用户名: 密码: 验证码:
石油污染土壤的碳材料增强微波热修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对石油污染土壤,采用碳材料增强的微波热修复方法,利用微波加热技术的加热速度快、内外同时加热以及选择性加热等特点,将石油污染物从土壤中快速去除,同时将其绝大部分回收;通过对不同类型石油污染土壤的修复研究,考察该修复方法的实用可行性。研究工作主要包括以下几个方面:
     1.以颗粒活性碳增强的微波热修复方法处理柴油污染土壤。首先研究了土壤的微波加热行为,并向土壤中加入颗粒活性碳考察其对土壤微波加热的增强效果;在此基础上,以污染浓度为10.20 wt%的柴油污染土壤为研究对象,采用惰性气体(N_2)保护、微波辐照加热、气态产物冷凝回收等工艺过程对污染土壤进行修复,考察了土壤修复效果的影响因素以及修复过程的污染油回收和颗粒活性碳重复使用情况等。
     研究结果显示,颗粒活性碳加入土壤中能够有效提高土壤的微波加热能力,可以用于增强微波热修复污染土壤;当柴油污染土壤中加入5.0 wt%颗粒活性碳时,800 W微波辐照10 min即可将土壤加热到500℃左右,土壤中的污染油可去除99%以上;同时约有96.2%的污染油可以得到回收,回收油与初始污染油比较,化学组成及物理性质没有明显改变;颗粒活性碳可以重复用于增强污染土壤的微波热修复,修复过程中颗粒活性碳约有1-3%的质量损失,但其增强土壤微波加热的能力没有明显改变;修复过程对土壤组成破坏较小。
     2.分别以颗粒活性碳和碳纤维增强的微波热修复方法处理污染浓度约为8 wt%的实际原油污染土壤。在原油污染土壤的颗粒活性碳增强微波热修复中,向污染土壤中加入一定量的颗粒活性碳,采用惰性气体保护、微波辐照加热、适当真空减压、气态产物冷凝回收等工艺过程对污染土壤进行修复,对修复过程相关参数及污染油的回收等进行了考察。结果显示,当颗粒活性碳添加剂量为10.0 wt%时,该方法在15 min内可将土壤中污染油去除99%以上;修复过程在快速去除土壤中污染油的同时也可以将其有效回收,回收率约为91%。
     在原油污染土壤的碳纤维增强微波热修复中,将不同吸波材料加入到土壤中,考察其对土壤微波加热的增强效果;并根据此实验结果,以碳纤维增强的微波热修复方法处理原油污染土壤,考察了土壤中污染油的去除、回收以及碳纤维的重复使用等情况。研究表明,碳纤维可以通过电导损耗和界面损耗联合的方式显著提高土壤体系的有效介电损耗因子,从而更加有效地提高土壤在微波场中的加热升温能力;在一定条件下,当碳纤维添加剂量为0.10 wt%时对原油污染土壤进行微波热修复,即可将土壤加热到700℃左右、污染油去除99%以上,污染油回收率可达94%以上,且污染油在去除及回收过程中同样没有发生明显的化学组成变化。
     3.探讨了污染土壤的碳材料增强微波热修复过程中污染物的去除机制。以C_(10)、C_(16)、C_(28)为模拟污染物,分别对其污染土壤进行碳材料增强的微波热修复,通过分析修复过程中土壤的加热升温、污染物的去除、回收以及修复产物等情况,探讨了修复过程中不同类型污染物在不同浓度下的去除机制。实验结果表明:污染物的去除机制与污染物的类型及其在土壤中的浓度有关;挥发性、半挥发性污染物,无论浓度高低,污染物主要以微波诱导蒸汽蒸馏、蒸发及热解吸等方式从土壤中去除,基本不发生热解;难挥发或不挥发性污染物,浓度较低时(如1 wt%左右),主要以热解吸、高温热解的方式从土壤中去除,热解比例大,浓度较高(如10 wt%左右)时,主要以蒸发和热解吸的方式从土壤中去除,热解比例小。
     4.比较了碳材料增强的微波热修复与微波诱导蒸汽蒸馏及传统电加热修复方法对原油污染土壤的修复效果。分别以微波诱导蒸汽蒸馏及传统电加热技术对同一原油土壤样品进行热修复,并将其修复效果与碳材料增强的微波热修复效果进行比较。结果显示,与微波诱导蒸汽蒸馏相比,碳材料增强的微波热修复方法适用范围更广;与传统的电加热修复相比,碳材料增强的微波热修复方法对污染油的破坏较小,更有利于在修复污染土壤的同时将污染油回收。
Microwave thermal remediation enhanced by carbon materials(MTREC) was explored for decontamination of petroleum-contaminated soil.The advantage of rapid,selective and simultaneous heating of microwave heating technology was taken to clear up the soil rapidly and to recover the oil contaminant efficiently.The process was applied to the remediation of soils contaminated with different petroleum contaminants,such as diesel oil and crude oil,to investigate the possibility of its practical application.
