-808.
    [88]朱俊晨,翟迪升,邓维恭等.多孔聚氨酯固定化黑曲霉产p-葡萄糖苷酶条件的研究[J].微生物学杂志,2004,24(3):32-35,45.
    [89]郑连英,肖玉良,隋斯光.固定化Penicillium sp. ZD-Z1降解壳聚糖的研究[J].浙江大学学报(工学版),2004,38(9):1217-1221.
    [90]廖日红,王培京,许志兰.固定化微生物处理河流微污染水体试验研究[J].北京水务,2006,2:11-14.
    [91]李彦锋,周林成,马鹏程等.活性炭复合亲水性聚氯酯泡沫微生物固定化载体[P].中国专利:ZL02141723.7,2004-03-03.
    [92]李彦锋,周林成,马鹏程等.碳纤维复合聚氨酯生物活性载体的制备及其应用[P].中国专利:ZL200610042685.1,2006-09-27.
    [93]李彦锋,赵光辉,马鹏程等.改性载体固定化微生物处理高氨氮废水的研究[J].安徽农业科学,2008,36(7):2877-2879,2890.
    [94]杨清峰,瞿金清,陈焕钦.水性聚氨酯涂料技术进展综述[J].化工科技市场,2004,10:17-22.
    [95]王利军,辛中印,张帆等.水性聚氨酯技术进展[J].皮革科学与工程,2005,15(2):33-39.
    [96]丛树枫,喻露如.聚氨酯涂料[M].北京:化学工业出版社:2003.
    [97]李绍雄,刘益军.聚氨酯胶粘剂[M].北京:化学工业出版社,1998.
    [98]Francois P., Vaudaux P., Nurdin N, et al. Physical and biological effects of a surface coating procedure on polyurethane catheters [J]. Biomaterials,1996,17 (7): 667-678.
    [99]Rosiak J. M., Ulanski P., Rzeznicki A. Hydrogels for biomedical purposes [J]. Nuclear Instruments and Methods in Physics Research B,1995,105:335-339.
    [100]Haschke L., Sendijarevic V., Wong S., et al. Clear nonionic polyurethane hydrogels for biomedical applications [J]. Journal of Elastomers and Plastics,1994, 26:41-57.
    [101]Holden B. A., Mertz G.W., Mcnally J. J. Corneal swelling response to contact lenses worn under extended wear conditions [J]. Investigative ophthalmology & Visual Science,1983,24(2):218-226.
    [102]Lai Y. C., Baccei L. J. Novel Prepolymers useful in biomedical devices [P]. United States Patent:US 2006/0105047 A1,2006-5-18.
    [103]Lai Y. C., Lang W., Quinn E. T. Silicone-containing prepolymers [P]. United States Patent:US 2008/0312397 A1,2008-12-18.
    [104]Park J. H., Bae Y. H. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane):synthesis, characterization, in vitro protein adsorption and platelet adhesion [J]. Biomaterials,2002,23(8): 1797-1808.
    [105]Park J. H., Bae Y. H. Physicochemical properties and in vitro biocompatibility of PEO/PTMO multiblock copolymer/segmented polyurethane blends [J]. Journal of Biomaterials Science, Polymer Edition,2002,13(5):527-542.
    [106]Petrini P., Fare S., Piva A., et al. Design, synthesis and properties of polyurethane hydrogels for tissue engineering. Journal of Materials Science:Materials in Medicine,2003,14(8):683-686
    [107]Konig A., Zaborosch C., Muscat A., et al. Microbial sensors for naphthalene using Sphingomonas sp. B1 or Pseudomonas fluorescens WW4 [J]. Applied Microbiology and Biotechnology,1996,45(6):844-850.
    [108]Fukushima S., Nagai T., Fujita K., et al. Hydrophilic urethane prepolymers: convenient materials for enzyme entrapment [J]. Biotechnology and Bioengineering, 1978,20(9):1465-1469.
