用户名: 密码: 验证码:
含PDMDAAC复合混凝剂的强化混凝脱浊效能及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚二甲基二烯丙基氯化铵(PDMDAAC)是一种阳离子高分子聚合物,具有正电荷密度高、相对分子量易于控制、无毒等优点,在水处理领域的应用受到了广泛关注。本文应用具有高相对分子质量,且相对分子质量系列化的PDMDAAC,研究稳定型无机盐/PDMDAAC复合混凝剂的制备工艺,复合混凝剂的强化混凝机制,针对几种我国典型的微污染地表原水的地域和季节特征,研究适用于微污染原水处理的复合混凝剂强化混凝处理工艺。通过系统研究,获得了以下4个方面进展。
     第一、系列稳定型无机盐/PDMDAAC复合混凝剂的制备
     针对高特征黏度的PDMDAAC在与无机混凝剂工业品复合过程中溶解困难、易产生沉淀、不能得到稳定复合混凝剂的难题,研究得到以高且系列化相对分子质量的PDMDAAC和无机混凝剂聚合氯化铝(PAC)、硫酸铝(AS)或聚合硫酸铁(PFS)为原料的3个系列复合混凝剂及其可工业化制备工艺。复合混凝剂具有以下特点:所含无机组分和杂质的量符合无机混凝剂国标,PDMDAAC占无机混凝剂的质量分数(w%)为5%-20%可调,相对分子量以特征黏度值([η])计为0.5~3.5dL/g可调;复合混凝剂常温贮存稳定期1年以上。由此,为复合混凝剂的实际应用与强化混凝机制研究打下基础。
     第二、复合混凝剂及其组分在强化混凝过程中的作用机制
     针对复合混凝剂的强化混凝机制问题,设计了相对独立考核复合混凝剂及其组分的电中和和吸附架桥这两种能力的方法,以混凝烧杯实验快速搅拌后高岭土颗粒的zeta电位和絮凝沉降实验中硅藻土絮团的沉淀速率为考核指标,研究了以PAC/PDMDAAC为代表的复合混凝剂及其组分对悬浮胶体的电中和能力和对凝聚物的吸附架桥能力。结果表明:复合混凝剂对悬浮胶体的电中和能力比PAC明显增强,且随所含PDMDAAC w%增加而提高,但不随PDMDAAC [η]值发生明显变化。使用复合混凝剂可明显提高硅藻土絮团的直径和沉降速率,且随PDMDAAC的[η]值或w%的增加而增加。由此发现,PDMDAAC可增强PAC的电中和和架桥能力,但是,复合混凝剂电中和作用的强化主要来自于PDMDAAC的w%,而架桥作用的强化则主要来自于PDMDAAC特征黏度[η]大小
     针对水质对复合混凝剂强化混凝作用影响规律的问题,设计了有浊度和CODMn两个主要参数的模拟微污染原水体系,以高岭土和腐殖质含量分别调控模拟原水浊度和CODMn,通过混凝烧杯实验系统考核了以PAC/PDMDAAC为代表的复合混凝剂对不同水污染特征和程度的模拟原水的强化混凝脱浊、电中和和架桥效果,关联了水质变化对复合混凝剂强化混凝效能的影响规律。结果表明:随着原水污染程度(浊度、CODMn)增大,复合混凝剂强化混凝作用变得显著,PDMDAAC w%和[η]值的提高,即电中和和架桥能力的提高能更好地体现出复合混凝剂强化混凝效果的优势。
     由此,复合混凝剂强化混凝机制的研究为微污染原水高效强化处理工艺提供了坚实的理论支撑和有效的技术途径。
     第三、典型微污染原水的强化混凝工艺
     针对冬季不同种类宁波内河水,四季长江水,以及冬夏季节太湖水等几种我国典型微污染原水的处理难题,通过现场混凝烧杯试验,研究了复合混凝剂强化混凝工艺对沉淀出水浊度去除的效能,结果如下:
     对于温度10℃以下,浊度仅为1.5NTU左右水质优良的冬季白溪水库水,水中颗粒物和有机污染物少,所带电荷少,无机盐/PDMDAAC复合混凝剂不适宜用于对其的强化混凝处理。在无机混凝齐(?)PAC、AS、和PFS中,水解产物相对密度较大,但比表面积最大的PFS脱浊效果好。
     就冬季微污染的宁波北渡河水和姚江水而言,原水呈微污染特征,水中胶体颗粒物以有机污染物为主。对温度为8-13℃,浊度为6-13NTU的北渡河水,要达到2NTU的水厂沉淀池出水浊度标准,AS、PAC、PFS需6.0~9.0mg/L的投加量,而AS/PDMDAAC、PAC/PDMDAAC和PFS/PDMDAAC复合混凝剂相对于原有无机混凝剂能减少8.33%~41.18%的投加量。对温度为8-13℃,浊度为7~10NTU的姚江水,要达到1.2NTU的水厂沉淀池出水浊度的要求,AS、PAC、PFS需5.0~10.0mg/L的投加量,复合混凝剂相对于原有无机混凝剂能减少7.76%-53.33%的投加量。
     就不同季节长江水而言,原水中颗粒以泥沙质为主,秋季长江水污染相对重,冬季和夏季长江水分别存在低温和高浊度的问题,春季长江水污染相对轻微,处理各有难易。长江沿岸水厂要求沉淀池出水在6NTU,在使用无机混凝剂使沉淀出水浊度达到这一要求的投加量下,AS/PDMDAAC、PAC/PDMDAAC禾(?)PFS/PDMDAAC复合混凝剂处理不同季节长江水时相对于无机混凝剂可使沉淀出水浊度降低幅度为:秋季14.41%-61.72%,冬季6.11%-58.50%,夏季5.31%-37.56%,春季4.19%~39.26%;要使沉淀出水达到6NTU的浊度要求,复合混凝剂相对于无机混凝剂减少投加量幅度为:秋季7.41%~37.04%,冬季2.50%~37.50%,夏季2.03%~27.20%,春季0.88%~27.16%;各系列复合混凝剂强化混凝脱浊效果强弱依次为:PAC/PDMDAAC>AS/PDMDAAC>PFS/PDMDAAC。复合混凝剂对无机混凝剂混凝效果改进幅度与按长江水质季节污染程度相同,依次为:秋季、冬季、夏季、春季。
     就冬、夏季太湖原水而言,不仅受有机物、藻污染,而且季节特征明显。对于冬季低温微污染含藻太湖原水,无机混凝剂混凝脱浊效果优劣依次为:PAC>AS≈PFS,在使用与无机混凝剂使沉淀出水浊度达到2NTU的太湖沿岸水厂沉淀池出水浊度标准的相同投加量下,AS/PDMDAAC、PAC/PDMDAAC(?)目对于与AS、PAC分别可降低沉淀出水浊度33.33%~62.50%、20.33%~56.22%;要使出水浊度达到2NTU的浊度标准,AS/PDMDAAC、PAC/PDMDAAC分别可减少无机混凝剂投加量18.65%-56.15%、9.42%~23.48%。对夏季高藻微污染太湖原水,各无机混凝剂脱浊效果优劣依次为:AS>PAC>PFS,在使用与无机混凝剂使沉淀出水浊度达到2NTU的相同投加量下AS/PDMDAAC、PAC/PDMDAAC(?)目对于与AS、PAC分别可降低沉淀出水浊度39.67%-82.45%、45.33%-84.90%;要使出水浊度达到2NTU的浊度标准,AS/PDMDAAC、PAC/PDMDAAC分别可减少无机混凝剂投加量20.18%-56.52%、28.15%~56.59%。由此,复合混凝剂对受污染较重的夏季太湖原水的强化混凝效果更好。另外,对冬、夏季太湖原水,复合混凝剂能够取代无机混凝剂加预加氯的组合工艺的强化功能,其应用可望大幅减少氯消毒副产物生成,提高供水水质安全性。
     由上述现场混凝烧杯实验证实:复合混凝剂相对于无机混凝剂可大幅提高混凝脱浊效果;达相同水厂要求的沉淀池出水浊度时减少无机混凝剂投加量;复合混凝剂强化混凝效能随原水微污染程度的增大而增大;复合混凝剂中PDMDAAC的w%和[η]值越高,强化混凝效能越强。复合混凝剂的应用不仅可以为现有水厂制水工艺减少混凝剂投加量、提高沉淀出水水质、增大出水产量、提高生产效率,而且可为其未来原水的深度处理制优质水提供技术准备。由此,对典型微污染原水的强化混凝工艺研究为复合混凝剂走向工业化应用奠定了基础。
     第四、强化混凝工艺的生产试用和中试放大
     对复合混凝剂强化混凝工艺在长江沿岸的某水厂进行了生产试用研究。结果表明:对浊度25~40NTU,水温15-20℃的长江水,当日均12万t处理水量下,沉淀出水浊度满足水厂工艺要求时,复合混凝剂相对于现有混凝剂PAC可起到相同投加量下降低沉淀出水浊度并能耐50%水量突增冲击、达到相同沉淀出水浊度时减少约5%-35%混凝剂投加量的效果,现场烧杯实验结果成功在生产线上得到放大。
     在太湖沿岸水厂的日均120t规模中试制水生产线上进行了复合混凝剂强化混凝工艺全程中试放大和稳定运行实验。结果表明:复合混凝剂相对于无机混凝剂在相同沉淀出水浊度下减少投加量、与无机混凝剂相同投加量下降低出水浊度、沉淀出水浊度达深度处理要求时提高沉淀出水水质和水量突增时保证出水水质等强化混凝效能,在中试生产线上得到成功放大,复合混凝剂强化混凝工艺可连续24h以上稳定运行。
     由此,强化混凝工艺的放大研究为复合混凝剂的工业应用奠定了基础。
