用户名: 密码: 验证码:
水处理用活性炭的微波改性与再生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯酚类有机化合物种类繁多,是一类典型的水体“三致”污染物,其降解及消除一直受到广泛的关注,采用吸附方法去除氯酚也一直是人们的研究热点。活性炭具有高度发达的孔隙结构和极大的比表面积,对分子具有极强的吸附能力,是目前最常用的吸附材料之一。为了适应不同的吸附要求,需要对活性炭进行不同性质的改性处理,以调整活性炭的孔隙结构和表面化学性能,活性炭的微波改性就是一种近年来比较流行的改性方式,同时,由于微波加热具有加热速度快、选择性强、可直接作用到样品上等特点,国内外学者已将微波加热技术应用于活性炭再生工艺并就此展开了大量研究。
     本文主要对微波技术在氯酚水处理活性炭的改性和再生中的应用进行了深入研究,考察微波改性和再生对活性炭吸附性能的影响,并与其它改性方式与再生方法进行了比较,借助N_2等温吸附、元素分析、XPS、XRD、FTIR、SEM、Boehm滴定等手段研究了活性炭改性与再生前后表面结构与化学变化规律,同时通过2,4-DCP等温吸附实验,考察了活性炭改性与再生前后对2,4-DCP的吸附性能,并结合表征分析,探讨了活性炭微波辐照改性与再生对2,4-DCP吸附的影响机理;本文最后还考察了炭载金属对2,4-DCP分解的影响。结果表明:
     1、微波改性后活性炭对2,4-DCP的吸附性能增强,最大饱和吸附量增幅在12.5%左右;2,4-DCP在改性前后活性炭上的吸附模式发生了变化,由原先的Langmuir吸附转变为Freundlich吸附。活性炭微波处理后比表面积变化不大,孔容略有缩小,孔径分布变化不大,只是向小孔方向发生稍微的移动;改性后活性炭表面氧含量大幅减少,石墨化程度提高,C=O含量增多,碱性以及疏水性能增强。
     2、渗氮改性后活性炭对2,4-DCP的吸附能力增强明显,增幅可达22.70%,而氧化处理的活性炭则吸附性能减弱,其中浓硝酸改性活性炭吸附性能最弱;活性炭渗氮改性后比表面积与孔容均变大,而H_2O_2改性活性炭则变化不大,但在孔隙结构方面得到了部分改善,主要是由于H_2O_2的氧化腐蚀打通了封闭的细小微空,积累孔容也略有增加;HNO_3处理活性炭总孔容与比表面积均大幅下降,因为高浓度硝酸的强氧化作用使得活性炭的微孔结构坍塌;活性炭经氧化处理后,样品中氧元素含量迅速升高,表面酸性增强,COOH含量大幅提高,π-π~*作用显著增强,而渗氮处理则与之作用相反。
     3、用间歇实验方法对渗氮和微波改性活性炭测得的吸附平衡数据和吸附动力学数据分别用Freundlich方程和拟二级动力学方程进行拟合,相关度较高;通过对热力学参数的计算可知这两种改性活性炭对水中2,4-DCP的吸附是放热的自发进行的过程,尽管活性炭渗氮和微波改性后其表面化学性质的变化有利于2,4-DCP在其上的化学吸附,但整个吸附过程仍是由物理吸附主导。
     4、经过一次微波再生后的活性炭对2,4-DCP的吸附能力较原始活性炭有一定的提高,而再生3次和6次的活性炭对2,4-DCP吸附性能则明显降低,这种吸附性能的变化与再生活性炭孔隙的变化有关,同时也受到活性炭表面化学性质的影响;随微波功率与微波辐照时间的增加,吸附于活性炭表面的2,4-DCP的去除率增加;2,4-DCP在再生过程中一部分发生脱附,绝大部分通过热解方式去除,热解过程中形成的积炭容易堵塞活性炭孔隙结构,造成活性炭孔容、比表面积下降,影响其对2,4-DCP的再吸附能力。
     5、微波再生技术具有与常规加热方式再生更优越的性能,不仅再生耗时少,而且可以保持活性炭原有孔隙结构。经过多次微波再生后,活性炭对2,4-DCP的吸附容量仍保持在相当高的水平;而电加热再生容易造成活性炭孔隙坍塌,一方面使活性炭孔隙结构不利于2,4-DCP的吸附,另一方面也造成了活性炭再生过程中炭损耗量的增加。
     6、炭载铁催化剂对2,4-DCP的微波降解具有更高的反应活性。负载金属均以单质与氧化物共存的形式均匀附着在活性炭载体表面,其中铁的氧化物及铁在高温下与表面碳原子形成的羰基铁等都是可以强烈吸收微波的物质,在微波场中升温迅速,利于2,4-DCP的降解;而铜的存在对微波具有反射作用,不利于2,4-DCP的微波降解。
Chlorophenols are mainly produced in chemical industries, such as pesticide,petroleum refineries, plastics and wood preservation. Chlorophenols and related compoundsare carcinogenic, mutagenic and resistant to biodegradation, so their discharge leads to thecontamination of soils, surface and ground water and living organisms. Many efforts havebeen made for the treatment of chlorophenol-rich wastewater, the adsorption process givesthe best results as it can be used to remove different types of them. Takes the advantages ofgood opening structure and huge surface area, activated carbon (AC) has excellentadsorption capacity and becomes the most common adsorption materials. In order to getdifferent adsorption characteristic, AC will be modified by means of different physical andchemical processes to change its pore structure and surface chemistry. Microwave treatmentis one of the most popular method for AC modification, at the same time, as microwaveheating takes advantages of instantaneous heating, energy and time consuming, a lot ofresearches have been carried out regarding the application of microwave in AC regenerationboth at home and abroad.