    [109]Tanaka A., Jin I., Kawamoto S., et al. Entrapment of microbial cells and organelles with hydrophilic urethane prepolymers [J]. European Journal of Applied Microbiology and Biotechnology,1979,7(4):351-354.
    [110]Omata T., Tanaka A., Yamane T., et al. Immobilization of microbial cells and enzymes with hydrophobic photo-crosslinakble resin prepolymers [J]. European Journal of Applied Microbiology and Biotechnology,1979,6:207-215.
    [111]Sonomoto K., Tanaka A., Omata T., et al. Application of photo-crosslinkable resin prepolymers to entrap microbial cells. Effects of increased cell-entrapping gel hydrophobicity on the hydrocortisone △1-dehydrogenation [J]. European Journal of Applied Microbiology and Biotechnology,1979,6(4):325-334.
    [112]Sumino T., Nakamura H., Mori N., et al. Immobilization of nitrifying bacteria in porous pellets of urethane gel for removal of ammonium nitrogen from waste-water [J]. Applied Microbiology and Biotechnology,1992,36(4):556-560.
    [113]Muscat A., Beyersdorf J., Vorlop K.-D. Poly(carbamoylsulphonate) hydrogel, a new polymer material for cell entrapment[J]. Biosensors & Bioelectronics.1995, 10(8):11-14.
    [114]Vorlop K.-D., Muscat A., Beyersdorf J. Entrapment of microbial cells within polyurethane hydrogel beads with the advantage of low toxicity[J]. Biotechnology Techniques,1992,6(6):483-488.
    [115]Muscat A., Beyersdorf J., Vorlop K.-D. Poly(carbamoylsulfonate), a material for immobilization:Synthesis, diffusion- and mechanical properties[J]. Biotechnology Techniques.1993,7(8):591-596.
    [116]Willke B., Willke T., Vorlop K.-D. Poly(carbamoylsulphonate) as a matrix for whole cell immobilization-biological characterization [J]. Biotechnology Techniques,1994,8(9):623-626.
    [117]Muscat A., Vorlop K.-D. Poly (Carbamoyl Sulfonate) Hydrogels [J]. Immobilization of Enzymes and Cells,1997,1:125-131.
    [118]Schlieker M., Vorlop K.-D. A Novel Immobilization Method for Entrapment LentiKats(?) [J]. Immobilization of Enzymes and Cells,2006,22:333-343.
    [119]Willke B., Vorlop K.-D. Long term observation of gel-entrapped microbial cells in a microscope reactor [J]. Biotechnology Techniques.1994,8(9):619-622.
    [120]Pruβe U., Fox B., Kirchhoff M., et al. The Jet Cutting Method as a new im mobilization technique [J]. Biotechnology Techniques,1998,12(2):105-108.
    [121]Lin Y., Hwang S. J., Shih W., et al. Development of a novel microorganism immobilization method using anionic polyurethane [J]. Journal of Applied Polymer Science,2006,99(3):738-743.
    [122]Milkovich R. Synthesis of controlled polymer [J]. Division of Polymer Chemistry, 1980,21(1):40-41.
    [123]Rempp P. F., Franta E. Macromonomers:Synthesis, characterization and applications [J]. Advances in Polymer Science,1984,58:1-53.
    [124]Ma C. C. M., Du Y. C., Wang F. Y., et al. Poly(dimethylsilioxane)urethane-copoly(methyl methacrylate) with 2,4-toluene diisocyanate and m-xylene diisocyanate.I.comptibility and impact strength of copolymer[J]. Apply Polymer Science,2002,83(9):1875-1885.
    [125]Ishizu K. Tahara N. Microsphere synthesis by emulsion copolymerization of methyl methacrylate with binary macromonomer blends [J]. Polymer,1996,37(9): 1729-1734.
    [126]R.E.布坎南,N.E.吉本斯等.伯杰细菌鉴定手册(第八版)[M].北京:科学出版社,1984.
    [127]全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施[J].生态学报,2002,22(3):291-299.
    [128]宋呤玲,田永静.硝化细菌固定化细胞的研究[J].苏州城建环保学院学报,1999,12(4):45-48.
