用户名: 密码: 验证码:
强化混凝-溶气气浮(DAF)工艺去除水中腐殖酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对给水水源中备受关注的腐殖酸为对象,采用烧杯实验法比较了混凝—气浮工艺与混凝—沉淀工艺的处理性能,并通过UV_(254nm),总有机碳(TOC),高锰酸钾指数(COD_(Mn)),浊度等指标的测定结果,以无机低分子絮凝剂(硫酸铝,氯化铁)作为参考,着重研究了无机高分子絮凝剂(PAC,PFC)在强化混凝—气浮工艺中的投药量、原水pH值、离子强度、快速混合搅拌强度和时间、絮凝搅拌强度和时间、回流比以及共聚方式的效果等方面的内容,确定了上述条件的最佳范围,即强化混凝—气浮工艺相应的工艺条件。
     结果表明,混凝—气浮工艺对腐殖酸去除率稳定的投药量范围比混凝—沉淀工艺窄,但前者对未过滤水样中腐殖酸的去除效果比后者好,对溶解性腐殖酸的去除,较低投药量时前者比后者好,较高投药量时趋势正好相反。强化混凝—沉淀工艺处理腐殖酸的最佳pH范围是4.5—8.2,强化混凝—气浮工艺比混凝—沉淀工艺大约推后了0.5—1.2pH单位。
     对于强化混凝—气浮工艺而言,最佳混凝化学条件和水力学条件为:(1) 最佳投药量范围:PAC是1.7—2.4mmol/L(以Al~(3+)计);PFC是0.19-0.56mmol/L、0.75mmol/L(以Fe~(3+)计)。(2) 最佳pH范围:PAC是6—8.1;PFC是5—6.5、8—10。(3) PAC和PFC的最佳离子强度小于0.001mol/L。(4) 最佳水力学条件:快速混合的搅拌强度250—750s~(-1)、快速混合的搅拌时间15—120s、絮凝搅拌强度20—200s~(-1)、絮凝搅拌时间3—10min(PAC);快速混合搅拌强度250—500s~(-1)、快速混合搅拌时间15—120s、絮凝搅拌强度20—100s~(-1)、絮凝搅拌时间3—8min(PFC)。(5) PAC的最佳回流比范围10%—15%,PFC的最佳回流比是10%。(6) 共聚溶气气浮工艺比传统的溶气气浮工艺对有机物或无机物的去除有一定的提高,但并不明显。
The removal efficiency of humic acid in water by coagulation-sedimentation process (CS) and coagulation-dissolved air flotation (CDAF) process was assessed by the static jar test. A series of contrast experiments were carried out to study the chemical and hydraulic effect factors of inorganic polymer flocculant(PAC , PFC) on removing humic acid(HA) in water by enhanced coagulation-dissolved air flotation process with measuring the following water quality index of UV,TOC,CODMn and turbidity. The optimum chemical and hydraulic effect factors scopes were determined.
    The results showed that the broader dosage scope of stable removal ratio was found in coagulation-sedimentation (CS) process than coagulation-DAF (CDAF) which removed more HA (in un-filtrated water). As to removal of dissolved HA,CDAF process had a better performance than CS one at some low doses,but at doses more than these the trend was opposite.Furthermore,CDAF process retarded 0.5-1.2 pH unit from the initial point of the optimum pH scope 4.5-8.2 in CS.
    The optimum operational conditions of CDAF were:(1)The optimum dose scopes of PAC are 1.7-2.4mmol/L and that of PFC are 0.19-0.56mmol/L, 0.75mmol/L.(2)The optimum pH scopes of PAC are 6 - 8.1 and that of PFC are 8 -10, 5- 6.5.(3)The optimum ion intensity of PAC and PFC is less than 0.001mol/L.(3)The optimum hydraulic conditions :the optimum coagulation Mixing intensity scopes are 250-750s-1 (as PAC), 250-500s-1 (as PFC),the optimum coagulation Mixing time scopes arel5 - 120s(as PAC and PFC),the optimum flocculation Mixing intensity scopes are 20-200s-1 (as PAC) 20
    - 100s-1(as PFC),the optimum flocculation Mixing time scopes are 3 - 10min(as PAC), 3
    - 8min (as PFC) .(5)The optimum recycle ratio scopes of PAC are 10% -15%, The optimum recycle ratio scope of PFC is 10%.(6)The removal efficiency of humic acid was increased indistinctively by co-flocculation.