     This dissertation focused on the modification of AC used for the treatment ofchlorophenois and its regeneration by using microwave technology. The adsorptionperformance of 2, 4-DCP onto microwave modified and regenerated activated carbon (AC)were investigated by comparing its adsorption ability with traditional AC modified orregenerated in other ways. Regularity for the change of the surface physicochemicalcharacters was studied with kinds of measurement thchnologies such as N_2 isothermadsorption, elemental analyzer, XPS, XRD, FTIR, SEM and Boehm titration. Theadsorptive ability of 2, 4-DCP on modified and regenerated ACs were characterized with 2,4-DCP isothermal adsorption. Combined with the above analysis of the surface chemistries,the effect mechanisms for the adsorption of 2, 4-DCP on modified and regenerated ACswere studied in details. At last, the activities of AC supported copper and iron catalysts for 2,4-dichlorophenol (2, 4-DCP) decomposition were studied in the presence of microwaveirradiation. Results show that:
     1. After microwave modification, the adsorptive capacity of AC is improved, theamplitude is about 12.5%, and the adsorption isotherm model is changed from Langmuirequation to Freundlich equation after modification. Modified AC has little change in thesurface area, modest shrink on pore volume and a little change in pore size distribution,compared with the virgin AC. MW treatment of AC eliminate the oxygen-contained sufacefunctional groups, result in the decrease of surface oxygen content and the increase ofsurface basicity and hydrophobicity, as well, its surface C=O content and graphitizingincreases.
     2. The adsorption capacity of AC increases rapidly after the modification of nitrogendoping, the amplitude is about 22.70%, while oxidation treatment decreases its adsorptionability, especially when it was modified by nitric acid. With nitrogen doping treatment, thesurface area and pore volume of carbon increased, while with H_2O_2 treatment, the porestructure is somewhat improved, which suggests that the modest oxidizing corrosion openup the enclosed tiny hole. With high concentration HNO_3 treatment, the surface area andpore volume of carbon decreases, for the strong oxidation probably obstruct the entrance ofmicropore. After oxidation, surface oxygen content and acidity of AC increases, whilenitrogen doping treatment gives the contrary effects.
     3. Equilibrium and kinetic data of 2, 4-DCP adsorption onto nitrogen doping andmicrowave modified ACs gained from batch experiments were fitted to Freundlichequations and pseudo-second-order kinetic model respectively, and the results are verifiedto fit the adsorption data well. The thermodynamics constants of these two adsorptionprocess were estimated, which show that the adsorption of 2, 4-DCP is exothermic andspontaneous, although the chemisorption capability of ACs are enhanced after microwavemodification and nitrogen doping treatment, the adsorption studied here are assigned to aphysisorption mechanism.
     4. Adsorptive capacities of AC increases more or less after one adsorptionregenerationcycle, afterwards, the adsorptive capacity slowly decreases. This phenomenonnot only related to the textual change of regenerated AC but also affected by the variety ofits surface chemistry. The removal rate of 2, 4-DCP are enhanced with the increase ofmicrowave power and irradiation time. Most of them are removed by pyrolysis, only a little of them are removed through desorption.
     5. Microwave regeneration offers the advantage over conventional regeneration notonly for its time and energy consuming but also for its maintaining the porosity of AC. Theadsorptive capacities of microwave regenerated AC can maintain relatively high level afterseveral adsorption-regeneration cycles, whereas conventional heating can't give the soundresult because the porous structure blockage of regenerated AC, on the other hand, the massloss of AC is also higher during conventional heating regeneration.
     6. Elemental copper and iron are found highly dispersed on the surface of AC in theform of elment and oxide. AC-supported iron catalyst shows desirable activity in thedecomposition of 2, 4-DCP. Powder iron and its oxide are suggested to adsorb microwaveirradiation more intensively, so the temperature of catalyst bed rises more quickly, whilecopper brings the negative effect.
引文
[1]王连生.有机污染物化学(下册)[M].北京:科学出版社,1991.
    [2]王晓红.国内氯化消毒饮水副作用及防治对策的研究现状[J].环境与健康杂志,1994,11(3):142.
    [3]傅德黔,孙宗光,章安安,等.我国水环境优先监测的现状与发展趋势[J].中国环境监测,1996,12(3):1-3.
    [4]李小明,杨朝晖,李海英,等.固定化厌氧微生物处理含五氯酚废水[J].湖南大学学报(自然科学版),2001,28(2):95-99.
    [5]徐向阳,祁华宝,王其于.厌氧颗粒污泥还原脱氯与降解五氯酚(PCP)的研究[J].浙江大学学报(农业与生命科学版).2001,27(2):145-150.
    [6]徐向阳,屠明,俞秀娥,等.厌氧颗粒污泥降解五氯酚活性的研究[J].应用与环境生物学报,1996,2(4):398-404.
    [7]刘红,李安婕,全向春,等.生物活性炭降解2,4-二氯酚的特性[J].环境科学,2004,25(6):80-84.
    [8]徐新华,刘永.纳米级Pd/Fe双金属体系对水中2,4-二氯苯酚脱氯的催化作用[J].催化学报.2004.2:138-142.
    [9]Yang B, Yu G, Liu X T. Electrochemical hydrodechlorination of 4-chlorobiphenyl in aqueous solution with the optimization of palladium-loaded cathode materials[J]. Electrochimica Acta,2006,52(3): 1075-1081.
    [10]周明华,吴祖成,汪大翚.几种难生化芳香化合物的电催化降解研究-结构对降解活性的影响[J].浙江大学学报(工学版),2003,37(1):74-77.
    [11]周珊,陈传文.电-Fenton法处理4-氯酚废水[J].环境污染治理技术与设备.2004,5(10):56-59.