    [129]Nilsson K., Birnbaum S., Flygare S., et al. A general method for the immobilization of cells with preserved viability [J]. European Journal of Applied Microbiology and Biotechnology.1983,17(6):319-326.
    [130]Wijffels R.H., Tramper J. Nitrification by immobilized cells [J]. Enzyme and Microbial Technology.1995,17(6):482-492.
    [131]Wijffels R. H., Schukking G. C., Tramper J. Characterization of a denitrifying bacterium immobilized in κ-carrageenan [J]. Applied Microbiology and Biotechnology,1990,34(3):399-403.
    [133]角野立夫等.包括固定化微生物を用いた排水处理[J].用水と废水,1992,34(11):27-32.
    [134]中村裕纪等.固定化微生物法用于排水中氮的除去技术[J].公害と对策,1986,22(2):27-31.
    [135]Vanotti M. B., Hunt P. G. Nitrification treatment of swine wastewater with acclimated nitrifying sludge immobilized in polymer pellets [J]. Transactions of the ASABE,2000,43(2):405-413.
    [136]Sumino T., Nakamura H., Mori N., et al. Immobilization of nitrifying bacteria by polyethylene glycol prepolymer [J]. Journal of fermentation and bioengineering, 1992,73(1):37-42.
    [137]Tanaka K., Nakao M., Mori N., Emori H., et al. Application of immobilized nitrifiers gel to removal of high ammonium nitrogen [J]. Pretreatment of industrial wastewaters,1994,29(9):241-250.
    [138]Tanaka K., Sumino T., Nakamura H., et al. Application of nitrification by cells immobilized in polyethylene glycol [J]. Progress in Biotechnology,1996,11: 622-632.
    [139]Isaka K., Sumino T., Tsuneda S. High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions [J]. Journal of Bioscience and Bioengineering,2007,103(5):486-490.
    [140]Isaka K., Date Y., Sumino T., et al. Ammonium removal performance of anaerobic ammonium-oxidizing bacteria immobilized in polyethylene glycol gel carrier [J]. Applied Microbiology and Biotechnology,2007,76:1457-1465.
    [141]Isaka K, Sumino T, Tsuneda S. Novel nitritation process using heat-shocked nitrifying bacteria entrapped in gel carriers [J]. Process Biochemistry,2008,43: 265-270.
    [142]葛文准,荣曼辉.固定化微生物法处理氨氮废水[J].上海环境科学,1995,14,10-13.
    [143]Yang L. Investigation of nitrification by co-immobilized nitrifying bacteria and zeolite in a batchwise fluidized bed [J]. Water Science & Technology,1997,35(8): 169-175.
    [144]周定,王建龙.固定化细胞在废水处理中的应用及前景[J].环境科学,1993,14(5):51-54,59.
    [145]王磊,兰淑澄.固定化硝化菌去除氨氮的研究[J].环境科学,1997,18(2):18-20,23.
    [146]黄正,范玮,李谷等.固定化硝化细菌去除养殖废水中氨氮的研究[J].华中科技大学学报,2002,31(1):18.
    [147]袁林江.聚乙烯醇(PVA)固定化反硝化菌的脱氮特性[J].中国环境科学,1998,18,189-191
    [148]曹国民,张彤.固定化细胞单级生物脱氮研究[J].中国环境科学,2000,20(3):237-240.
    [149]曹国民,赵庆样.新型固定化细胞膜反应器脱氮研究[J].环境科学学报,2001,21(2):189-193.
    [150]谭佑铭,罗启芳.固定化反硝化细菌去除水中硝酸盐氮的研究[J].环境与健康杂志,2001,18:371-373.
    [151]谭佑铭,罗启芳,王琳.固定化反硝化细菌对富营养化水体脱氮的试验研究 [J].中国卫生工程学,2003,2:65-68
    [152]史春龙.富营养化湖泊底泥中反硝化微生物及其反硝化作用的研究[硕士论文].南京:南京农业大学,2002.