     The following works were carried out in this dissertation:
     1.Microwave thermal remediation of the soil contaminated with 10.20 wt%diesel oil enhanced by granular activated carbon(GAC) was explored.The study on the microwave heaitng of soil and its enhancement of GAC were performmed,and the results revealed that soil could be heated to an appropriate temperature in microwave field when GAC was added. Some process parameters and oil recovery of the remediation were investigated.It was shown that,using the technics of protecting by inert gas(N_2),heating with microwave irradiation and condensation of gas products,when 5.0 wt%GAC mixed in,the soil could be heat to about 500℃within 10 min and that the contaminated soil could be remediated by this microwave thermal process such that more than 99%contaminant removal could be achieved.The analysis performed on the recovered oil indicated that up to 96.2%of diesel oil contaminant could be recovered during the remediation without changing obviously in chemical composition and physical properties,compared with the original oil.In addition,the experimental results showed that GAC could be reused in enhancing the microwave heating of soil with a little mass loss and that the remediation process did not destruct the soil significantly.
     2.Thermal remediation of the practical soil contaminated with about 8 wt%crude oil using microwave heating enhanced by GAC and carbon fiber(CF) was explored respectively. The results of GAC-enhanced microwave thermal remediation revealed that,using the technics of protecting by inert gas,heating with microwave irradiation,proper decompressing with vacuum and condensation of gas products,when 10.0 wt%GAC was mixed into the soil, more than 99%of the oil contaminant could be removed within 15 min,at the same time, about 91%crude oil in soil could be recovered.
     The experiment results of CF-enhanced microwave thermal remediation indicated that, when mixed into soil,CF,for its fiber shape and electric condutivity,could strongly increase the effective dielectric loss factor of the soil sample as terms of electrical conduction loss and Maxwell-Wagner loss,thereby,strongly enhancing microwave heating of soil more efficiently than other accepted microwave absorbers.When 0.10 wt%CF mixed in,the soil could be heated to approximately 700℃within 4 min using 800 W of microwave irradiation. And correspondingly,more than 99%removal efficiency of the oil contaminant could be obtained under some conditions.Investigation on the recovered oil of the process showed that the crude oil in the contaminated soil could also be removed and recovered without significant changes in chemical composition during the remediation and that the recovery efficiency could be more than 94%.
     3.Removal mechanisms of the contaminants during microwave thermal remediation of the contaminated soil enhanced by carbon materials were explored with different model contamiants of volatile,semi-volatile and non-volatile compounds.The experiment results showed that the removal mechanisms of the contaminant were relevant with its volatility and concentration in soil.For volatile and semi-volatile contaminant,no matter whether the concentration was low or high,the main removal mechanisms were the physical removal such as microwave-induced steam distillation(MISD),evaporation and thermal desoption without pyrolysis happenning.For non-volatile contaminant,when the concentration was low(e.g. about 1 wt%),pyrolysis played an important role in contaminant removal with some thermal desorption and a little MISD;when the concentration was reletivly high(e.g.about 10 wt%), however,evaporation and thermal desorption played an important role in contaminant removal with a little MISD and pyrolysis.
     4.MTREC was compared with other thermal remediation process on the decontamination of crude oil-contaminated soil.Comparing with MISD,MTREC could be used in a wider range.It could remove non-volatile contaminant in soil besides volatile and semi-volatile contaminant.Comparing with conventional thermal remediation of electric heating,MTREC could remediate the contaminated soil successfully with less energy comsuption and minor destruction of the contaminant,which may be good for the recovery of the oil contaminant.
引文
[1]周启星,宋玉芳.污染土壤修复原理与方法.北京:科学出版社,2004.
    [2]任磊,黄延林.土壤的石油污染.农业环境保护,2000,19(6):360-363.
    [3]Mansurov Z A,Ongarbaev E K,Tuleutaev,B K.Contamination of soil by crude oil and drilling muds:Use of wastes by production of road construction materials.Chem.Tech.Fuels Oil,2001,37(6):441-443.
    [4]Kaoa C M,Prosser J.Evaluation of natural attenuation rate at a gasoline spill site.J.Hazard.Mater.,2001,82(3):275-289.