    [12]郝红伟,王海,陈以方,等.高频超声辐照降解水中4-氯酚的研究[J].环境污染治理技术与设备,2002,3(5):20-22.
    [13]Pandiyan T, Martinez O, Martinez J O. Comparison of methods for the photochemical degradation of chlorophenols[J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,146(3): 149-155.
    [14]陈琳,雷乐成,杜瑛洵.UV/Fenton光催化氧化降解对氯苯酚废水反应动力学[J].环境科学学 报,2004,24(2):225-230.
    [15]Gromboni C F, Kamogawa M Y, Ferreira A G, et al. Microwave -assisted photo-Fenton decomposition of chlofenvinphos and cypermethrin in residual water[J].Journal of Photochemisry and Photobiology A:Chemistry, 2007,185:32-37.
    [16]李学德,岳永德,花日茂,等.水中2,4-二氯苯酚的光催化降解研究[J].农业环境保护,2002,21(2):156-158.
    [17]孙振世,杨晔,陈英旭,等.纳米TiO_2薄膜光催化降解2,4-二氯酚的动力学研究[J].环境科学学报,2003,23(6):716-720.
    [18]Kuleyin A. Removal of phenol and 4-chlomphenol by surface-modified natural zeolite[J]. Journal of Hazardous Materials,2007,144(1-2):307-315.
    [19]Okolo B, Park C, Keane M A. Interaction of phenol and chlorophenols with Activated carbon and synthetic zeolites in aqueous media[J]. Journal of Colloid and Interface Science,2000,226(2):308-317.
    [20]覃业贤,汤凤霞,黄国林,等.活性炭对水中2,4-二氯酚的吸附研究[J].林产化工通讯,2003,37(6):38-40.
    [21]Wang J P, Feng H M, Yu H Q. Analysis of adsorption characteristics of 2,4-dichlorophenol from aqueous solutions by activated carbon fiber[J]. Journal of Hazardous Materials, 2007,144(1-2):200-207.
    [22]Radhika M, Palanivelu K. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent-Kinetics and isotherm analysis[J]. Journal of Hazardous Materials, 138(1): 116-124.
    [23]Kienle H,Bader E.活性炭及其工业应用[M].魏同成译.北京:中国环境科学出版社,1990.
    [24]王鹏,张海禄.表面化学改性吸附用活性炭的研究进展[J].炭素技术,2003,126(3):23-28.
    [25]立本英机,安部郁夫.活性炭的应用技术[M].高尚愚译.南京:东南大学出版社,2002.
    [26]Lahaye J. The chemistry of carbon surface[J]. Fuel, 1998,77(6):543-547.
    [27]Yoshihiko M, Detlef R U K. Pesticide Adsorption by granular activated carbon adsorbers.2.Effects of pesticide and natural organic matter characteristics on pesticide breakthrough curves[J].Environmental Science andTechnology,2002,36:3432-3438.
    [28]张建策,毛立新.表面改性对活性炭吸附重金属性能的影响[J].化工时刊, 2005,19(12):28-29.
    [29]李佑稷,李效东,李君文,等.负载型TiO_2/活性炭光催化灭活大肠杆菌的研究[J].环境污染治理技术与设备,2005,6(12):37-41.
    [30]Ania C O, Cabal B, Pevida C, et al. Effects of activated carbon properties on the adsorption of naphthalene from aqueous solutions[J]. Applied Surface Science,2007,253:5741-5746.
    [31]Tennant M F, Mazyck D W. The role of surface acidity and pore size distribution in the adsorption of 2-methylisoborneol via powdered activated carbon[J]. Carbon,2007,45:858-864.
    [32]Neto M B, Canabrava D V, Tones A E B, et al.Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures[J]. Applied Surface Science, 2007,253(13):5721-5725.
    [33]Chiang H L, Huang C P, Chiang P C. The surface characteristics of activated carbon as affected by ozone and alkaline treatment[J]. Chemosphere,2002,47:257-265.
    [34]Ania C O, Parra J B, Pis J J. Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds[J]. Fuel Processing Technology,2002,79:265-271.
    [35]Ania C O, Parra J B, Pis J J. Effect of texture and surface chemistry on adsorptive capacities of activated carbons for phenolic compounds removal[J]. Fuel Processing Technology,2002,77:337-343.
    [36]Li L, Quinlivan P A, Knappe D R U. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution[J]. Carbon,2002,40:2085-2100.
    [37]韩严和,全燮,薛大明,等.活性炭改性研究进展[J].环境污染治理技术与设备,2003,4(1):33-37.
    [38]Norikazu K, Yamada H, Yajima T, et al. Surface properties of activated carbon treated by cold plasma heating[J]. Thin Solid Films,2007,515(9):4192-4196.
    [39]Attia A A, Rashwan W E, Khedr S A. Capacity of activated carbon in the removal of acid dyes subsequent to its thermal treatment[J]. Dyes and Pigments,2006,69:128-136.
    [40]Oda H, Yamashita A, Minoura S, et al. Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor[J]. Journal of Power Sources,2006,158:1510-1516.
    [41]Arenillas A, Rubiera F, Parra J B, et al. Surface modification of low cost carbons for their application in the environmental protection[J]. Applied Surface Science ,2005,252:619-624.
    [42]Ji Y B, Li T H, Zhu L, et al. Preparation of activated carbons by microwave heating KOH activation[J]. Applied Surface Science, 2007,254:506-512.
    [43]宁平,彭金辉,高建培.ZCMR法从废物中制取活性炭及在含铬废水处理中应用[J].中国环境科学,1999,19(4):306-309.