Poly-dimethyldiallylammonium chloride (PDMDAAC) is a typical cationic polymer. It has attracted widely attention in water treatment areas because of its characters of high positive charge density, easy controlled molecular weight, no toxicity. In this dissertation, the preparation processes for stable inorganic salt/PDMDAAC composite coagulants using PDMDAAC with high molecule weight and series molecule weight as coagulation-aid agents were developed, then the enhanced coagulation mechanisms using composite coagulants were studied preliminary. Based on the regional and seasonal feature of several kinds of typical tiny-polluted raw water, the enhanced coagulation processes using composite coagulants were investigated. The obtained main research progresses are showed as following.
     The preparation of steady composite coagulants
     To overcome the difficulty in preparing homogenous solution of inorganic coagulants with organic coagulant-aid agent PDMDAAC with high molecule weight, the composite coagulant preparation processes which was suited to industry production were developed. Three series of composite coagulants were prepared through using inorganic coagulants including Poly-Aluminum Chloride(PAC), Aluminum Sulfate(AS) and Poly-Ferric Sulfate(PFS), and organic coagulant-aid agent PDMDAAC with high molecule weight and series of molecule weight (represented as intrinsic viscosity) as raw materials. The composite coagulants have features as following:the content of inorganic component and contained impurities were corresponding the requirements of Chinese national standards of inorganic coagulants, the mass ratio of PDMDAAC to the inorganic coagulants in composite coagulants was5%-20%. and the intrinsic viscosity of PDMDAAC was0.5~3.5dL/g. The storage term of composite coagulants was more than1year under room temperature. Based on above, the foundations for the application of composite coagulants and the studies of their enhanced coagulation mechanisms were established.
     Enhanced coagulation mechanism of composite coagulants
     About the enhanced coagulation mechanisms of composite coagulants, the Jar test for kaolin suspension and the settlement test for diatomite suspension under specifically condition were designed to study the charge neutralization and bridge ability of both composite coagulants and their components. The test using PAC/PDMDAAC composite coagulants was as a representative case. The results showed that in the Jar test, the charge neutralization ability of composite coagulants was higher than that of PAC, and increased with the higher content of PDMDAAC, but not with the change of intrinsic viscosity of PDMDAAC obviously. In the settlement test, the settling velocity and size of flocs of using composite coagulants increased remarkably with the increase of intrinsic viscosity or mass ratio of PDMDAAC, compared with that of using PAC. Therefore, it was found that the charge neutralization ability of composite coagulants was depended on the content of PDMDAAC, and the bridge ability of composite coagulants was depended on the intrinsic viscosity of PDMDAAC.
     About studies on the influences of raw water quality on enhanced coagulation effect of composite coagulants, the tiny-polluted stimulated raw water samples with different turbidity and CODMn values were formulated by adding kaolin and humus in tap water for jar tests. The results showed that under the selected coagulation conditions and ranges of simulated raw water quality, the enhanced coagulation effect of composite coagulants increased with the increase of the pollution level characterized by the value of turbidity and CODMn.Especially, the increasing of mass ratio or intrinsic viscosity of PDMDAAC in composite coagulants, which could increase ability of charge neutralization or bridge of composite coagulants, could largely enhance the coagulation effect of composite coagulants for polluted stimulated raw water.
     The above studies have offered a reliable theory support and an effective technology for enhanced treatment of tiny-polluted raw water.