    [5]Zhou Q X,Sun F H,Liu R.Joint chemical flushing of soils contaminated with petroleum hydrocarbons.Environ.Int.,2005,31:835-839.
    [6]李茹.热熔法处理石油污染土壤的研究.辽宁化工,2004,33(7):365-366.
    [7]陈国玲,李培军.石油污染土壤的植物与微生物修复技术.环境工程学报,2007,1(6):91-96.
    [8]Nicolotti G,Egli S.Soil contamination by crude oil:impact on the mycorrhizosphere and on the revegetation potential of forest tress.Environ.Pollut.,1998,99:37-43.
    [9]陆秀君,郭书海,孙清等.石油污染土壤的修复技术研究现状与展望.沈阳农业大学学报,2003,34(1):63-67.
    [10]何梁菊,魏德洲,张维庆等.土壤微生物处理石油污染的研究.环境科学进展,1999,7(3):110-115.
    [11]Khan F I,Husain T,Hejazi R.An overview and analysis of site remediation technologies.J.Environ.Manage.,2004,71:95-122.
    [12]崔卫华.汽油污染土壤的SVE修复方法研究:(博士学位论文).北京:中国地质大学,2007.
    [13]Bucalà V,Saito H,Howard J Bet al.Thermal treatment of fuel oil contaminated soils under rapid heating conditions.Environ.Sci.Technol.,1994,28:1801-1807.
    [14]Kawala Z,Atamanczuk T.Microwave-enhanced thermal decontamination of soil.Environ.Sci.Technol.,1998,32:2602-2607.
    [15]Gilot P,Howard J B,Peters W A.Evaporation phenomena during thermal decontamination of soils.Environ.Sci.Technol.,1997,31:461-466.
    [16]金钦汉.微波化学.北京:科学技术出版社,1999.
    [17]Jones D A,Lelyveld T P,Mavrofidis S D.Microwave heating applications in environmental engineering-a review.Resour.,Conserv.& Recy.,2002,34(2):75-90.
    [183 Clark D E,Sutton W H.Microwave processing of materials.Annu.Rev.Mater.Sci.,1996,26:299-231.
    [19]熊顺贵.基础土壤学.北京:中国农业大学出版社,2001.
    [20]张宝良.油田土壤石油污染与原位生物修复技术研究:(博士学位论文).大庆大庆石油学院,2007.
    [21]丁克强,孙铁珩,李培军.石油污染土壤的生物修复技术.生态学杂志,2000,19(2):50-55.
    [22]张从,夏立江.污染土壤生物修复技术.北京中国环境科学出版社,2000.
    [23]曲键,宋云横,苏娜.沈抚灌区上游土壤中多环芳烃的含量分析.中国环境监测,2006,22(3):29-31.
    [24]罗洪君,王绪远,赵骞等.石油污染土壤生物修复技术的研究进展.四川环境,2007,26(3):104-109.
    [25]王连生.环境健康化学.北京:科学出版社,1994.
    [26]周东美,郝秀珍,薛艳等.污染土壤的修复技术研究进展.生态环境,2004,13(2):234-242.
    [27]钱暑强,刘铮.污染土壤修复技术介绍.化工进展,2000,4:10-12.
    [28]Suthersan S S.Remediation Engineering:Design Concepts.Boca Raton,FL:Lewis Publishers,1986.
    [29]李金惠,马海斌,夏新.有机污染土壤通风去污技术研究进展.环境污染治理技术与设备,2001,14(4):22-24.
    [30]Buettner H M,Daily W D.Cleaning contaminated soil using electrical heating and air stripping.J.Environ.Eng.,1995,121:580-589.
    [31]Hinchee R E,Downey D C,Dupont R R.Enhancing biodegradation of petroleum hydrcarbon through soil venting.J.Hazard.Mater.,1991,27:315-325.
    [32]Pina J,Merino J,Errazu A F,Bucalà V.Thermal treatment of soils contminated with gas oil:influence of soil composition and treatment temperature.J.Hazard.Mater.,2002,94:273-290.
    [33]Wey M Y,Liu K Y,Tsai T H et al.Thermal treatment of the fly ash from municipal solid waste incinerator with ratary kiln.J.Hazard.Mater.,2006,137:981-989.
    [34]Merino J,Pina J,Errazu A F et al.Fundamental study of thermal treatment of soil.Soil Sediment Contam.,2003,12(3):417-441.