    [44]Girgis B S, Attia A A, Fathy N A. Modification in adsorption characteristics of activated carbon produced by H3PO4 under flowing gases[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007, 299(1-3):79-87.
    [45]Attia A A, Girgis B S, Fathy N A. Removal of methylene blue by carbons derived from peach stones by H_3PO_4 activation:Batch and column studies[J]. Dyes and Pigments,2008,76(1):282-289.
    [46]詹亮,李开喜,朱星明,等.正交实验法在超级活性炭研制中的应用[J].煤炭转化,2001,24(4):71-75.
    [47]Wu F C, Tseng R L, Hu C C. Comparisons of pore properties and adsorption performance of KOH-activated and steam-activated carbons[J]. Microporous and Mesoporous Materials,2005,80:95-106.
    [48]Molina-Sabio M, Rodriguez-Reinoso F, Caturla F, et al. Development of porosity in combined acid-carbon dioxide activation[J].Carbon, 1996,34(4):457-462.
    [49]单晓梅,朱书全,张文辉,等.氧化法改性煤基活性炭和椰壳活性炭的研究[J].中国矿业大学学报,2003,32(6):729-732.
    [50]Vinke P, Van V M, Voskamap A F, et al. Modification of the sulface of gas-active carbon and a chemically activated carbon with HNO_3[J]. Carbon, 1994,32(4):675-686.
    [51]Wibowo N, Setyadhi L, Wibowo D, et al. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption[J]. Journal of Hazardous Materials,2007,146(1-2):237-242.
    [52]黄伟,孙盛凯,李玉杰,等.硝酸改性处理对活性炭性能的影响[J].生物质化学工程.2006,40(6):17-21.
    [53]Figueiredo J L,Pereiva M F R, et al. Modification of the surface chemistry of activated carbons[J]. Carbon,1999,37:1379-1389.
    [54]Valdes H, Sanchez-polo M, Rivera-Utrilla T, et al. Effect of ozone treatment on surface properties of activated carbon[J].Langmuir,2002,18:2111-2116.
    [55]李开喜,凌立成,刘朗,等.氨水活化的活性炭纤维的脱硫作用[J].环境科学学报,2001,21(1):74-78.
    [56]Wan X K, Zou X Q, Shi H X, et al. Nitrogen doping of activated carbon loading Fe_2O_3 and activity in carbon-nitric oxide reaction[J]. Journal of Zhejiang University Science A,2007, 8(5):707-711.
    [57]杨全红,郑经堂,阮湘泉.处理气氛对FeSO_4-ACF结构及吸附性能的影响[J].炭素技术,1997,3:4-7.
    [58]杨娇萍,田艳红.化学-物理混合活化法改性活性炭电化学性能[J].电源技术,2005,6:372-375.
    [59]张朝红,单亚波,凌洪洁,等.硫酸铁改性活性炭催化微波降解甲基橙的研究[J].染料与染色,2006,43(1):37-40.
    [60]张朝红,单亚波,臧树良,等.硫酸铁改性活性炭催化微波降解对硫磷的研究[J].中国给水排水,2006,22(11):26-30.
    [61]Utriila J R, Ferro-Garcia M A, Toledo I B, et al. Regeneration of ortho-chlorophenol-exhausted activated carbons with liquid water at high pressure and temperature[J]. Water Research,2003,37:1905-1911.
    [62]Miguel G S, Lambert S D, Graham N J D. The regeneration of field-spent granular activated carbons. Water Research,2001,35(11):2740-2748.
    [63]Liu X T, Yu G, Han W Y. Granular activated carbon adsorption and microwave regeneration for the treatment of 2,4,5-trichlorobiphenyl in simulated soil-washing solution[J]. Journal of Hazardous Materials,2007,147:746-751.
    [64]Lim J L, Okada M. Regeneration of granular activated carbon using ultrasound[J]. Ultrasonics Sonochemistry,2005,12:277-282.
    [65]韩永忠,谌伟艳,陈金龙,等.活性炭微波辅助溶剂再生研究[J].环境科学与技术,2006,29(8):25-27.
    [66]Coelho C, Oliverira A S, Pereira M F R, et al. The influence of activated carbon surface properties on the adsorption of the herbicide molinate and the bio-regeneration of the adsorbent[J]. Journal of Hazardous Materials,2006,b138:343-349.
    [67]Nakano Y, Li Q H, Nishijima W, et al. Biodegradation of trichloroethylene adsorbed on granular activated carbon[J]. Water Research,2000,34(17):4139-4142.
    [68]Shende R V, Mahajani V V. Wet oxidative regeneration of activated carbon loaded with reactive dye[J]. Waste Management,2002,22:73-83.
    [69]Huling S G, Jones P K, Ela W P, et al. Fenton- driven chemical regeneration of MTBE-spent GAC[J]. Water Research, 2005,39:2145-2153.
    [70](?)lvarez P M, Beltr(?)n F J, G(?)mez-Serrano V, et al. Comparison between thermaland ozone regenerations of spent activated carbon exhausted with phenol[J]. Water Research,2004,38:2155-2165.
    [71]童少平,魏红,刘维屏.臭氧氧化法再生活性炭的研究[J].工业水处理,2005,25(2):31-33.
    [72]Lin S H, Lai C L. Kinetic characteristics of textile wastewater ozonation in fluidized and fixed activated carbon beds[J]. Water Research,2000,34(3):763-772.
    [73]Lin S H, Wang C H. Industrial wastewater treatment in a new gas-induced ozone reactor[J]. Journal of Hazardous Materials,2003,B98:295-309.
    [74]叶李艺,傅志鸿,张会平,等.电化学再生活性炭的工艺参数研究[J].化工科技,2000,8(1):124.