引文
[1] 1994年国际给水排水学术会议技术委员会编.给水与废水处理国际会议议论文集.北京:中国建筑工业出版社.1994:138—141
    [2] 曹春秋.强化混凝法去除饮用水中天然有机物质评价.给水排水.1998,24(6):65-70
    [3] 常青.水处理絮凝学.化学工业出版社.2003
    [4] 陈翼孙,胡斌.环境工程治理丛书:气浮净水技术.中国环境科学出版社.1992
    [5] 陈翼孙,胡斌.气浮净水技术的研究与应用.上海科学技术出版社.1985
    [6] 崔丹.高分子絮凝剂的发展概况.广州化工.2002,30(4):38-40
    [7] 丁恒如等.石灰处理去除天然水中有机物质的研究.净水技术,1993,45(3):21
    [8] 高宝玉等.聚合氯化铁絮凝剂的性能研究.环境化学.1994,13(5):415-420
    [9] 高翠琴等.半导体悬浮体系催化分解水中的腐殖酸.化学世界.1993,8:390-393
    [10] 龚云峰,丁桓如,吴春华.给水处理工程中去除有机物的方法.工业水处理.2000,20(8):1-3
    [11] 郭瑾珑等.逆流共聚气浮水处理工艺研究.中国给水排水.2002.Vol.18.No.7
    [12] 郭丽燕,马伟.赋磁活性炭去除饮用水中的有机物.中国给水排水.2001,17(2):71-72
    [13] 贺晓红,杨至华,祝万鹏.许昌淀粉厂废水处理站设计.给水排水.1997,22(3):33-35
    [14] 黄廷林,靳凯,熊向陨.生物流化床法去除水中DBP先质的实验研究.环境工程.1998,16(4):28-32
    [15] 黄廷林,熊向陨.生物流床去除水中腐殖酸的动力模型.中国环境科学.1998,18(6):531-534
    [16] 黄廷林,熊向陨.微污染源水中DBPs先质的去除方法.中国给水排水.1999,15(11):27-28
    [17] 黄廷林.强化絮凝法去除水中DBP先质研究.环境科学学报.1999,19(4):399-404
    [18] 蒋展鹏.环境工程学.高等教育出版社.1992
    [19] 李凡修,陈武,赵卫东.饮用水絮凝剂的应用现状与发展趋势.环境技术.2002,4:37—40
    [20] 李海英,石宝龙,张建波.蜡染印花的蜡回收与废水处理.山东纺织科技.1999,4:13-15
    [21] 李灵芝,张淑琪,王占生.纳滤膜在饮用水中的应用.给水排水.1997,23(5):16-18
    [22] 李树猷.生活饮用水处理技术发展动态.环境与健康杂志.2000,17(4):253-254
    [23] 李晓东,蔡国庆,马军.水中有机成分及其对饮用水水质的影响.给水排水,1999,25(5):12-14
    [24] 刘立华,郑雅杰,龚竹青.聚合铁盐絮凝剂的研究进展与发展趋势.现代化工.2002,22(10):18-21
    [25] 栾兆坤,汤鸿霄,于忱非.混凝过程中与聚合铝水解形态的动力学转化及其稳定性.环境科学学报.1997,17(3):321-326
    [26] 栾兆坤.无机高分子絮凝剂聚合氯化铝的基础与应用研究.[博士论文]中国科学院生态环境研究中心,1997
    [27] 栾兆坤等.适于城镇污水处理的强化絮凝工艺.中国给水排水.2002,18(1):30—33
    [28] 罗晓鸿,张淑琪,王占生.Ames实验致突变物在净水工艺中的去除研究.给水排水.1998,24(5):30
    [29] 马军,李圭白.高锰酸钾去除与控制饮用水中有机物的效能与机理,哈尔滨建筑工程学院博士论文.1990
    [30] 曲久辉.水中天然有机大分子对混凝影响的电动特征.环境科学学报,1997;17(2):160-166
    [31] 舒燕.水处理中混凝剂的发展趋势.包钢科技.1999,2:34-38
    [32] 汤鸿霄,栾兆坤.聚合氯化铝和传统混凝剂的混凝—絮凝行为差异,环境化学,1997,16(6):497-505
    [33] 汤鸿霄.无机高分子絮凝剂的几点新认识.工业水处理.1997,17(4):1-5
    [34] 汪晓军,肖锦,崔蕴霞.强化絮凝净化法脱除水中的残留铝.工业水处理.1998,18(4):6
    [35] 王春霞,彭安,不同来源腐殖酸的光解及过氧化氢对其影响.环境科学学报.1996,16(3):270-275
    [36] 王琳,王宝贞等.活性炭与超滤组合工艺深度处理饮用水.中国给水排水.2002,18(2):1-4
    
    
    [37] 王乃忠.絮凝效果控制指标的选择.中国给水排水.1989,5(6):38-40
    [38] 王维哲.大骨节病的有机物病因及其作用机理.中国环境科学,1989,9(3):191-195
    [39] 王维哲等.水中有机物致大骨节病的实验研究.环境科学.1989,10(1):16-20
    [40] 王晓昌,王锦.混凝-超滤去除腐殖酸的试验研究.中国给水排水,2002,18(3):18-22
    [41] 王毅力等.絮凝.DAF(dissolved air flotation)工艺的化学因素宇颗粒特征研究.环境科学学报.2002,22(5):545-550
    [42] 王毅力,汤鸿霄.气浮法净水技术原理及应用.(汤鸿霄,钱易,文湘华等著).水体颗粒物和难降解有机物的特性与控制技术原理—上卷.水体颗粒物,北京:中国环境科学出版社.2000:103-104
    [43] 王毅力,汤鸿霄.气浮净水技术研究及进展.环境科学进展.1999,7(6):94-103
    [44] 魏宏斌,徐迪民,徐建伟.水溶液中腐殖酸的二氧化钛膜光催化氧化研究.环境科学学报.1998,18(2):161-166
    [45] 吴彬,邓皓,肖遥.工业水处理絮凝剂的发展状况与前景.石油与天然气化工.1999,28(1):71-73