     Enhanced coagulation processes using composite coagulants for several typical tiny-polluted waters
     For several typical tiny-polluted raw water like net river water in Ningbo, Yangtze River water near Nanjing city in4seasons, and Taihu water near Wuxi city in winter and summer seasons, the jar tests in situ were conducted to study the performance of the enhanced coagulation process using composite coagulants under the similar coagulation condition with conventional coagulation processes used in local potable water plants. The results are showed as following.
     For low-turbidity and temperature Baixi reservoir raw water with turbidity of1.5NTU and temperature below10℃, the inorganic coagulants/PDMDAAC composite coagulants did not improve the turbidity removal compared with inorganic coagulants, so it could not be used for the enhanced coagulation for Baixi reservoir raw water. PFS single could get satisfying turbidity removal effect, so it could be used as a coagulant for the Baixi reservoir raw water.
     For net river water in Ningbo including Beidu River raw water and Yaojiang River raw water with characteristics of tiny-pollution, the suspended particles in the raw water adsorbed a certain content of organic compounds. For the Beidu River raw water in winter with temperature of8~13℃and turbidity of6~13NTU, the dose of6.0~9.0mg/L of AS, PAC and PFS were required respectively, when residual turbidity of2NTU should be achieved. But, the corresponding composite coagulants of them could decrease the inorganic coagulants dose by8%~40%respectively. For low-turbidity Yaojiang raw water with temperature8~13℃and turbidity of7~10NTU, the dose of5.0~10.0mg/L for AS, PAC or PFS were necessary for treatment to reach residual turbidity of1~1.2NTU. But, the corresponding composite coagulants of them could decrease the inorganic coagulants dose by7.76%~53.33%respectively
     For Yangtze River water in four seasons, the suspended particles in water were mainly composed of fine sediments. The tiny-polluted level of raw water in autumn was usually higher than that in spring, the water temperature in winter was low and the water turbidity in summer was high, which all caused difficulties in treatment. Using the similar doses for inorganic coagulants to reach the residual turbidity of6NTU, which was required by the potable water plants located in Yangtze River basin, the decrease of residual turbidity using composite coagulants compared with using inorganic coagulants were as following:14.41%~61.72%in autumn,6.11%~58.50%in winter,5.31%~37.56%in summer and4.19%~39.26%in spring. When the same residual turbidity of6NTU was achieved, the decrease of dose using composite coagulants compared with using inorganic coagulants were as following:7.41%~37.04%in autumn,2.50%~37.50%in winter,2.03%~27.20%in summer and0.88%-27.16%in spring. The turbidity removal ability of composite coagulants were in the order:PAC/PDMDAAC>AS/PDMDAAC>PFS/PDMDAAC The improvement effect of composite coagulants on inorganic coagulants for Yangtze River raw water in four seasons was as following:autumn>winter>summer>spring.
     For Taihu Lake raw water in winter and summer which was polluted mainly by organic compounds and algae, the season characteristic of raw water quality was obvious. For the Taihu Lake raw water in winter with characteristics of low temperature, containing algae and tiny organic pollution, the turbidity removal effects of inorganic coagulants were in the order:PAC>AS≈PFS. Using the similar doses for inorganic coagulants to reach the residual turbidity of2NTU, which was required by the potable water plants located in Taihu lake basin, using AS/PDMDAAC、PAC/PDMDAAC composite coagulants could decrease residual turbidity by33.33%~62.50%,20.33%~56.22%, compared to using AS, PAC, respectively. When residual turbidity of2NTU was achieved, using AS/PDMDAAC、PAC/PDMDAAC could decrease doses by18.65%~56.15%.9.42%~23.48%, compared to using AS, PAC, respectively. For the summer Taihu Lake raw water with the characteristics of high algae and organic pollutant content, the turbidity removal effects of inorganic coagulants were in the order:AS>PAC>PFS. Using the similar doses for inorganic coagulants to reach the residual turbidity of2NTU, using AS/PDMDAAC. PAC/PDMDAAC composite coagulants could decrease turbidity of supernatant by39.67%~82.45%.45.33%~84.90%, compared to using AS、PAC, respectively. When same residual turbidity of2NTU should be achieved, using AS/PDMDAAC. PAC/PDMDAAC could decrease dose by20.18%~56.52%,28.15%~56.59%, compared to using AS, PAC, respectively. Therefore, the enhanced coagulation effect of composite coagulants on Taihu lake water in summer was higher than that in winter. Especially, the enhanced coagulation processes using composite coagulants were able to replace the function of pre-chlorination combined with inorganic coagulants in turbidity and algae removal, resulting in the improvement of the potable water security by decreasing the formation of disinfection by-products.
     The above Jar tests results in situ have demonstrated that for tiny-polluted raw water, the composite coagulants could improve the turbidity removal effect and decrease inorganic coagulants dose greatly under the conventional coagulation process condition. The effect of enhanced coagulation of composite coagulants was increased with the increase of intrinsic viscosity or mass ratio of PDMDAAC, and the higher pollution level of raw water, the higher effect was. Meanwhile, composite coagulants could not only obviously decrease the coagulants dose, improve the water quality of supernatant and increase the volume of water production, but also could offer an effective technology for advanced treatment of raw water in future. Therefore, based on above Jar tests results in situ, the foundations of industrializing application of composite coagulants and their enhanced coagulation processes were established.
     Scaled-up tests of enhanced coagulation process using composite coagulants
     The scaled-up tests in potable water plant were conducted to evaluate the effect of enhanced coagulation process using composite coagulants in treatment for Yangtze River raw water. The results showed that for the Yangtze River raw water with temperature of15~20℃and turbidity of25~40NTU in spring, the composite coagulants functioned well in the ability of decreasing residual turbidity and inorganic coagulants doses when used in the potable water plant with the production capability of120000t/d. Using the similar doses for conventional coagulation process using inorganic coagulants to reach the required residual turbidity, the enhanced coagulation process using composite coagulants could reach much lower residual turbidity. When required residual turbidity was reached, the enhanced coagulation process could decrease dose by5%-35%compared with conventional coagulation process. At the same time, the enhanced coagulation process could be able to endure strange impact of50%water amount increase than conventional coagulation process did. The enhanced coagulation processes using composite coagulant obtained from jar tests were scaled up successfully in the potable water plant.
     The scaled-up tests in pilot-plant with production capability of4t/h were conducted to evaluate the magnification effect and running stability of enhanced coagulation processes for treatment of tiny-polluted Taihu raw water. For tiny-polluted and algae-contained Taihu Lake raw water, the enhanced coagulation effects of composite coagulants, including the enhancement of turbidity and algae removal, the decreasing of inorganic coagulants dose and the advanced treatment process in the future, were scaled up successfully in the pilot plant. Meanwhile, these enhanced coagulation processes could be steady operated.