    [75]Tan C S. Supercritical regeneration of activated carbon loaded with benzene and toluene[J]. Industrial and Engineering Chemistry Research, 1989,28:1222-1226.
    [76]David L, Tomasko P. Pilot scale study and design of a granular activated carbon regeneration process using supercriticai fluids[J]. Environmental Progress, 1993,12(3):208-211.
    [77]曾华星.活性炭吸附二硫化碳及微波解吸研究[M].南昌:南昌大学,2006.
    [78]Zhang H Q, Yuan X G, Zhao X J, et al. On-line preconcentration with activated carbon for microwave plasma torch atomic emission spectrometry[J]. Talanta, 1997,44:1615-1623.
    [79]Jankowski K, Jackowska A, Lukasiak P. Determination of precious metals in geological samples by continuous powder introduction microwave induced plasma atomic emission spectrometry after preconcentration on activated carbon[J]. Analytica Chimica Acta,2005,540:197-205.
    [80]Zlotorzynski A. The application of microwave radiation to analytical and environmental chemistry[J]. Critical Reviews in Analytical Chemistry, 1995,25(1):43-76.
    [81]金耀民,陈建孟.微波在环境污染治理工程中的应用[J].环境污染治理技术与设 备,2002,3(12):64-69.
    [82]Jones D A, Lelyveld T P, Mavrofidis S D, et al. Microwave heating application in environmental engineering -a review[J]. Resources, Conservation and Recycling, 2002,34:75-90.
    [83]王朋.环境微波化学技术[M].北京:化学工业出版社,2003.
    [84]刘希涛.典型有机污染物的活性炭吸附/微波再生方法与特性[D].大连:大连理工大学,2004.
    [85]夏祖学,刘长军,闫丽萍,等.微波化学的应用研究进展[J].化学研究与应用,2004,16(4):441-444.
    [86]樊兴君,尤进茂,谭干祖.微波促进有机化学反应研究进展[J].化学进展,1998,10(3):285-295.
    [87]Miyazawa A, Saitou K, Tanaka K, et al. Reaction of primary amines with Pt/C catalyst in water under microwave irradiation: a convenient synthesis of secondary amines from primary amines[J]. Tetrahedron Letters, 2006,47:1437-1439.
    [88]Garc(?)a-Vidal J A, Dur(?)n-Valle C J, Ferera-Escudero S. Green chemistry: Efficient epoxides ring-opening with l-butanol under microwave irradiation[J]. Applied Surface Science, 2006,252:6064-6066.
    [89]杨霞,王胜平,马新宾.微波技术在催化剂制备中的应用[J].化学通报,2004,9:641-647.
    [90]Liu X T, Yu G. Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl -contaminated soil[J]. Chemosphere, 2006,63(2):228-235.
    [91]Holzwarth A, Lou J, Hatton T A, et al. Enhanced microwave heating of non-polar solvents by dispersed magnetic nanoparticles[J]. Industrial and Engineering Chemistry Research, 1998,37(7): 2701-2706.
    [92]Kawala Z, Atamanczuk T. Microwave-enhanced thermal decontamination of soil[J]. Environmental Science and Technology, 1998,32(17):2602-2607.
    [93]Moriwaki S, Machida M, Tatsumoto H, et al. Dehydrochlorination of poly(vinyl chloride) by microwave irradiation. Applied Thermal Engineering, 2006,26:745-750.
    [94]Martin D I, Margaritescu I, Cirstea E, et al. Application of accelerated electron beam and microwave irradiation to biological waste treatment[J]. Vacuum,2005,77:501-506.
    [95]Martin D. New method for removal of SO_2 and NOx from combustion flue gases[J]. Journal of Microwave Power and Electro-Magnetic Energy, 1997,32(4):215-218.
    [96]李承斌.油烟污染的微波处理[M].大连:大连理工大学,2000.
    [97]Cid B P, Albor(?)s A F, G(?)mez E F, et al. Use of microwave single extractions for metal fractionation in sewage sludge samples[J]. Analytica Chimica Acta, 2001,431:209-218.
    [98]El-Sheikh A H, Sweileh J A. A rapid and simple microwave-assisted digestion procedure for spectrophometric determination of titanium dioxide photocatalyst on activated carbon[J]. Talanta,2007,71 (5): 1867-1872.
    [99]Ramon R, Valero F, Valle M. Rapid determination of chemical oxygen demand using a focused microwave heating system featuring temperature control[J]. Analytica Chimica Acta, 2003,49:99-109.
    [100]孙晓娟,王晋,刘安国,等.有机染整废水化学需氧量的微波辐照法测定研究[J].江苏工业学院学报,2003,15(2):22-25.
    [101]Hogendoorn E A, Huls R, Dijkman E, et al. Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection: Use of an analytical restricted-access-medium column for the efficient multi-residue analysis of acidic pesticides in soils[J]. Journal of Chromatography A,2001,938:23-33.
    [102]Kerner R, Palchik O, Gedanken A. Sonochemical and Microwave-assisted preparations of PbTe and PbSe. A comparative study[J]. Chem. Mater.,2001, 13: 1413-1419.
    [103]Llompart M P, Lorenzo R A, Cela R, et al. Evaluation of supercritical fluid extraction, microwave-assisted extraction and sonication in the determination of some phenolic compounds from various soil matrices[J]. Joural of Chromatography A, 1997,774:243-251.
    [104]夏立新,李坤兰,庞军,等.微波辐射技术在聚乙烯醇降解反应中的应用[J].环境化学,2000,19(6):556-560.
    [105]严莲荷,王剑虹,潘爱琴,等.微波催化氧化法处理甲基橙废水[J].化工环保,2004,24(1):38-40.