    [153]王剑锋,安立超,张文成.PVA铝盐法固定微生物技术用于焦化废水脱氮的研究[J].工业水处理,2005,25(1):39-42.
    [154]安立超,孙静,薛涛等.混合固定细菌单级生物脱氮技术[J].污染防治技术,2003,16(3):58.
    [155]陈娅洁,姚涛,李志荣等.包埋固定化硝化菌在不同DO下的硝化规律研究[J].环境科学与技术,2006 29(5):26-27,30.
    [156]陈娅洁,张振家,李志荣等.包埋固定硝化菌的亚硝化特性研究和系统调控[J].水资源保护,2006,22(5):56-59.
    [157]葛晓虹,张振家,王毅军.固定化包埋硝化菌去除源水中氨氮研究[J].中国给水排水,2006,22(3):51-54.
    [158]陈庆选,李志荣,张振家.温度对两种固定化硝化菌硝化反应的影响[J].水资源保护,2007,23(1):80-83.
    [159]李志荣,陈庆选,王欣泽等.包埋硝化菌流化床与接触氧化固定床除氨氮效果对比[J].中国给水排水,2007,23(19):52-55.
    [160]钱军民,张兴,吕飞等.酶固定化载体材料研究新进展[J].化工新型材料,2002,30(10):21-24.
    [161]熊军,孙芳,杜洪光.丙酮-二正丁胺滴定法测定聚氨酯中的异氰酸酯基[J].分析试验室,2007,26(8):73-76.
    [162]Lomolder R., Plogmann F., Speier P. IPDI在聚氨酯反应中对选择性温度、催化过程和反应对象的影响[J].上海涂料,2001,39(5):10-14.
    [163]杨康,孟军锋,李洁.脂肪族聚氨酯紫外光固化涂料的研制[J].现代涂料与涂装,2003,(4):1-3,6.
    [164]陈志明,尹辉军.UV固化脂族聚氨酯丙烯酸酯合成动力学研究[J].涂料工业,2004,34(4):15-18.
    [165]许戈文.水性聚氨酯材料化学[M].北京:化学工业出版社.2007.
    [166]刘锋,卓仁禧.水凝胶的制备及应用[J].高分子通报,1995,4:205-216.
    [167]刘文广,姚康德,戚务勤.水凝胶研究的最新进展[J].高分子材料科学与工程,2002,18(5):54-57.
    [168]李武宏,李弘.化学法制备高分子水凝胶的研究进展[J].离子交换与吸附, 2003,19(6):567-573.
    [169]牛洪,谢兴益,何成生等.聚氨酯水凝胶在生物医学中的应用[J].聚氨酯工业,2004,19(5):6-9.
    [170]王万中.试验的设计与分析[M].北京:高等教育出版社.2004:148-150.
    [171]刘斌.包埋固定化凝胶小球的性能评价指标[J].科技交流,2009,2:95-98.
    [172]段世铎,谭逸玲.界面化学[M].北京:高等教育出版社,1990,148-153.
    [173]龙中儿,黄运红,蔡昭铃等.细胞固定化载体比表面的测定[J].生物技术,2003,13(4):21-23.
    [174]东北师范大学.物理化学实验[M].北京:人民教育出版社,1982:159-161.
    [175]Mignot L, Junter GA. Diffusion in immobilized-cell agar layers:influence of bacterial growth on the diffusivity of potassium chloride [J]. Applied Microbiology and Biotechnology,1990,33(2):167-171.
    [176]Mignot L, Junter GA. Diffusion in immobilized-cell agar layers:influence of microbial burden and cell morphology on the diffusion coefficients L-malic acid and glucose [J]. Applied Microbiology and Biotechnology,1990,32(4):418-423.
    [177]张洪涛,黄锦霞.乳液聚合新技术及应用[M].北京:化学工业出版社,2007.
    [178]葛家新,王铭钧,马瑞德.丙烯酸聚氨酯紫外固化凝胶生成动力学的研究[J].上海科技大学学报,1992,5(1):11-18.