    [46] 吴三毛.用混凝法除去水中腐殖酸的研究.工业水处理,1987,7(3):37-40
    [47] 武道吉等.混合动力学机理及控制指标研究.中国给排水.2000,16(1):54-56
    [48] 武道吉等.水处理絮凝工艺的优化设计和运行,中国给水排水,2002,18(1):61-64
    [49] 肖锦,杞永亮.我国絮凝剂发展的现状与对策.现代化工.1997,12:6-9
    [50] 熊向陨,黄廷林.水中腐殖酸的O_3氧化与其生物可降解性实验研究.环境工程.1998,16(6):18-23
    [51] 许保玖,安鼎年.给水处理理论与设计.中国建筑工业出版社.1992.11
    [52] 严煦世.范瑾初.给水工程(国家级“九五”重点教材).中国建筑工业出版社.1999,12.第四版
    [53] 严煦世等.水和废水技术研究.北京:中国建筑工业出版社,1992:84-113
    [54] 张德清,李传生.曲阜三孔啤酒厂废水处理站设计.工业水处理.1998,18(5):32-33
    [55] 张绍园,姜兆春,王菊思.饮用水消毒副产物控制技术研究现状与发展.水处理技术.1998,24(1)7-13
    [56] 张育新,康勇,絮凝剂的研究现状及发展趋势.化工进展.2002,21(11):799—804
    [57] 周明浩,罗启芳,王家玲.饮用致突变前体物水生腐殖酸研究进展.重庆环境科学.1996,18(3):49-52
    [58] 周勤,肖锦,朱云.硫酸铝去除给水中腐殖酸机理研究.工业水处理.2000,20(5):18-20
    [59] 周勤,肖锦.给水原水处理中的混凝技术.工业水处理.1999,19(2):3-5
    [60] 朱易,宋书巧.饮用水中有机污染物的深度处理技术.广西师院学报(自然科学版).2000,17(2):58-61
    [61] Amy E. Childress, et al. Particulate and THM precursors removal with ferric chloride. Journal of environmental engineering, 1999, (November): 1054-1061
    [62] B.M. Coffey ,et al. Evaluation of micro-filtration for metropolitan's small domestic water systems, Proc AWWA Membrane Technology Conference, Baltimore, Md. 1993
    [63] C.S. PHilip, C. Singer. Control of Disinfection By-pruducts in Drinking Water. Journal Environmental Engineering. 1994,120(4-6):727-744
    [64] Christian Volk, et al. Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Wat. Res. 2000, 34(12):3247-3257
    [65] CIWEM. (1997). Dissolved Air Flotation. International Conf. London, ISBN No 1870752309
    [66] E.T. Gjessing ,Physical and Chemical Characteristics of Aquatic Humus, Ann Arbor Sci., Ann Arbor, 1976
    [67] Eric M. Vrijenhoek, et al. Removing particles and THM precursors by enhanced coagulation. JAWWA, 1998, 90(4): 139-150
    [68] Eun Kyoung Kim and Harold W. Walker. Effect of cationic polymer additives on the adsorption of
    
    humic acid onto iron particles. Colloids and surfaces A: Physicochemical and Engineering aspects, 2001, 194: 123-131
    [69] Gil Crozes, et al. Enhanced coagulation: its effect on NOM removal and chemical costs. JAWWA, 1995, 87(1):78-89
    [70] Gil Grozes, et al. Enhanced Coagulation: Its Effect on NOM Removal and Chemical Costs. Jour AWWA. 1995,87(2):78
    [71] J. A .Kitchenger, et al. Water Research, 1981:15:585
    [72] J.E. Gregory. et al. Optimising natural organic matter removal from low turbidity water by controlled pH adjustment of aluminium coagulation. Wat.Res. 1997,31 (12):2949-2958