    [35]Lee J K,Park D,Kim B U.Remediation of petroleum-contaminated soils by fluidized thermal desorption.Waste Manage.,1999,18:503-507.
    [36]丁颖,周启星.污染土壤化学修复技术研究与进展.环境污染治理技术与设备,2005,6(7):1-7.
    [37]Chu W,Chan K H.The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organic.Sci.Total Environ.,2003,307:83-92.
    [38]West C C,Harwell J H.Surfactants and subsurface remediation.Environ.Sci.Technol.,1992,26:2324-2330.
    [39]Savho.Intergrated in situ soil remediaiton technology:the Lasagna proceed.Environ.Sci.Technol.,1995,29:2528-2534.
    [40]Namgoo K,Inez H.Enhanced chemical oxidation of aromatic hydrocarbons soil system.Chemosphere,2005,61(7):900-922.
    [41]Lin Q,Chen Y X,Wang Z W et alI Study on the possibility of hydrogen peroxide pretreatment and plant system tO remediate soil pollution.Chemosphere,2004,57:1439-1447.
    [42]沈德中.污染环境的生物修复.北京:化学工业出版社,2001.
    [43]Hwang H M,Interactions between subsurfac microbial assemblages and mixed organic and inorganic contaminant system.Bull.Environ.Contam.Toxical,1994,53(5):771-778.
    [44]Mills S A.Evaluation of phosphorus source bioremediation of diesel fuel in soil.Bull.Environ.Contam.Toxical,1994,53(2):280-284.
    [45]李培军,台培东,郭书海.辽河油田石油污染土壤的2阶段生物修复.环境科学,2003,24(3):74-78.
    [46]郭江峰,孙锦荷.污染土壤生物治理研究方法.环境科学进展,1995,3(5):62-68.
    [47]丁克强,尹睿,刘世亮.石油污染土壤堆制微生物降解研究.应用生态学报,2002,21(1):1137-1140.
    [48]沈铁孟,黄国强,李凌.石油污染土壤生物通风修复及其强化技术.环境污染治理技术与设备。3(7):67-69.
    [49]Johnson P C,Stanley C C.A practical approach to the design,operation,and monitoring of in situ soil-venting systems.Ground Water Monit.,1990,10(2):159-178.
    [50]Hinchee R E,Ong S K.A rapid in situ respiration test for measuring aerobic biodegradation rates of hydrocarbons in soil.Air Waste Manage.Assoc.,1990,42(10):1305-1312.
    [51]张海荣,郭书海,李培军.油泥废弃物的生物修复技术研究.环境污染治理技术与设备,2002,3(01):61-64.
    [52]Atlas R M.Microbial hydrocarbon degradation-biodegradation of oil spill.Chem.Tech.Biotechnol.,1991,52:149-456.
    [53]Pritchard P H,C F.EPA' s Alaska oil spill biodegradation project.Env.Sci.Technol.,1991,25:372-379.
    [54]郭书海,张海荣,李凤梅.含油污泥堆腐处理技术研究.农业环境科学学报,2005,24(4):812-815.
    [55]Zappi M E,Rogers B A.Bio-slurry treatment of a soil contaminated with low concentrations of total petroleum hycrocaron.J.Hazard.Mater.,1996,46:1-12.
    [56]张天月,赵农,安淼.生物泥浆反应器在污染土壤修复中的应用.水土保持研究.2005,12(6):50-53.
    [57]Cassidy D P,Irvine R L.Biological treatment of a soil contaminated with diesel fuel using periodically operated slurry and solid phase reactors.Water Sci.Technol.,1997,35(1):185-192.
    [58]卢丽丽,石辉.植物修复石油污染土壤的研究进展.化工环保,2007,27(3):245-249.
    [59]James B R.Remediation-by-reduction strategies for chromate-contaminated soil.Environ.Geochem.Health,2001,23:175-179.
    [60]Xang X E,Yang M J.Metal distribution and chelation with relation to Zn or Cd hyper-accumulation in thlaspi caerulescens.Environ.Pollut.,2000,107:223-230.
    [61]Baker A J M,Mc Grath S P,Sidoli C M D.Possibility of in situ heavy metal decontamination of polluted soil using crops of metal-accumulating plant.Resour.Conserv.Recy.,1994,11:41-49.
    [62]陈同斌,韦朝阳,黄泽春.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,2002,47(3):207-210.
    [63]Xu S Y,Chen Y X,Wu W X,Wang K X,Lin Q,Liang X Q.Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation.Sci.Total Environ.,2006,363:206-215.
    [64]安正阳,江映翔,孙佩石.污染土壤的微生物修复技术进展与应用前景.广州环境科学,2003,18(4):5-7.