    [179]谭帼馨,王迎军,关燕霞等.自由基聚合法制备聚乙二醇双丙烯酸酯水凝胶[J].高分子材料科学与工程,2009,25(2):38-40,44.
    [180]郭新秋,丘坤元,冯新德.过硫酸盐和脂肪二元叔胺体系引发烯类聚合的反应与机理的研究[J].中国科学B,1986,B(11):1121-1128.
    [181]段世锋,朱文,俞麟.一种新型可注射性组织工程水凝胶的双组分引发体系细胞毒性的负协同效应[J].科学通报,2005,50(5):430-433.
    [182]冯新德,丘坤元.胺存在下自由基聚合与活性自由基聚合[J].高分子通报,2005,(4):23-34.
    [183]潘祖仁.高分子化学[M].北京:化学工业出版社,2003,34-43.
    [184]王式安.数理统计方法及应用模型[M].北京:北京科学技术出版社,1992,333-334.
    [185]王建龙.生物固定化技术与水污染控制工程[M].北京:科学出版社.2002,15-28.
    [187]Tanaka K., Nakao M., Mori N., et al. Application of immobilized nitrifiers gel to removal of high ammonium nitrogen [J]. Water Science and Technology,1994, 29(9):241-250.
    [188]Heitkamp M.A., Camel V, Reuter T.J., et al. Biodegradation of p-nitrophenol in an aqueous waste stream by immobilized bacteria [J]. Applied and Environmental Microbiology,1990,56(10):2967-2973.
    [189]Wang J.L., Liu P., Qian Y. Bioadegradation of phthalic acid esters by immobilized microbial cells [J]. Environment International,1997,23(6):775-782.
    [190]许松伟,张杰,杨占平等.载体对包埋酶微环境的影响分析[J].化学进展,2008,20(1):163-170.
    [191]钱易,米祥友.现代废水处理新技术[M].北京:中国科技出版社,1993,280-310.
    [192]Hanaki K., Wantawin C., Ohgaki S. Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor [J]. Water Research,1990,24(3): 289-296.
    [193]周定,侯文华,岳奇贤.固定化过程中试剂对微生物活性影响的研究[J].哈尔滨工业大学学报,1990,22:72-76
    [194]Martin C. K. A., Perlman D. Conversion of L-sorbose to L-sorbosone by immobilized cells of Gluconobacter melanogenus IFO 3293 [J]. Biotechnology and Bioengineering,1976,18(2):217-237.
    [195]王建龙.生物固定化技术与水污染控制工程[M].北京:科学出版社.2002,53-60.
    [196]葛晓红,张振家,王毅军.固定化包埋硝化菌去除源水中氨氮研究[J].中国给水排水,2006,3:51-54.
    [197]王璐,迟莉娜,乔向利等.固定化包埋硝化菌处理微污染源水的研究[J].中国给水排水,2008,3:56-59.
    [198]夏瑜,张振家,王璐.包埋固定化菌深度处理污水厂出水的研究[J].中国给水排水,2008,21:49-51.
    [199]陈娅洁,姚涛,李至荣等.包埋固定化硝化菌在不同DO下的硝化规律研究[J].环境科学与技术,2006,5:26-27.
    [200]张景来,王剑波.环境生物技术与应用[M].北京:化学工业出版社,2002.
    [201]刘秉文,陈俊杰.医学分子生物学[M].北京:中国协和医科大学出版社,2000.
    [202]van Ginkel C.G., Tramper J., Luyben K.Ch.A.M., et al. Characterization of Nitrosomonas europaea immobilized in calcium alginate [J]. Enzyme and Microbial Technology,1983,5(4):297-303.
    [203]Sumino T., Nakamura H., Mori N., et al. Immobilization of nitrifying bacteria by polyethylene glycol prepolymer [J]. Journal of fermentation and bioengineering, 1992,73(1):37-42.