    [106]潘爱芹,严莲荷,蒋齐光,等.微波催化氧化法处理炼油废水[J].环境科学与技术,2004,27:114-116.
    [107]Takashima H, Karches M, Kanno Y. Catalytic decomposition of trichloroethylene over Pt-/Ni-catalyst under microwave heating[J]. Applied Surface Science, 2008,254(7):2023-2030.
    [108]肖新荣,杨江柳,黄增勇,等.微波辐射Fenton试剂-活性炭催化氧化体系降解水中苯酚 [J].南华大学学报,2004,18(4):22-25.
    [109]赵景联,任国勇.微波辐射Fenton试剂氧化催化降解水中三氯乙烯[J].微波学报,2003,19(1):85-90.
    [110]Satoshi H, Hisao H, Nike S. Environmental remediation by an integrated microwave/UV-illumination method. Ⅰ.Microwave-assisted degradation of rhodamine-B dye in aqueous TiO2 dispersions[J]. Environ. Sci. Technol., 2002,36(6): 1357-1366.
    [111]Satoshi H, Hisao H, Nike S. Environmental remediation by an integrated microwave/UV-illumination method. Ⅱ. Characteristics of a novel UV-Vis-microwave integrated irradiation device in photodegradation processes[J]. Journal of Photochemistry and Photobiology A: Chemistry,2002,153:185-189.
    [112]Satoshi H, Hisao H. Environmental remediation by an integrated microwave/UV-illumination technique.3. A microwave-powered plasma light source and photoreactor to degrade pollutants in aqueous dispersions of TiO_2 illuminated by the emitted UV/Visible radiation[J]. Environ. Sci. Technol.,2002,36:5229-5237.
    [113]Satoshi H, Hisao H, Nike S. Environmental remediation by an integrated microwave/UV-illumination technique Ⅳ. Non-thermal effects in the microwave-assisted degradation of 2, 4-dichlorophenoxyacetic acid in UV-irradiated TiO_2/H_2O dispersions[J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,159:289-300.
    [114]Satoshi H, Aiko S, Hisao H. Environmental remediation by an integrated microwave/UV-illumination method. Ⅴ. Thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-B under UV/Vis radiation[J]. Environ. Sci. Technol.,2003,37:5813-5822.
    [115]Satoshi H, Hisao H, Nick S. Environmental remediation by an integrated microwave/UV illumination technique Ⅵ. A simple modified domestic microwave oven integrating an electrodeless UV-Vis lamp to photodegrade environmental pollutants in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry,2004,161:221-225.
    [116]Satoshi H, Atsushi T, Hisao H. Environmental remediation by an integrated microwave/UV illumination method Ⅶ. Thermal/non-thermal effects in the microwave-assisted photocatalyzed mineralization of bisphenol-A[J]. Journal of Photochemistry and Photobiology A: Chemistry,2004,162:33-40.
    [117]Satoshi H, Fukuyo H, Hisao H. Environmental remediation by an integrated microwave/UV illumination technique.8. Fate of carboxylic acids, aldehydes, alkoxycarbonyl and phenolic substrates in a microwave radiation field in the presence of TiO2 particle under UV irradiation[J]. Environ. Sci. Technol.,2004,38:2198-2208.
    [118]艾智慧,姜军清,杨鹏,等.水溶液中4-氯酚的微波辅助光化学降解[J].环境科学,2004,25(4):100-104.
    [119]艾智慧,杨鹏,陆晓华.微波辅助光催化降解氯酚类污染物的研究[J].环境污染与防治,2006,28(3):164-166.
    [120]Liu Y Z, Yang S G, Hong J, et al. Low-temperature preparation and microwave photocatalytic activity study of TiO_2-mounted activated carbon[J]. Journal of Hazardous Materials,2007,142(1-2):208-215.
    [121]蒙冕武,蒋治良.微波法制备甘蔗渣活性炭及表征[J].林产化学与工业,2000,20(3):22-26.
    [122]丁之恩,周学辉,石苏华,等.微波-催化剂法制取山核桃壳活性炭的研究[J].经济林研究,2003,21(4):47-50.
    [123]陈金根,余养伦,赵丽华,等.微波辐照制备竹类活性炭及表征[J].林产化学与工业,2003,23(2):47-50.
    [124]彭金辉,张世敏.微波辐照瓜子壳制造活性炭[J].资源开发与市场,1999,15(5):259-260.
    [125]Hirata M, Kawasaki N, Nakamura T, et al. Adsorption of dyes onto Carbonaceous materials produced from coffee grounds by microwave treatment[J]. Journal of Colloid and Interface Science,2002,254:17-22.
    [126]Guo J, Lua A C. Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation[J]. Carbon,2000,38:1985-1993.
    [127]Boudou J P, Martinez-Alonzo A, Tascon J M D. Introduction of acidic groups at the surface of activated carbon by microwave-induced oxygen plasma at low pressure[J]. Carbon,2000,38:1021-1029.
    [128]Men(?)ndez J A, Men(?)ndez E M, Iglesias M J, et al. Modification of the surface chemistry of active carbons by means of microwave-induced treatments[J]. Carbon, 1999,37:1115-1121.
    [129]Carrott P J M, Nabais J M V, Ribeiro Carrott M M L, et al. Thermal treatments of activated carbon fibres using a microwave furnace[J]. Microporous and Mesoporous Materials,2001,47: 243-252.
    [130]Nabais J M V, Carrott P J M, Ribeiro Carrott M M L, et al. Preparation and modification of activated carbon fibres by microwave heating[J]. Carbon,2004,42:1315-1320.
    [131]蒋文举,江霞,朱晓帆.微波处理对活性炭孔隙结构的影响[J].林产化学与工业,2004,24(1):21-24.