    [65]Khodadoust A P,Sorial G A,Wilson G J et al.Interated system for remediation of contaminated soils.J.Environ.Eng.,1999,125(11):1033-1041.
    [66]Di G S,Serra R,Villani M.Applying cellular automata to complex environmental problems:The simulation of the bioremediation of contaminated soils.Theor.Comput.Sci.,1999,217(1):131-156.
    [67]王绍林.微波加热技术在食品加工中的应用.食品科学,2000,21(2):6-9.
    [68]Whittaker G.Microwave heating mechanisms.J.Microwave Power Electromag.Energy,1994,29:168-176.
    [69]Metaxas A C.Microwave heating.Power Engineer.,1991,9:239-247.
    [70]Sutton W H.Microwave processing of ceramic materials.Am.Ceram.Soc.Bull.,1989,68:376-386.
    [71]Wise R J,Froment I D.Microwave welding of thermoplastics.J.Mater.Sci.,2001,36:5935-5954.
    [72]Asmussen J.Microwave applicator theory for single mode/multimode processing of materials.Proceedings of the american chemical society,division of polymeric materials:Science and Engineering,1992,66:341-342.
    [73]Meredith R.Engineers Handbook of industrial microwave heating,London:Institute of Electrical Engineers,1998.
    [74]Moulson A J,Herbert J M.Electroceramics.Chapman & Hall,London:1990.
    [75]黄铭,彭金辉,王家强等.微波与物质相互作用加热机理的理论研究.昆明里工大学学报(理工版),2005,30(6):15-17.
    [76]杨伯伦,贺拥军.微波加热在化学反应中的应用进展.现代化工,2001,21(4):8-12.
    [77]Theury J.Microwaves:Industrial,Scientific,and Medical Applications,Norwood,UK:Artech House,Inc.,1992.
    [78]Appleton T J,Colder R I,Kingman S W et al.Microwave technology for energy-efficient processing of waste.Appl.Energ.,2005,81:85-113
    [79]王丽熙,张其土.微波吸收剂的研究现状与发展趋势.材料导报,2005,19(9):26-30.
    [80]周玉昆.微波技术在废气脱硫中的应用.化工环保,1994,14:148-150.
    [81]Radoiu M T,Martin D I,Calinescu I.Emission control of S02 and NOx by irradiation methods.J.Hazard.Mater.,2003,97:145-158.
    [82]王鹏.环境微波化学技术.北京:化学工业出版社,2003.
    [83]税安泽,王书媚,曾令可等.微波诱导催化炭还原废气的研究.中国陶瓷,2006,4(1):16-18.
    [84]马文,王新强,倪炳华.微波催化法分解硫化氢的研究.石油与天然气化工,1997,26(1):37-41.
    [85]Wojtowicz M A,Miknis F P,Grimes R W.Control of nitric oxide,nitrous oxide,and ammonia emissions using microwave plasmas.J.Hazard.Mater.,2000,74:81-89.
    [86]唐军旺,杨黄河,任丽丽.微波放电脱除NO.高等学校化学学报,2002,23(4):632-635.
    [87]Cha C Y,Kim D S.Microwave induced reactions of sulfur dioxide and nitrogen oxides in char and anthracite bed.Carbon,2001,39(8):1159-1166.
    [88]Kong Y,Cha C Y.NOx abatement with carbon absorbed and microwave energy.Energ.Fuel.,1995,9(6):971-975.
    [89]张达欣,于爱民,金钦汉.微波-炭还原法处理-氧化碳的研究.高等学校化学学报,1997,18(8):1271-1274.
    [90]Zhang X L,Hayward D O,Lee C et al.Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS_2 catalysts.Appl.Catal.B:Environ.,2001,33(2):137-148.
    [91]Tang J W,Zhang T,Liang D B.Direct decomposition of NOby microwave heating over Fe/NaZSM-5.Appl.Catal.B:Environ.,2002,36:1-7.
    [92]Liu X T,Quan X,Bo L Let al.Temperature measurement of GAC and decomposition of PCP load on GAC and GAC-supported copper catalyst in microwave irradiation.Appl.Catal.A:Gem,2004,264:53-58.
    [93]Liu X T,Quan X,Bo L Let al.Simultaneous pentachlorophenol decomposition and ganular activated carbon regeneration assisted hy microwave irradiation.Carbon,2004,42:415-422.
    [94]Tai H S,Jou C J G.Application of granular activated carbon packed-bed reactor in microwave radiation field to treat phenol.Chemosphere,1999,38(11):2667-2680.