    [204]Tanaka K., Nakao M., Mori N., et al. Application of immobilized nitrifiers gel to removal of high ammonium nitrogen [J]. Water Science and Technology,1994, 29(9):241-250.
    [205]Antonina M., Sakairi C., Yasuda K, et al. Nitrogen removal in seawater using nitrifying and denitrifying bacteria immobilized in porous cellulose carrier [J]. Water Science and Technology,1996,34(7-8):267-274.
    [206]Brindle K., Stephenson T. (1996) Nitrification in a bubbleless oxygen mass transfer membrane bioreactor [J]. Water Science and Technology,1996,34(9): 261-267.
    [207]Sung-Koo Kim S.K., Kong I., Lee B.H., et al. Removal of ammonium-N from a recirculation aquacultural system using an immobilized nitrifier [J]. Aquacultural Engineering,2000,21(3):139-150.
    [208]Seo J.K., Jung I.H., Kim M.R., et al. Nitrification performance of nitrifiers immobilized in PVA (polyvinyl alcohol) for a marine recirculating aquarium system [J]. Aquacultural Engineering,2001,24(3):181-194.
    [209]Rostron W.M., Stuckey D.C., Young A.A. Nitrification of high strength ammonia wastewaters:comparative study of immobilization media [J]. Water Research,2001, 35(5):1169-1178.
    [210]谢冰,徐亚同.硝化细菌的固定化研究[J].上海环境科学,2003,22(1):19-23.
    [211]Weon S.Y., Lee S.I., Koopman B. Effect of temperature and dissolved oxygen on biological nitrification at high ammonia concentrations [J]. Environmental Technology,2004,25 (11):1211-1219.
    [212]Wang R.C., Wen X.H., Qian Y Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor [J]. Process Biochemistry,2005,40(9):2992-3001.
    [213]Isaka K., Sumino T., Tsuneda S. High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions [J]. Journal of Bioscience and Bioengineering,2007,103(5):486-490.
    [214]夏文文.好氧颗粒污泥短程硝化反硝化脱氮研究[D].南京:南京理工大学,2007.
    [215]王云.微生物固定化技术处理高浓度氨氮废水的研究[D].南京:南京理工大学,2008.
    [216]Li Z.R., Zhang Z., Li J., et al. Comparative study of the nitrification characteristics of two different nitrifier immobilization methods [J]. Biodegradation,2009,20(6):859-65.
    [217]Guo J.H., Peng Y.Z., Huang H.J., et al. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater [J]. Journal of Hazardous Materials,2010,179(1-3):471-479.
    [218]沈耀良,王宝贞.废水生物处理新技术——理论与应用[M].北京:中国环境科学出版社,1999.
    [219]尤勇军,安立超,潘伯宁.冷冻固定化硝化细菌去除废水中氨氮的研究[J].化工环保,2004,24(5):316-319.
    [220]朱鸣,张达崴,徐亚同.硝化细菌包埋固定化及其在废水处理中的应用[J].上海化工,2001,16(15):4-6.
    [221]Cao G.M., Zhao Q.X., Sun X.B., et al. Characterization of nitrifying and denitrigying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells [J]. Enzyme and Microbial Technology, 2002,30(8):49-55.
    [222]Koshcheyenko K.A., Turkina M.V., Skryabin G.K. Immobilization of living microbial cells and their application for steroid transformations [J]. Enzyme and Microbial Technology,1983,5(1):14-21.
    [223]王建龙.固定化对微生物生理变化的影响[J].中国生物工程杂志,2003,23(7):62-66.
    [224]Tchobanoglous G., Burton F.L. Wastewater Engineering Treatment, Disposal and Reuse [M]. New York:McGraw-Hill Publishing Company,1993.
    [225]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [226]Strotmann U.J., Windecker G. Kinetics of ammonium removal with suspended and immobilized nitrifying bacteria in different reactor systems [J]. Chemosphere, 1997,35(12):2939-2952.
    [227]Walsh R., Martin E., Darvesh S. A method to describe enzyme-catalyzed reactions by combining steady state and time course enzyme kinetic parameters [J]. Biochimica et Biophysica Acta,2010,1800(1):1-5.