    [73] J.K. Edzwald. Coagulation in Drinking Water Treatment :Particles, Organics ,and Coagulants. In IAWQ/IWSA Joint Specialized Conference, Control of Organic Material by Coagulation and Floc Separation Processes,Geneva, Seitzerland, 1-3 September 1992:1-15
    [74] J.K. Edzwald. et al. Enhanced coagulation: US requirement and a broader view. Wat. Sci. Tech., 1999, 40(9):63-70
    [75] J.K. Edzwald.Principles and applications of dissolved air flotation. Water Sci. Tech., 1995, 31 (3/4): 1-24
    [76] J.R. Meier, et al. Identification of mutagenic compounds formed during chlorination of humic acid. Mut. Res.1985.157:111-122
    [77] J.Y. Bottero, et al. Studies of hydrolyzed aluminum chloride solutions.I.Nature of aluminum species and composition of aqueous solutions,J.Phy.Chem., 1980,84:2933-2939
    [78] Jinming Duan, et al. Coagulation of humic acid by aluminium sulphate in saline water conditions. Desalination, 2002, 150:1-14
    [79] Joseph G. Jacangelo, et al. Selected processes for removing NOM: an overview. JAWWA, 1995, 87 (1):64-77
    [80] LuF-J, et al. Effect of synthetic humic acid-multimatal complex on human plasma prothrombin time. Bull. Emviron .Comtam.Toxicol. 1994,53(4):577-582
    [81] Nieminski Eva C. Sanwat Chaudhuri. Terry Lamoreaux. The Occurrence of DBP_s in Utah Drinking Waters.Jour.AWWA. 1993,85(9):98
    [82] R. Gergory and T.F Zabel." Sedimentation and Flotation," in Water Quality and Treatment. A Handbook of Community Water Supplies,AWWA.4th ed. McGraw Hill, New York, USA.1990:367-453
    [83] R.A. Hyde, et .al .JAWWA, 1977,69(7):369
    [84] R.W. Smith and J.D. Hem. Effect of aging on aluminum hydroxide complexes in dilute solutions, U.S. Geol. Sury. Water-Supply Pap.,1827-D,1970
    [85] S.J.de Luca, N.I. Cadosand, A.C. Chao .Quality Improvement of Biossolids By Ferrate(Ⅵ)Oxidation of Offensive Odour Compounds,Wat.Sci.Tech. 1996,33(3): 119
    [86] Sang-Kyu Kam and John Gregory. The interaction of humic substances with cationic polyelectrolytes. War. Res., 2001, 35(15):3557-3566
    [87] T. Schofield. Dissolved air flotation in drinking water production. Water Science and Technology. 2001, 43(8): 9-18
    [88] T.F Zabel. "Flotation in water treatment" in Innovations in Flotation Technology (P. Marros and K.A. Matis ed.)NATO AIS Series, Kluwer Academic Publishers, The Dordrecht Netherlands, 1992
    [89] Wen Po Cheng. Comparison of hydrolysis/coagulation behavior of polymeric and monomeric coagulants in humic acid solution. Chemosphere, 2002, 47:963-969

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700