    [95]Jou C J G,Tai H S.Application of granulated activated carbon pahed-bed reactor in microwave radiation field to treat BTX.Chemosphere,1998,37(4):685-698.
    [96]Zhang Y B,Quan X,Chen S et al.Microwave assisted catalytic wet air oxidiation of H-acid in aqueous solution under the atmospheric pressure using activated carbon as catalyst.J.Hazard.Mater.,2006,137:534-540.
    [97]Quan X,Zhang Y B,Chen S et al.Generation of hydrooxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances.J.Mol.Catal.A:Chem.,2007,263:216-212.
    [98]张耀斌,全燮,薛大明等.流动态微波催化反应器处理染料废水的工艺稳定性.中国环境科学,2002,22(3):235-238.
    [99]Bo L L,Quan X,Chen Set al.Degradation of p-nitrophenol in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed.Water Res.,2006,40:3061-3068.
    [100]Bo L L,Zhang Y B,Quan X et al.Microwave assisted catalytic oxidation of p-nitrophenol in aqueous solution using carbon-supported copper catalyst.J.Hazard.Mater.,2007,141:262-268.
    [101]Horikoshi S,Hidaka H,Serpone N.Environmental remediation by an integrated microwave/UV- illumination method.1.Microwave-assisted degradation of rhodamine- B dye in aqueous TiO_2 dispersions.Environ.Sci.Technol.,2002,36(6):1357-1366.
    [102]Horikoshi S,Hidaka H,Serpone N.Environmental remediation by an integrated microwave/UV- illumination method.Ⅱ.Characteristics of a novel UV-VIS-microwave integrated irradiation device in photodegradation processes.J.Photoch.Photobio.A:Chem.,2002,153(1-3):185 -189.
    [103]Horikoshi S,Hidaka H.Environmental remediation by an integrated microwave/UV illumination technique.3.A microwave-powered plasma light source and photoreactor to degrade pollutants in aqueous dispersions of TiO_2 illuminated by the emitted UV/visible radiation.Environ.Sci.Technol.,2002,36(23):5229-5237.
    [104]Horikoshi S,Hidaka H,Serpone N.Environmental remediation by an integrated microwave/UV-illumination technique:Ⅳ.Non-thermal effects in the microwave-assisted degradation of 2,4-dichlorophenoxyacetic acid in UV-irradiated TiO_2/H_2O dispersions.J.Photoch.Photobio.A:Chem..,2003,159(3):289 - 300.
    [105]Horikoshi S,Saitou A,Hidaka H et al.Environmental remediation by an integrated microwave/UV illumination method.V.Thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-B under UV/Vis radiation.Environ.Sci.Technol.,2003,37(24):5813-5822.
    [106]Horikoshi S,Hidaka H,Serpone N.Environmental remediation by an integrated microwave/UV illumination technique:Ⅵ.A simple modified domestic microwave oven integrating an electrodeless UV-Vis lamp to photodegrade environmental pollutants in aqueous media.J.Photoch.Photobio.A:Chem.,2004,161(2-3):221-225.
    [107]Horikoshi S,Tokunaga A,Hidaka H.Environmental remediation by an integrated microwave/UV illumination method:Ⅶ.Thermal /non-thermal effects in the microwave-assisted photocatalyzed mineralization of bisphenol-A.J.Photoch.Photobio.A:Chem.,2004,162(1):33-40.
    [108]Horikoshi S,Hojo F,Hidaka H.Environmental remediation by an integrated microwave/UV illumination technique.8.Fate of carboxylic acids,aldehydes,alkoxycarbonyl and phenolic substrates in a microwave radiation field in the presence of TiO_2 particles under UV irradiation.Environ.Sci.Technol.,2004,38(7):2198-2208.
    [109]Horikoshi S,Hidaka H,Serpone N.Hydroxyl radicals in microwave photocatalysis.Enhanced formation of 0H radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO_2 dispersions.Chem.Phys.Lett.,2003,376(3-4):475-480.
    [110]谌伟艳,韩永忠,丁太文等.微波热修复污染土壤技术研究进展.微波学报,2006,22(4):66-70.
    [111]Windgasse G,Dauerman L.Microwave treatment of hazardous wastes:removal of volatile and semi-volatile organic contaminants from soil.J.Microwave Power Electromag.Energy,1992,27:23-32.
    [112]Di P K,Chang D P Y,Dwyer H A.Heat and mass transfer during microwave steam treatment of contaminated soils.J.Environ.Engineer.,2000,127:1108-1115.