     The above scaled-up test results have demonstrated that the composite coagulants and their enhanced coagulation processes could be directly applied in industry.
引文
[1]2010年中国环境状况公报[R].北京.国家环境保护总局.2011.
    [2]潘碌亭.中国微污染水源水处理技术研究现状与进展[J].工业水处理,2006,26(6) : 6-10.
    [3]范可旭,张晶.长江流域地表水水质演变趋势分析[J].人民长江,2008,39(17)82-84.
    [4]Guo L. Doing battle with the green monster of Taihu Lake[J]. Science,2007, 317(5842):1166.
    [5]Liu H L, Cheng F Q, Wang D S. Interaction of ozone and organic matter in coagulation with inorganic polymer flocculant-PACl:Role of organic components[J]. Desalination, 2009,249(2):596-601.
    [6]Sharp E L, Parsons S A, Jefferson B. Seasonal variations in natural organic matter and its impact on coagulation in water treatment[J]. Science of The Total Environment,2006, 363(1-3):183-194.
    [7]Henderson R K, Parsons S A, Jefferson B. Successful removal of algae through the control of Zeta potential J]. Separation Science and Technology,2008,43(7):1653-1666.
    [8]Richardson S D, Michael J P, Elizabeth D W, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water:A review and roadmap for research[J]. Mutation Research,2007,636(1-3):178-242.
    [9]Zhang Y L, Qin B Q, Liu M L. Temporal-spatial variations of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003[J]. Journal of Plankton Research 2007,29(8):707-719.
    [10]Sohn M. Sustainable Water Supplies:Reducing the organic matter content of potable water[C]. AIP Conference Proceedings Chemistry Department, Florida Institute of Technology, Melbourne, FL, USA.2009,1157:138-146.
    [11]Chowdhury S, Champagne P, McLellan P J. Uncertainty characterization approaches for risk assessment of DBPs in drinking water:a review[J]. Journal of Environmental Management,2009,90(5):1680-1691.
    [12]岳舜琳.生物氧化在给水处理中的应用[J].中国给水排水,1996,12(4):17-20.
    [13]陆少鸣,黄念禹,杨立,等.叠式曝气生物滤池预处理高氨氮原水[J].中国给水排水,2009,25(20):49-54.
    [14]邹浩春,焦洁,王正林,等BIOSMEDI生物滤池预处理微污染原水的研究[J].中国给水排水,2009,25(21):41-43.
    [15]于海波,王启山,王薇,等.预氯化与强化混凝相结合用于给水处理的试验[J].净水技术,2009,28(1):35-37,50.
    [16]Gopal K, Tripathy S S, Bersillon J L, et al. Chlorination byproducts, their toxicodynamics and removal from drinking water[J]. Journal of Hazardous Materials,2007, 140(1-2):1-6.
    [17]Farone W A, Azad M, Palmer T. Production of recalcitrant by-products from chemical oxidation[C]. Remediation of Chlorinated and Recalcitrant Compounds--2006, Proceedings of the International Conference on Remediation of Chlorinated and Recalcitrant Compounds,5th, CA, United States, May 2006:22-25.
    [18]刘卫华,季民,杨洁,等.高藻水预氧化除藻效能与水质安全性分析[J].中国公共卫生,2005,21(11):1323-1325.
    [19]Gopal K, Tripathy S S, Bersillon J L, et al. Chlorination byproducts, their toxicodynamics and removal from drinking water[J]. Journal of Hazardous Materials,2007, 140(1-2):1-6.
    [20]袁德玉,杨开,张荣勇,等.高锰酸钾预处理微污染地表水研究[J].中国给水排水,2005,21(2):59-60.
    [21]Chen J J, Yeh H H, Tseng I C. Potassium permanganate as an alternative pre-oxidant for enhancing algal coagulation-pilot and bench scale studies[J]. Environmental Technology,2008,29(7):721-729.
    [22]Chen J J, Yeh H H, Tseng I C. Effect of ozone and permanganate on algae coagulation removal-Pilot and bench scale tests[J]. Chemosphere,2009,74(6):840-846.
    [23]任刚,李明玉.化学预氧化对饮用水源水藻类的控制效果[J].暨南大学学报(自然科学版),2008,29(5):478-482.
    [24]李英,李军.粉状活性炭处理微污染低温低浊水的研究[J].黑龙江水专学报,2003,30(2):21-22.
    [25]张文中,李正兆.粉末活性炭强化处理京杭运河常州段微污染原水[J].中国给水排水,2009,25(3):77-84.
    [26]徐亚东.改性凹凸棒土对常规净水工艺的强化效应与机理研究[J].治淮,2010,(2):30-31.
    [27]王占生,刘文君.我国给水深度处理应用状况与发展趋势[J].中国给水排水,2005,21(9):29-33.
    [28]Haarhoff J, Olivier J. GAC performance at three Southern African water treatment plants[J]. Water S A,2002, (Spec. Ed.):37-42.
    [29]Nataliya K, Margrethe W N, Sergey S, et al. Role of the physico-chemical factors in the purification process [J]. Water Research,2002,36(20):5132-5140.
    [30]Gerrity D, Gamage S, Holady J C, et al. Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection[J]. Water Research,2011,45 (5):2155-2165.
    [31]孟建斌,杨立.臭氧-生物活性炭工艺处理微污染源水的试验研究[J].工业用水与废水,2008,39(4):23-26.
    [32]乔铁军,安娜,尤作亮.梅林水厂臭氧/生物活性炭工艺的运行效果[J].中国给水排水,2006,22(13):10-13,17.
    [33]Porcelli N, Judd S. Chemical cleaning of potable water membranes:A review[J]. Separation and Purification Technology,2010,71(2):137-143.
    [34]Reungoat J, Macova M., Escher B I, et al. Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration[J]. Water Research,2010,44 (2):625-637.
    [35]Mohamed S, Gary A, Joseph R, et al. Membranes for the control of natural organic matter from surface waters [J]. Water research,2000,34(13):3355-3370.
    [36]罗涛,朱正鸿.超滤工艺净化微污染原水的试验研究[J].环境科学与技术,2009,32(12): 71-74.
    [37]Liikanena R, Kuivilab J Y, Tenhunenc J, et al. Cost and environmental impact of nano filtration in treating chemically pre-treated surface water[J]. Desalination,2006,201 (1-3):58-70.
    [38]Porcelli N, Judd S. Chemical cleaning of potable water membranes:The cost benefit of optimization[J]. Water Research 2010,44 (5):1389-1398.
    [39]Edzwald J K, Tobiason J E. Enhanced Coagulation: US Requirement and A Broader View[J]. Water Science & Techno logy,1999,40(9):63-70.