    [228]胡安辉,郑平,胡宝兰.三种硝化污泥性能的比较研究[J].四川大学学报(工程科学版),2009,41(6):89-96.
    [229]叶辉,许建华.饮用水中的氨氮问题[J].中国给水排水,2000,16(11):31-34.
    [230]肖华,周荣丰.微污染水源水处理技术的现状与发展[J].北方环境,2005,30(1):62-66.
    [231]Villaverde S., Garcia-Encina P. A., Fdz-Polanco F. Influence of pH over nitrifying biofilm activity in submerged boilers [J]. Water Research,1997,31(5):1180-1186.
    [232]Antoniou P., Hamilton J., Koopman B., et al. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria [J]. Water Research, 1990,24(1):97-101.
    [233]Jones G.L., Paskins A.R. Influence of high partial pressure of carbon dioxide and/or oxygen on nitrification [J]. Journal of Chemical Technology and Biotechnology,1982,32(1):213-223.
    [234]Painter H.A, Loveless J.E. Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process [J]. Water Research, 1983,17(3):237-248.
    [235]Groeneweg J., Sellner B., Tappe W. Ammonia oxidation in nitrosomonas at NH3 concentrations near km:Effects of pH and temperature [J]. Water Research,1994, 28(12):2561-2566.
    [236]Anthonisen A.C., Loehr R.C., Prakasam T.B.S., et al. Inhibition of nitrification by ammonia and nitrous acid [J]. Journal (Water Pollution Control Federation),1976, 48(5):835-852.
    [237]Stein L.Y., Arp D.J., Hyman M.R. Regulation of the synthesis and activity of ammonia monooxygenase in nitrosomonas europaea by altering pH to affect NH3 availability [J]. Applied and Environmental Microbiology,1997,63(11): 4588-4592.
    [238]Jones R.D., Hood M.A. Effects of temperature, pH salinity and inorganic nitrogen on the rate of ammonium oxidation by nitrifiers isolated from wetland environments. Microbial Ecology,1980,6:339-347.
    [239]Yamagchi T., Moldrup P., Rolston D.E, et al. Nitrification in porous media during rapid unsaturated water flow [J]. Water Research,1996,30(3):531-540.
    [240]Bae W., Baek S., Chung J., et al. Optimal operational factors for nitrite accumulation in batch reactors [J]. Biodegradation,2002,12:359-366.
    [241]Downing A.L., Hopwood A.P. Some observation on the kinetics of nitrifying activated sludge plants [J]. Aquatic Sciences-Research Across Boundaries,1964, 26(2):271-\-280.
    [242]Jayamohan S., Ohgaki S., Hanaki K. Effect of DO on kinetics of nitrification [J]. Water Supply,1988,6(3):141-150.
    [243]Bae W., Rittmann B.E. A structured model of dual-limitation kinetics [J]. Biotechnology and Bioengineering,1996,49:683--689.
    [244]Zhang F.J. Biodenitrification Technology. Beijing:China Environmental Science Press,1992.
    [245]徐亚同.废水中氮磷的处理[M].上海:华东师范大学出版社,1996.
    [246]秦麟源.废水生物处理[M].上海:同济大学出版社,2000.
    [247]余冬冬.包埋固定化微生物技术在城市给水厂地表水源水质生物处理中的应用研究[硕士论文].上海:上海交通大学.2008.
    [248]夏瑜.包埋固定化菌处理含低浓度氨氮原水的研究[硕士论文].上海:上海交通大学.2009.
    [249]王璐.包埋固定化颗粒在微污染原水中的应用研究[硕士论文].上海:上海交通大学.2008.
    [250]邓岩岩.固定化包埋硝化菌去除废水中氨氮的研究[硕士论文].上海:上海交通大学.2010.
    [251]冯雅男.包埋固定化硝化菌去除氨氮的试验研究[硕士论文].沈阳:沈阳建筑大学.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700