    [113]Di P K,Chang D P Y.Investigation of polychlorinated biphenyl removal from contaminated soil using microwave-generated steam.J.Air Waste Manage.Assoc.,2001,51:482 488.
    [114]Acierno D,Barba A A,d' Amore M.Microwave in soil remediation from VOCs.1:Heat and mass transfer aspects.AIChE J.,2003,49(7):1909-1921.
    [115]Acierno D,Barba A A,d' Amore M,Pinto I M,Fiumara V.Microwaves in soil remediation from VOCs.2.Buildup of a dedicated device.AIChE J.,2004,50(3):722-732.
    [116]George C E,Lightsey G R,Jun I et al.Soil decontamination via microwave and radio frequency co-volatilization.Environ.Prog.,1992,11(3):216-219.
    [I17]Abramovitch R A,Huang B Z.Decomposition of 4-bromobiphenyl in soil remediated by microwave energy.Chemosphere,1994,29:2517-2521.
    [118]Abramovitch R A,Huang B,Mark D et al.Decomposition of PCBs and other polychlorinated aromatics in soil using microwave energy.Chemosphere,1998,37:1427-1436.
    [119]Abramovitch R A,Huang B,Abramovitch D A et al.In situ decomposition of PAHs in soil desorption of organic solvents using microwave energy.Chemosphere,1999,39:81-87.
    [120]Abramovitch R A,Huang B,Abramovitch D A et al.In situ decomposition of PCBs in soil in soil using microwave energy.Chemosphere,38:2227-2237.
    [121]Yuan S,Tian M,Lu X.Microwave remediation of soil contaminated with hexachlorobenzene.J.Hazar.Mater.,2006,137:878-885.
    [122]Liu X T,Yu G.Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil.Chemosphere,2006,63:228-235.
    [123]Tai H S,Jou C G.Immobilization of chromium-contaminated soil by means of microwave energy.J.Hazard.Mater.,1999,65:267-275.
    [124]Jou C G.An efficient technology to treat heavy metal-lead-contaminated soil by microwave radiation.J.Environ.Manage.,2006,78:1-4.
    [125]Abramovitch R A,Lu C,Hicks E et al.In situ remediation of soils contaminated with toxic metal ions using microwave energy.Chemosphere,2003,53:1077-1085.
    [126]孙萍,肖波,杨家宽.微波技术在环境保护领域的应用.化工环保,2002,22(2):71-75.
    [127]王剑虹,严莲荷,周申范.微波技术在环境保护领域的应用.工业水处理,2003,23(4):18-22.
    [128]Cercia J L L,Velasco J,Doberganes M C.Fast quality monitoring of oil from prefried and fled foods by focused microwave-assisted Soxhlet extraction.Food Chem.,2002,76:241-248.
    [129]Chee K K,Wong M K,Lee H K.Microwave-assisted solvent elution technique for the extration of organic pollutant in water.Anal.Chim.ACTA,1996,3(30):217-227.
    [130]Pérez Cid B,Fernàndez Alborés A,Fernàndez Gàmez E.Use of microwave single extractions for metal fraction in sewage sludge samples.Anal.Chim.ACTA,2001,4(31):209-218.
    [131]Sun L,Lee H K.Microwave-assisted extraction behavior of non-polar and polar pollutants in soil with analysis by high-performance liquid chromatography.J.Sep.Sci.,2002,25:67-76.
    [132]Criado M R,Pereiro I R,Torrijos R C.Optimization of a microwave-assisted extraction method for the analysis of polychlorinated biphenyls in ash samples.J.Chromatogra.A,2003,985:137-145.
    [133]Shu Y Y,Ko M Y,Chang Y S.Microwave-assisted extraction of ginsenosides from ginseng root.Microwchem.J.,2003,74:131-139.
    [134]Metcalf J S,Codd G A.Microwave oven and boiling water bath eatraction of hepatotoxins from cyanobacterial cells.FEMS Micobiol.Lett.,2000,184:241-246.
    [135]Jin Q H,Liang F,Zhang H Q.Application of microwave techniques in analytical chemistry.Trends in Analytical Chemistry,1999,18(7):179-484.
    [136]Agazzi A,Pirola C.Fundamentals,methods and future trends of environmental microwave sample preparation.Microchem.J.,2000,67:337-341.
    [137]Menéndez J A,Inguanzo M,Pis J J.Microwave-induced pyrolysis of sewage sludge.Water Res.,2002,36:3261-3264.