    [40]刘海龙,王东升,程芳琴,等.微污染原水预臭氧化-强化混凝处理及其安全性[J].环境科学学报,2008,28(7):1320-1325.
    [41]陈艳,伏小勇,于晓华,等.混凝防止膜污染的研究[J].给水排水,2010,(1):113-116.
    [42]Yan M Q, Wang D S, Ni J R, et al. Natural organic matter (NOM) removal in a typical North-China water plant by enhanced coagulation:Targets and techniques [J]. Separation and Purification Technology,2009,68(3):320-327.
    [43]王东升,刘海龙,晏明全,等.强化混凝与优化混凝:必要性、研究进展和发展方向[J].环境科学学报,2006,26(4):544-551.
    [44]Kan C, Huang C, Pan J R. Time requirement for rapid-mixing in coagulation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,203(1-3):1-9.
    [45]Mhaisalkar V A, Paramasivam R, Bhole A G, Optimizing physical parameters of rapid mix for coagulation-flocculation of turbid water[J]. Water Research,1991,25(1):43-52.
    [46]Ebie K, Azuma Y. Reducing turbidity and coagulant residue in treated water through optimization of rapid mix conditions[J]. Water Science & Technology:Water Supply, 2002,2(5-6):103-110.
    [47]于水利,孙凤鸣,李玉华,等.最优混凝搅拌条件的研究[J].哈尔滨建筑大学学报,1999,32(6):49-52.
    [48]Runkana V, Somasundaran P, Kapur P C. A population balance model for flocculation of colloidal suspensions by polymer bridging[J]. Chemical Engineering Science,2006, 61(1):182-191.
    [49]Lu S C. Ding Y Q, Guo J Y. Kinetics of fine particle aggregation in turbulence [J]. Advances in Colloid and Interface Science,1998,78(3):197-235.
    [50]朱云,肖锦,周勤.旋流一体式强化混凝设备设计优化及低浊度微污染原水处理研究[J].工业水处理,2008,28(1):67-71.
    [51]朱云,肖锦,周勤.一体化水力强化混凝设备及其微污染原水处理工况最优化研究[J].环境工程学报,2007,1(5):45-50.
    [52]Krasner S W, Amy G. Jar test evaluations of enhanced coagulation[J]. J.AWWA, 1995,87 (10):93-107.
    [53]董秉直,曹达文,范瑾初.最佳混凝投加量和pH去除水中有机物的研究[J].工业水处理,2002,22(6):29-31.
    [54]冯利,汤鸿霄.铝盐最佳混凝形态及最佳pH范围研究[J].环境化学,1998,17(2): 163-169.
    [55]Yan M Q, Wang D S, Yu J F, et al. Enhanced coagulation with polyaluminum chlorides:Role of pH/Alkalinity and speciation[J]. Chemosphere,2008,71 (9):1665-1673.
    [56]Qin J J, Oo M H, Kekre K A, et al. Impact of coagulation pH on enhanced removal of natural organic matter in treatment of reservoir water[J]. Separation and Purification Technology,2006,49 (3):295-298.
    [57]Kimberly B A, Morteza A, Eva I, et al. Conventional and optimized coagulation for NOM removal[J]. J.AWWA,2000,92(10):44-58.
    [58]Childress A E, Vrijenhoek E M, Elimelech M, et al.. Particulate and THM precursor removal with ferric chloride[J]. Journal of Environmental Engineering (Reston, Virginia), 1999,125(11):1054-1061.
    [59]Gil G, Patrick W, Matthew M. Enhanced coagulation: Its effect on NOM removal and chemical costs[J]. J.AWWA,1995,87(1):78-89.
    [60]高宝玉,岳钦艳,黄红杉.水处理无机混凝剂的研究进展[J].油气田环境保护1998,8(2):39-41.
    [61]李为兵,金雪中,张红春,等.处理低温低浊水的混凝剂优选[J].中国给水排水,2006,22(13):49-52.
    [62]李润生,沈开义,李凯.我国水处理混凝剂的发展新趋势[J].中国给水排水,2010,26(8):145-146.
    [63]Xu Y, Sun W, Wang D S, et al. Coagulation of micro-polluted Pearl River water with IPF-PACls[J]. Journal of Environmental Sciences,2004,16(4):585-588.
    [64]李润生,张莹,唐经立,等.高性能聚氯化铝的研究[J].中国给水排水,2010,26(23) : 73-75.
    [65]Zouboulis A I, Moussas P A, Vasilakou F. Polyferric sulphate:Preparation, characterisation and application in coagulation experiments[J]. Journal of Hazardous Materials,2008,155(3):459-468.
    [66]李凯,李润生,曾明.工业化聚硫酸铝的研究[J].无机盐工业,2009,41(11):40-42.
    [67]李凯,张红春,李润生.聚硫酸铝实现工业化生产的研究[J].中国给水排水,2009,25(20):106-108.
    [68]王红宇,赵华章,栾兆坤,等.聚合氯化铁对浊度和腐殖酸的絮凝特性研究[J].环境科学,2004,25(3):65-68.
    [69]汪琳,李明玉,方刚,等.聚合硫酸铝的制备及其混凝性能[J].暨南大学学报(自然科学版),2009,30(3):277-281.
    [70]邹有红,李文兵,周蓬蓬,等.聚合氯化铝铁去除微污染水体中藻类的研究[J]环境工程学报,2009,3(1):108-112.
    [71]Jiang J Q, Graham N J D. Development of Optimal Poly-Alumino-Iron Sulphate Coagulant[J]. Journal of Environmental Engineering,2003,129(8):699-708.
    [72]Jiang J Q, Graham N J D. Preliminary evaluation of performance of new pre-polymerized inorganic coagulants for lowland surface water treatment[J]. Water Science and Technology,1998,37(2):121-128.
    [73]高宝玉,岳钦艳,张玲,等.新型复合无机高分子混凝剂-聚硅氯化铝(PASC)的净水效果研究[J].环境科学学报,2002,22(6):706-710.
    [74]Gao B Y, Yue Q Y, Wang B J. Coagulation efficiency and residual aluminum content of polyaluminum silicate chloride in water treatment [J]. Acta Hydrochimica et Hydrobiologica,2004,32(2):125-130.
    [75]Gao B Y, Yue Q Y, Wang Y. Coagulation performance of polyaluminum silicate chloride (PASiC) for water and wastewater treatment[J]. Separation and Purification Technology,2007,56 (2):225-230.
    [76]佟志芳,邹燕飞,李英杰.新型复合聚硅酸硫氯化铝铁絮凝剂的制备[J].工业水处理,2009,29(6):51-54.
    [77]王燕,高宝玉,岳钦艳,等.聚合铝基复合絮凝剂的特性[J].环境科学,2004,25S:70-73.