    [132]蒋文举,江霞,朱晓帆,等.微波加热对活性炭表面基团及吸附性能的影响[J].林产化学与工业,2003,23(1):39-42.
    [133]杨斌武,蒋文举,常青.微波改性活性炭及其脱硫性能研究[J].兰州交通大学学报,2006,25(4):51-54.
    [134]金燕,蒋文举,江霞,等.微波加热对活性炭表面基团及其对SO_2吸附性能的影响[J].环境污染治理技术与设备,2003,4(4):35-38.
    [135]Quan x, Zhao Y B, Chen S, et al. Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances[J]. Journal of Molecular Catalysis A: Chemical, 2006,263:216-222.
    [136]Jou C J, Tai H S. Application of granulated activated carbon packed-bed reactor in microwave radiation field to treat BTX[J]. Chemosphere,1998,37(4):685-698.
    [137]Tai H S, Jou C J. Application of granular activated carbon packed-bed reactor in microwave radiation field to treat phenol[J]. Chemospere,1999,38(11):2667-2680.
    [138]Jou G C J. Application of activated carbon in a microwave radiation field to treat trichloroethylene[J]. Carbon, 1998,36(11): 1643-1648.
    [139]Bo L L, Quan X, Chen S, et al. Degradation of p-nitrophenoi in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed[J]. Water Research,2006,40:3061-3068.
    [140]卜龙利,全燮,陈硕,等.微波场中两种吸波材料氧化处理P-硝基酚溶液[J].化工学报,2006,57(3):662-669.
    [141]Zhang Z H, Shan Y B, Wang J, et al. Inverstigation on the rapid degradation of congo red catalyzed by activated carbon powder under microwave irradiation[J]. Journal of Hazardous Materials,2007,147:325-333.
    [142]Liu X T, Quan X, Bo L L, et al. Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation[J]. Carbon,2004,42:415-422.
    [143]Liu X T, Quan X, Bo L L, et al. Temperature measurement of GAC and decomposition of PCP loaded on GAC and GAC-supported copper catalyst in microwave irradiation[J]. Applied Catalysis A: General,2004,264:53-58.
    [144]Ania C O, Men(?)ndez J A, Parra J B, et al. Microwave-induced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration[J]. Carbon, 2004, 42:1383-1387.
    [145]Ania C O, Parra J B, Men(?)ndez J A, et al. Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons[J]. Microporous and Mesoporous Materials,2005,85:7-15.
    [146]宁平,田森林,王学谦,等.微波辐照再生载甲苯活性炭[J].化学工业与工程,2001,18(2):110-114.
    [147]陈茂生,王剑虹,宁平,等.微波辐照载甲苯活性炭再生研究[J].环境污染治理技术与设备,2006,7(6):77-79.
    [148]宁平,陈玉保,彭金辉,等.载硫活性炭微波辐照解吸研究[J].林产化学与工业,2004,24(3):65-68.
    [149]杨斌武,蒋文举,常青.微波辐照下载硫活性炭的升温及SO_2的解吸研究[J].兰州交通大学学报,2005,24(3):62-64.
    [150]孙墁,江汉保,郑时龙,等.适用于化学合成的微波炉的改造与性能测定[J].微波学报,1998,14(4):377-382.
    [151]孟庆华,陈虹锦,方能虎,等.面向化学研究的微波反应器[J].实验室研究与探索,2003,22(3):94-97.
    [152]Mohan S V, Mouli P C. Assessment of aerosol (PM10) and trace elementalinteractions by Taguchi experimental design approach[J]. Ecotoxicology and Environmental safety,2008,69(3):562-567.
    [153]Boehm H P. Surface oxides on carbon and their analysis: a critical assessment[J]. Carbon, 2002, 40(2): 145-149.
    [154]Zhang Y B, Quan X, Chen S. Microwave assisted catalytic wet air oxidation of H-acid in aqueous solution under the atmospheric pressure using activated carbon as catalyst[J]. Journal of Hazardous Materials.2006, B(137):534-540.
    [155]Wang K P, Zhang Y, Qi R, et al. Effects of activated carbon surface chemistry and pore structure on adsorption of HAAs from water[J]. Journal of Chemical Industry and Engineering,2006,57(7): 1659-1663.
    [156]Valente J M N, Carrott P J M, Ribeiro M ML, et al. Preparation and modification of activated carbon fibres by microwave heating[J]. Carbon, 2004,42:1315-1320.
    [157]Brunauer B, Deming L S., Deming W E, et al. On a theory of the van der walls adsorption of gases[J]. Journal of American and Society, 1940, 62(1): 1723-1732.
    [158]Huang M C, Teng H. Nitrogen-containing carbons from phenol-formaldehyderesins and their catalytic activity in NO reduction with NH_3[J].Carbon,2003, 41 (5):951-957.
    [159]赵修松,蔡光宇,王作周,等.活性炭催化剂上SO_2转化活性中心的研究[J].环境化学,1993,12(3):194-199.
    [160]赵修松,蔡光宇,王作周,等.消除烟道气中二氧化硫的活性催化剂-SO_2催化剂上动态吸附研究[J].环境科学,1993,13(5):67-70.
    [161]蒋文举.微波改性活性炭及其脱硫特性研究[D].成都:四川大学,2003.
    [162]刘军利,古可隆.高温处理对活性炭孔隙结构的影响[J].林产化学与工业,1999,19(3):37-40.
    [163]万先凯.渗氮和热处理对炭还原NO的活性影响及机理研究[D].杭州:浙江大学,2008.
    [164]Biniak S, Szymanskj G. The characterization of activated carbons with oxygen and nitrogen surface groups[J]. Carbon, 1997,35(12): 1799-1810.