    [138]Menéndez J A,Domínguez M,Inguanzo D.Microwave pyrolysis of sewage sludge:analysis of the gas fraction.J.Anal.Appl.Pyrol.,2004,71:657-667.
    [139]Klaila W J.U.S.patent 4067683,1983.
    [140]Fang C S,Lai P M C,Chang B K L et al.Microwave heating and separation of water in oil emulsions.Environ.Prog.,1989,8(4):235-243.
    [141]Fang C S,Lai P M C.Microwave heating and separation of water in oil emulsions.J.Microwave Power Electromag.Energy,1995,30(1):46.
    [142]Rajakovié V,Skala D.Separation of water-in-oil emulsions by freeze/thaw method and microwave radiation.Sep.Purif.Technol.,2006,49:192-196.
    [143]Pavarina A C,Neppelenbroek K H,Guinesi A Set al.Effect of microwave disinfectioin on the flexural strngth of hard chairsid reline resins.J.Dent.,2005,33:741-748.
    [144]刘友林.微波消毒灭菌技术应用于医院制剂的可行性.中国医药导报,2006,3(3):37-38.
    [145]孙开英.微波在消毒与灭菌工作中的应用研究进展.医学动物防制,2001,17(7):385-387.
    [146]李素英.微波在医院消毒中的应用.中国消毒学杂志,1999,16(1):51.
    [147]陈宗明.放射性废物微波真空干燥处理器的漏能防护.上海环境科学,1996,15(10):37-38.
    [148]罗鹏,连永祥.废橡胶微波再生的实验研究.橡胶工业,1996,43(12):733-736.
    [149]Palafox C L,Chase H.Microwave-induced pyrolysis of plastic wastes.Ind.Eng.Chem.Res.,2001,40:4749-4756.
    [150]谢炜平,李红霞.酸溶-微波热解法从粉煤灰中制取聚合氧化铝的研究.环境工程,1999,17(2):50-52.
    [151]Bilali L,Benchanaa M,El harfi K et al.A detailed study of the microwave pyrolysis of the Moroccan rock phosphate.J.Anal.Appl.Pyrolysis,2005,73:1-15.
    [152]陶陆安.我国建筑环境的现状及综合利用.施工技术,1999,28(5):44-45.
    [153]蒋小红,喻文熙,江家华等.污染土壤的物理/化学修复.环境污染与防治,2006,28(3):210-214.
    [154]孙燕英,刘菲,陈鸿汉等.H_2O_2氧化法修复柴油污染土壤.应用化学,2007,24(6):680-683.
    [155]Clark D E,Folz D C,West J K.Processing materials with microwave energy.Mater.Sci.Eng.,2000,287(A):153-158.
    [156]Haque K E.Microwave energy for mineral treatment processes-a brief review.Int.J.Miner.Process.,1999,57:1-24.
    [157]Braunstein J,Connor K,Salon S,Libelo L.Investigatiion of microwave heating with time varing material properties.IEEE T.Magn.,1999,35:1813-1816.
    [158]Shang H,Snape C E,Kingman S W et al.Treatment of oil-contaminated drill cuttings by microwave heating in high-power single-mode cavity.Ind.Eng.Chem.Res.,2005,44:6837-6844.
    [159]Standish N,Worner H K,Obuchowski D Y.Particle size effect in microwave heating of granular materials.Powder Technol.,1991,66:225-230.
    [160]Standish N,Worner H K,Obuchowski D Y.Particle size effect in microwave heating of granular materials.Powder Technol.,1991,66:225-230.
    [161]Matthew O W,Eugene N O.Growth performance and proximate profile of telfairia occidentalis hook F.(cucurbitaceae) grown in crude oil-contaminated soil.on-line publication at http://www.interscience.wiley.com/,2006.
    [162]Shang H,Robinson J P,Kingman S W et al.Theoretical study of microwave enhanced thermal decontamination of oil cotaminated waste.Chem.Eng.Technol.,2007,30:121-130.
    [163]王绍林.微波加热原理及其应用.物理,1997,26(4):232-237.
    [164]Miura M,Kaga H,Sakurai A et al.Rapid pyrolysis of wood block by microwave heating.J.Anal.Appl.Pyroly.,2004,71:187-199.
    [165]Risoul V,Richter H,Lafleur et al.Effects of temperature and soil components on emissions from pyrolysis of pyrene-contaminated soil.J.Hazard.Mater.2005,126:128-140.
    [166]Lighty J S,Sllcox G D,Pershing D W.Foundamentals for the thermal remediation of contaminated soils.Environ.Sci.Technol.,1990,24:750-757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700