    [78]林正欢,李绵贵.天然高分子絮凝剂的研究和应用进展[J].水处理技术,2003,29(6):315-317.
    [79]刘之杰,余刚,刘满红.壳聚糖絮凝剂对聚合氯化铝的助凝作用[J].环境化学,2004,23(3):306-309.
    [80]王丽坤,王启山,孙晓明,等.壳聚糖助凝对三氯化铁絮体形态和强度的影响[J].中国环境科学,2009,29(7):718-721.
    [81]Bolto B, Gregory J. Organic polyelectrolytes in water treatment[J]. Water Research, 2007,41 (11):2301-2324.
    [82]Yan M Q, Wang D S, You S J, et al. Enhanced coagulation in a typical North-China water treatment plant [J]. Water Research,2006,40:3621-3627.
    [83]晏明全,王东升,曲久辉,等.典型北方高碱度微污染水体强化混凝的示范研究[J].环境科学学报,2006,26(6):887-89.
    [84]刘海龙,王东升,汤鸿霄.典型南方源水的有机高分子助凝研究[J].中国给水排水,2005,21(7):1-4.
    [85]Wandrey C, Hemandez-Barajas J, Hunkeler D. Diallyldimethylammonium Chloride and its Polymers[J]. Adv. Polym. Sci.,1999,145:123-182.
    [86]Butler G B, I ngley F L. Preparati on and polymerization of unsaturated quaternary ammonium compound II[J]. J Am Chem Soc,1951,72:895-896.
    [87]Butler G B, Angelo R J. Preparation and polymerization of unsaturated quaternary ammonium compound VI[J]. J. Am. Chem. Soc,1957,79:3128-3131.
    [88]Lancaster J E. The structure of poly(diallyldimethylammonium chloride) by 13C-NMR srectroscopy [J]. J Ploym Sci:Polym Lett D,1976,14 (9):549-554.
    [89]贾旭,张跃军PDMDAAC合成工艺研究进展[J].精细化工,2008,25(10)1008-1015,1024.
    [90]贾旭,张跃军,余沛芝.聚二甲基二烯丙基氯化铵的控制聚合[J].石油化工,2008,37(1):49-54.
    [91]张跃军,贾旭.聚二烷基二烯丙基卤化铵的制备方法[P].CN:101 081 884,2007-12-05.
    [92]贾旭.高相对分子质量PDMDAAC制备工艺的初步研究[D].硕士学位论文,南京:南京理工大学,2005.
    [93]Tanaka T, Pirbazari M. Effects of cationic polyelectrolytes on the removal of suspended particulates during direct filtration[J]. J. AWWA,1986,78(12):57-65.
    [94]Haarhoff J, Cleasby J L. Direct filtration of chlorella with cationic polymer[J]. J. Environ. Eng.,1989,115(2):348-366.
    [95]Bolto B A, Dixon D R, Eldridge R J, et al. The use of cationic polymers as primary coagulants in water treatment[C]. Chemical Water and Wastewater Treatment V[A], Proceedings of the 8th Gothenburg Symposium, Prague, Czech Republic,1998:173-185.
    [96]Lindqvist, Jokela J, Tuhkanan T. Enhancement of Coagulation by Using Polyelectrolytes as Coagulant or Flocculant Aids[C]. Chemical Water and Wastewater Treatment Ⅷ [A], Proceedings of the 11th Gothenburg Symposium, Orlando, Florida, USA,2004,161-169.
    [97]张跃军,赵晓蕾,李潇潇,等.低温低浊宁波白溪水库水处理中混凝剂的优化[J].中国给水排水,2007,23(13):52-56.
    [98]田秉晖,葛小鹏,潘纲PDADMAC强化絮凝去除腐殖质类天然有机污染物的研究[J].环境科学,2007,28(1):92-97.
    [99]Massaki H, Hedeo T, Minoru O, et al. Treatment of algae-containing water with polyaluminum chloride and poly-dimethyldiallyl ammonium chloride[P]. JP 06,182,356 A,1994-6-25.
    [100]Lee S H, Shin M C, Choi S J, et al. Improvement of flocculation efficiency of water treatment by using polymer flocculants[J]. Environ. Technol.,1998,19(4):431-436.
    [101]Chang E E, Chiang P C, Tang W Y, et al. Effects of polyelectrolytes on reduction of model compounds via coagulation[J]. Chemosphere,2005,58(8):1141-1150.
    [102]王桂荣,张杰.聚二甲基二烯丙基氯化铵在给水除藻中的作用[J].工业用水与废水,2005,36(5):27-29.
    [103]王桂荣,张杰.强化混凝处理低温低浊水的研究[J].工业用水与废水,2004,35(5):20-22.
    [104]姚萱.HCA-1阳离子净水剂处理巢湖高藻水[J].水处理技术,2002,28(2):120-121.
    [105]胡发弟,向波.聚二甲基二烯丙基氯化铵在三峡工程水厂的应用[J].城镇供水,2001,(1):120-14.
    [106]Huang S J W. Reducing turbidity in turbid waters[P]. US 4,450,092,1984-5-22.
    [107]Hassick D E, Miknevich J P, et al. Flocculation of Suspended Solid From Aqueous Solutions [P]. US 4800039 A,1989-1-24.
    [108]Hassick D E, Miknevich J P, et al. Flocculation of Suspended Solid From Aqueous Solutions[P], US 4746457 A,1988-5-24.
    [109]Hassick D E, Miknevich J P, et al. Flocculation of suspended solids from aqueous solutions [P]. US 5035808 A,1991-7-30.
    [110]Hasse R A. Clarification of water and wastewater [P]. US 6,120,690,2000-9-19.
    [111]高宝玉,王燕,岳钦艳.聚合铝-二甲基二烯丙基氯化铵均聚物无机有机复合絮凝剂及其制备工艺[P],CN 1,594,128A,2005-3-16.
    [112]高宝玉,王燕,岳钦艳.聚合铁-二甲基二烯丙基氯化铵均聚物无机有机复合絮凝剂及其制备方法[P],CN 200510043802.1,2005-6-9.
    [113]高宝玉,王燕,岳钦艳,等.聚合铝基复合絮凝剂的电荷特性及絮凝作用[J].环境科学,2003,24(1):103-106.
    [114]岳钦艳,赵华章,高宝玉.二甲基二烯丙基氯化铵聚合物的除浊性能研究[J].工业水处理,2002,22(3):26-28,31.
    [115]高宝玉,魏锦程,王燕,等.聚合铁复合絮凝剂处理地表水的性能研究[J].中国给水排水,2006,22(7):57-61.