    [165]楚文玲,叶兴凯,胡刚,等.杂多酸在活性炭上的固载化-Ⅰ.几种国产活性炭的表面性质.离子交换与吸附[J],1995,11(2):128-136.
    [166]汤鸿霄,钱易,文湘华.水体颗粒物和难降解有机物的特性和控制技术原理.上卷:水体颗粒物(M).北京:中国环境科学出版社,2000.
    [167]郭卓,袁悦.介孔碳CMK-3对苯酚的吸附动力学和热力学研究[J].高等学校化学学报,2007,28(2):289-292.
    [168]Wang Y, Mu Y, Zhao Q B, et al. Isotherms, kinetics and thermodynamics of dye biosorption by anaerobic sludge[J]. Separation and Purification Technology, 2006,50(1):1-7.
    [169](O|¨)zg(u|¨)l G, (O|¨)zcan A, (O|¨)zcan A S. Prepartion of activated carbon from a renewable bio-plant of Euphorbia rigida by H_2SO_4 activation and its adsorption behavior in aqueous solutions[J]. Applied surface science, 2007,253(11):4843-4852.
    [170]Freitas A F, Mendes M F, Coelho G L V. Thermodynamic study of fatty acids adsorption on different adsorbents [J]. The Journal of Chemical Thermodynamics, 2007,39(7):1027-1037.
    [171] Chandra T C, Mima M M, Sudaryanto Y, et al. Adsorption of basic dye onto activated carbon prepared from durian shell: Studies of adsorption equilibrium and kinetics [J]. Chemical Engineering Journal, 2007,127(1-3):121-129.
    [172] Price D W, Schmidt P S. Microwave regeneration of adsorbents at low pressure: Experimental kinetics studies [J]. Journal of microwave power and electromagnetic energy, 1997,32(3): 145-154.
    [173] Quan X, Liu X T, Bo, L L et al.,. Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation [J]. Water Research , 2004,38(20):4484-4490.
    [174] Salvador F, Sanchez J C. A new method for regenerating activated carbon by thermal adsorption with liquid water under subcritical conditions [J]. Carbon, 1996,34(4):511-516.
    [175] Cooke S, Labes M M. Destruction of the environmentally hazardous monochlorinated phenols via pyrolysis in an inert atmosphere [J]. Carbon, 1994, 32(6): 1055-1058.
    [176] Castilla C M, Utrilla J R, Ram(?)n M V L, et al. Adsorption of some substituted phenols on activated carbons from a bituminous coal [J]. Carbon, 1995,33(6):845-851.
    [177] Bonnet C, 2003. Dualit(?) du couplage onde-matiere. De I'intensificationpar chauffage micro-onde (?) la s(?)curit(?) des procedes, Ph.D. Thesis, Universit(?) de technologie de compi(?)gne.
    [178] Nevskaia D M, Santianes A, Mu(?)oz V ,et al. Interaction of aqueous solutions of phenol with commercial activated carbons: an adsorption and kinetic study [J]. Carbon, 1999,37(7): 1065-1074.
    [179] Radovic L R, Silva I F, Men(?)ndez J A, et al. An experimental and theoretical study of the adsorption of aromatics possessing electron - withdrawing and electron-donating functional groups by chemically modified activated carbons [J]. Carbon, 1997,35(9): 1339-1348.
    [180] Ania C O, Parra J B, Pevida C, et al. Pyrolysis of activated carbons exhausted with organic compounds [J]. Journal of analytical and applied pyrolysis,2005,74:518-524.
    [181] Paola P, Pierre P, Chantal G Phototransformations of solid pentachlorophenol [J]. Journal of Photochemistry and Photobiology A:Chemical,1998,119:137-142.
    [182] Ania C O, Parra J B, Men(?)ndez J A, et al. Microwave-assisted regeneration of activated carbons-loaded with Pharmaceuticals [J]. Water research,2007,41:3299-3306.
    [183]Dom(?)nguez A, Fidalgo B, Fern(?)ndez Y, et al. Microwave-assisted catalytic decomposition of methane over activated carbon for CO_2-free hydrogen production[J]. International Journal of Hydrogen Energy, 2007, 32(18):4792-4799.
    [184]Takashima H, Karches M, KannoY. Catalytic decomposition of trichloroethylene over Pt-/Ni-catalyst under microwave heating[J]. Applied Surface Science, 2007, 254(7):2023-2030.
    [185]Bond G, Moyes R B, Whan D A. Recent applications of microwave heating in catalysis[J]. Catalysis Today, 1993, 17(3):427-437.
    [186]Zhang X L, Hayward D O. Applications of microwave-dielectric heating in environmental-related heterogeneous gas-phase catalytic systems[J]. Inorganica Chimica Acta, 2006, 359(11):3421-3433.
    [187]Jou C J. Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy[J]. Journal of Hazardous Materials, 2008, 152(2):899-702.
    [188]骞伟中,陈理,张强,等.纳米铁催化剂制备及裂解甲烷生长小直径碳纳米管[J].过程工程报,2006,6(2):294-297.
    [189]蔡泉,张俊喜,陈兴,等.Cu纳米线的高温原位加热XRD研究[J].核技术,2007,30(7):565-567.
    [190]王崇,那英姿,刘盛林,等.铁催化剂及钾/锰改性的铁催化剂在碳化预处理过程中的XRD研究[J].天然气化工,2005,30(6):6-10.
    [191]王俭,赵海雷,李文超,等.用XPS测定汝瓷月白釉挂红中Fe和Cu的形态[J].中国陶瓷,1995,31(5):27-30.
    [192]许光眉,施周,邓军.石英砂负载氧化铁吸附除锑、磷的XRD、FTIR以及XPS研究[J].环境科学学报,2007,27(3):402-407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700