    [116]Wang Y, Gao B Y, Yue Q Y. The characterization and flocculation efficiency of composite flocculant iron salts-polydimethyldiallylammonium chloride[J]. Chem. Eng. Jour.,2008,142(2):175-181.
    [117]Wei J C, Gao B Y, Yue Q Y, et al. Performance and mechanism of polyferric-quaternary ammonium salt composite flocculants in treating high organic matter and high alkalinity surface water[J]. J. Hazardous Materials,2009,165 (1-3):789-795.
    [118]Wei J C, Gao B Y, Yue Q Y, et al. Comparison of coagulation behavior and floc structure characteristic of different polyferric-cationic polymer dual-coagulants in humic acid solution[J]. Water Res.,2009,43(3):724-732.
    [119]龚竹清,刘立华,郑雅杰.聚二甲基二烯丙基氯化铵与聚合硫酸铁复合絮凝剂的制备及应用研究[J].环境污染治理技术与设备,2004,10(5):35-39.
    [120]刘立华,龚竹清.聚二甲基二烯丙基氯化铵与聚合硫酸铁复合絮凝剂的制备及絮凝性能研究[J].湖南科技大学学报(自然科学版),2005,20(4):90-94.
    [121]Lindqvist N, Korhonen, S, Jokela J. Comparison of iron and aluminum based coagulants and polymeric flocculant aids to enhance NOM removal[A]. Chemical Water and Wastewater Treatment VII, Proceedings of the Gothenburg Symposium,10th, Gothenburg, Sweden,2002,133-141.
    [122]Yang W Y, Qian J W, Shen Z Q. A novel flocculant of Al(OH)3-Polyerylamide ionic hybrid[J]. J. Colloid Interface Sci.,2004,273(2):400-405.
    [123]汤鸿霄.无机高分子絮凝剂的基础研究[J].环境化学,1990,9(3):1-12.
    [124]高宝玉,王燕,岳钦艳,等.PAC与PDMDAAC复合絮凝剂中铝的形态分布[J].中国环境科学,2002(5):472-476.
    [125]Gao B Y, Wang Y, Yue Q Y. The Chemical Species Distribution of Aluminum in Composite Flocculants Prepared from Polyaluminum Chloride (PAC) and Polydimethyl-diallylammonium Chloride (PDMDAAC)[J]. Acta hydrochim Hydrobiol, 2005,33(4):365-371.
    [126]周维芝,王燕,高宝玉.聚合氯化铁(PFC)与有机高分子聚合物(JY-O1)复合絮凝剂中铁的形态分布[J].山东大学学报(理学版),2005,40(5):102-106.
    [127]高宝玉,王燕,岳钦艳等.聚合铝基复合絮凝剂的电荷特性及絮凝作用[J].环境科学,2003,24(1):103-106.
    [128]王燕,高宝玉,岳钦艳,等.聚合铝基复合絮凝剂的特性[J].环境科学,2004,25S: 70-73.
    [129]Gao B Y, Wang Y, Yue Q Y, et al. The size and coagulation behavior of a novel composite inorganic-organic coagulant[J]. Sep. Purification Technol.,2008,62 (3): 544-550.
    [130]刘立华,龚竹青,黄坚,等.聚二甲基二烯丙基氯化铵在聚合硫酸铁中的粘度行为[J].应用化学,2004,21(10):1029-1033.
    [131]刘立华,李菁.有机高分子与聚合硫酸铁的复配特性[J].化学研究,2006,17(1):56-60.
    [132]Runkana V, Somasundaran P, Kapur P C. Mathematical modeling of polymer-induced flocculation by charge neutralization [J]. J. Colloid Interface Sci, 2004,270(2):347-358.
    [133]Runkana V, Somasundaran P, Kapur P C. A population balance model for flocculation of colloidal suspensions by polymer bridging [J]. Chem. Eng. Sci.,2006,61 (1):182-191.
    [134]邹琳,陈卫,汪德爟.水处理絮凝动力学模型研究与应用[J].河海大学学报(自然科学版),2006,34(5):496-501.
    [135]金鹏康,井敏娜,王晓昌.引入分形维数的混凝动力学方程数值求解[J].环境科学,2008,29(8):2149-2153.
    [136]王东升,汤鸿霄.分形理论在混凝研究中的应用与展望[J].工业水处理,2001,21(7) : 16-19,44.
    [137]武若冰,王东升,汤鸿霄.絮体分形结构形成机制探讨[J].环境科学学报,2007,27(10):1599-1603.
    [138]Jarvis P, Jefferson B, Parson S A. Floc structural characteristics using conventional coagulation for a high doc, low alkalinity surface water source[J]. Water Res.,2006,40(14): 2727-2737.
    [139]刘立华,龚竹青PDMDAAC-PFS复合絮凝剂处理硅藻土悬浊液的絮体分形特征[J]湖南科技大学学报(自然科学版),2007,22(1):107-110.
    [140]田秉晖,栾兆坤,潘纲.阳离子聚电解质聚二甲基二烯丙基氯化铵的絮凝机理初探[J].环境科学学报,2007,27(11):1874-1880.
    [141]余剑锋,王东升,叶长青等.利用小角度激光光散射研究阳离子有机高分子絮凝剂的絮体粒径和絮体结构[J].环境科学学报,2007,27(5):770-774.
    [142]印东凯.PDM应用于不同季节长江水研究[D].硕士学位论文,南京理工大学,2004.
    [143]何曼君,张红东,陈维孝,等.高分子物理(上册)(第三版)[M].上海:复旦大学出版社,2007.
    [144]王红宇,孟军,栾兆坤,等.碱化法制备聚合氯化铁絮凝剂的稳定性和形态分布研究[J].浙江大学学报(理学版),2003,30(4):449-452,480.
    [145]何子涵,杨立新,王文波.Alb聚铝离子稳定性的温度效应及硫酸盐沉淀形态[J].应用化学,2006,23(11):1209-1213.
    [146]付献彩,沈文霞,姚天扬.物理化学[M].高等教育出版社,2000:742-747.
    [147]Moussas P A, Zouboulis AI. A new inorganic- organic composite coagulant, consisting of polyferric sulphate (PFS) and polyacryl amide(PAA) [J]. Water Research, 2009,43(3):3511-3524.
    [148]GB 15892-2009,生活饮用水用聚氯化铝[S].
    [149]HG 2007-2224,水处理剂硫酸铝[S].
    [150]GB 14591-2006,净水剂聚合硫酸铁[S].
    [151]石宝友,汤鸿霄.聚合氯化铝与有机高分子复合絮凝剂的形态分布研究——Al-Ferron和27A1-NMR相结合[J].环境科学学报,2000,20(4):391-396.
    [152]贾旭PDMDAAC合成工艺、聚合反应机理及结构与性质的关系[D].博士学位论文,南京理工大学,2004.
    [153]汤鸿霄.环境科学中的化学问题环境水质学中的几个化学前沿问题[J].化学进展,2000,12(4):415-422.
    [154]汤鸿霄.环境水质学的进展-颗粒物与表面络合(上)[J].环境科学进展,1993,1(1):25-41.
    [155]汤鸿霄.环境水质学的进展-颗粒物与表面络合(下)[J].环境科学进展,1993,1(2): 1-13.
    [156]MacCarthy P. The principles of humic substances [J]. Soil Science,2001,166(11): 738-751.
    [157]Tombacz E. Colloidal properties of humic acids and spontaneous changes of their colloidal state under variable solution conditions[J]. Soil Science,1999,164(11):814-824.
    [158]常青.水处理絮凝学[M].第1版.北京:化学工业出版社,2003.
    [159]Birdi K S. Surface and Colloid Chemistry:Principles and Applications [M].1st edition. CRC Press,2010.
    [160]汤鸿霄.无机高分子复合絮凝剂的研制趋向[J].中国给水排水,1999,15(2):1-4.
    [161]Besra L, Sengup ta D K, Roy S K. Influence of polymer adsorption and conformation on flocculation and dewatering of kaolin suspension[J]. Separation and Purification Technology,2004,37(3):231-246.
    [162]Kalyan Das, Sasanka Raha, Somasundaran P. Effect of polyacrylic acid molecular weight on the floc stability during prolonged settling. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,315(1-3):1-8.
    [163]金鹏康,王晓昌.腐殖酸-铝盐共聚络合反应特性[J].中国给水排水,2004,24(1):40-43.
    [164]Morris J, Knocke W. Temperature effects on the use of metal-ion coagulants for water treatment[J]. J. AWWA,1984,76(3):74-79.
    [165]长江水利委员会.2000-2009年长江流域及西南诸河水资源公报[R]. 2001-2009.
    [166]张珍,杨世伦,李鹏.三峡水库一、二期蓄水对下游悬沙通量影响的计算[J].地理学报,2010,65(5):623-631.
    [167]Miiller B, Berg M, Yao Z P, et al. How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam[J]. Science of the total environment.2008, 402(2-3):232-247.
    [168]程济生.长江输沙量减少对城镇取水的影响[J].城市公用事业,2004,18(2):17-18.
    [169]Wu B, Zhao D Y, Zhang Y, et al. Multivariate statistical study of organic pollutants in Nanjing reach of Yangtze River [J]. Journal of Hazardous Materials,2009,169 (1-3): 1093-1098.
    [170]张万忠,李绵贵PES-HPB双组分絮凝剂用于船舶用长江原水的净化处理[J].湖北农学院学报,2002,22(5):415-418.
    [171]董秉直,范瑾初,孙有勋,等.长江水源水质特点以及处理工艺[J].给水排水,1998,24(5):6-10.
    [172]周华,陈卫,孙敏,等.长江水源水厂低温低浊期排泥水直接回用试验研究[J].水处理技术,2010,36(9):93-96.
    [173]张延风.净水厂混凝试验及投加量数学模型的研究[D].硕士学位论文,长安大学,2007.
    [174]Hu C Z, Liu H J, Qu J H, et al. Coagulation behavior of aluminum salts in eutrophic water: significance of A113 species and pH control[J]. Environ. Sci. Technol.,2006,40: 325-331
    [175]Yang W Y, Qian J W, Shen Z Q. A novel flocculant of Al(OH)3-Polyerylamide ionic hybrid[J]. J. Colloid Interface Sci.,2004,273(2):400-405.
    [176]Pernitsky D J, Edzwald J K. Selection of alum and polyaluminum coagulants principles and applications [J]. Journal of water supply:Research and Technology-AQUA,2006,55(2):121-141.
    [177]靳晓莉,高俊峰,赵广举.太湖流域近20年社会经济发展对水环境影响及发展趋势[J].长江流域资源与环境,2006,15(3):298-302.
    [178]钱益春,何平.太湖流域水环境变迁分析[J].人民长江,2009,40(5):40-42.
    [179]杨铭威,石亚东,孙志.太湖蓝藻爆发引发无锡供水危机的思考[J].水利经济,2009,27(3):36-38.
    [180]刘成,高乃云,卢宁,等.太湖蓝藻暴发应急处理方案研究[J].给水排水.2007, 33 (8): 7-10.
    [181]Gopal K, Tripathy S S, Bersillon J L, et al. Chlorination byproducts, their toxicodynamics and removal from drinking water[J]. Journal of Hazardous Materials,2007, 140(1-2):1-6.
    [182]Liu X, Lu X H, Chen Y W. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: An 11-year investigation[J]. Harmful Algae, 2011,10(3):337-343.
    [183]太湖流域管理局水文水资源监察局.太湖流域及东南诸河省界水体水资源质量状况通报(第163期)[R].太湖流域水资源保护局.2011.
    [184]Tan X, Kong F X, Zeng Q F, et al. Seasonal variation of Microcystis in Lake Taihu and its relationships with environmental factors[J]. Journal of Environmental Sciences, 2009,21(7):892-899.
    [185]Petrusevski B, Breeman A N, Alaerts G J. Effects of permanganate pre-treatment and coagulation with dual coagulants on algae removal in direct filtration[J]. Journal of Water Supply:Research and Techno logy-AQUA,1996,45 (5):316-326.
    [186]王立宁,方晶云,马军,等.化学预氧化对藻类细胞结构的影响及其强化混凝除藻[J].东南大学学报(自然科学版),2005,35(S1):182-185.
    [187]何文杰,李玉仙,黄廷林.不同混凝剂处理高藻水效果对比研究[J].净水技术,2007.,26(2):17-20.
    [188]沈巍.季节性高藻原水水厂的工艺设计[J].供水技术,2009,3(3):41-44.
    [189]赵志培,赵薇,李杰.化学氧化法的杀菌灭藻效果及对产生卤代烃前体的控制[J].内蒙古石油化工,2008,(19):5-7.
    [190]Henderson R K, Baker A, Parsons S A, et al. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms[J]. Water Research,2008,42 (13):3435-3445.
    [191]TakaaraT, Sano D, Konno H, et al. Cellular proteins of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride[J]. Water Research,2007,41 (8): 1653-1658.
    [192]Sukenik A, Teltch B. Wachs A W, et al. Effect of oxidants on micro algal flocculation [J]. Wat Res,1997,21(5):533-539.
    [193]崔福义,范振强,马华,等.混凝沉淀工艺对不同优势藻类的去除特性研究[J].给水排水,2009,35(16):9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700