用户名: 密码: 验证码:
微波改性活性炭及其脱硫特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性炭烟气脱硫是一种高效资源化的烟气脱硫工艺,它不但可以消除烟气SO_2的污染,而且还可以回收硫资源,是当前研究开发的重要脱硫方法。活性炭吸附催化氧化SO_2的性能及再生技术是该工艺的关键,一直是国内外科技人员研究的重要课题。本文主要对微波新技术在脱硫活性炭改性和再生中的应用进行了深入研究,以期找到一种经济有效的脱硫活性炭的改性方法和再生技术。
     在微波场中考察了微波功率、活性炭量、载气流量等对活性炭升温行为的影响。微波场中活性炭的升温行为可分为快速升温(大约60s左右)和升温缓慢两阶段,大约120s后到达高温平台。该温度主要取决于微波功率,活性炭量只对升达最高温度有影响,对升温速率基本没有影响,载气流速对活性炭的升温影响较小。活性炭在微波场中的升温行为可以用对数式和二次多项式来描述。
     通过微波在不同微波功率、作用时间对不同粒径活性炭进行改性,对改性前后活性炭孔隙结构、表面基团、元素组成、微晶结构的变化进行了测试,表明微波处理使活性炭比表面积变化不大,孔容稍有缩小,主要变化发生在中孔范围,孔径分布变化不大,只是向小孔方向发生稍微的移动,活性炭基本微晶增大,石墨化程度提高。微波加热使活性炭表面含氧官能团以CO_x形式分解,微波强度越大,氧含量越少,炭中以吡咯氮形式存在的氮元素含量增加。
     通过比较微波改性活性炭前后的吸附脱硫能力,结合它们的表面物理和化
    
    学性质的变化分析,确认微波改性活性炭的脱硫性能有显著提高,其作用机理
    在于微波处理后,活性炭表面微观形貌发生了较大的变化,化学基团发生分解,
    碱性特征增强,表面含氧量减少,以CO形式释出的含氧官能团分解后产生的
    活性部位和毗咯氮官能团数量增加,吸附502的表观活化能降低。通过微波和
    电加热改性活性炭的对比研究发现:在微波改性活性炭的过程中,除了微波热
    效应之外,还存在有微波的非热效应,使活化过程速率增强、降低反应活化能
    等,从而使微波改性活性炭具有更高的脱硫能力。
     应用正交实验研究了微波功率、辐照时间、活性炭粒径对微波改性活性炭
    脱硫效果的影响,显示微波功率是决定改性活性炭502吸附容量的关键因素,
    微波功率的增加可以加强改性活性炭的502吸附能力,辐照时间对活性炭改性
    的影响在4一smin内突出,活性炭粒径越小,改性效果越好,对50:吸附容量
    也越大。
     对502动态吸附实验表明,微波改性活性炭使脱硫效率提高,502吸附容量
    增大,穿透时间延长。进口502浓度越高,气速越低,穿透时间越长,502吸附
    容量越大。脱硫最佳操作温度为60℃一80℃。烟气中02和水蒸气对改性活性炭
    吸附502的产生重要影响,应根据实际情况调节其含量。
     建立了微波改性活性炭固定床吸附过程的一维数学模型,测定了NZ一姚一
    50,体系中502在微波改性活性炭上等温吸附的总传质系数,由K。和q/qco的关
    系曲线可知,吸附过程属于多步骤联合控制。利用模型模拟了微波改性活性炭
    床层上502穿透曲线,模拟计算和实验测定基本一致。表明提出的模型具有一
    定的准确性,可供装置设计或工艺计算时参考。
     最后,采用微波技术对饱和含硫活性炭进行了再生实验,结果表明在较低
    的微波强度下可以获得高浓度的502气体和回收率,微波再生时间极短,在微
    波功率>150W,3005内即可解吸完全。活性炭量越大,载气流量越小,微波功
    率越大,越有利于 502出口浓度的提高。
Flue gas desulfurization (FGD) by activated carbon is an efficient, widely applied recycling technology that can not only remove sulfur dioxide (SO2), but also recover the sulfur resource. Therefore, the promising FGD technology has been under intensive research. The SO_(2) adsorption and oxidation capability and the regeneration technique of activated carbon are key factors to the successful performance of this technology and hot research arenas in the world. This dissertation focused on the modification of activated carbon and its regeneration by using microwave technology in order to find a cost-effective and technically feasible FGD process.
    The effects of the microwave power, dosage of activated carbon, and flow rate on the behavior of activated carbon were investigated under microwave radiation. The rise of temperature can be divided into two phases: rapid change phase (0- 60 seconds) and slow change phase (60-120 seconds). In about 120 seconds, the temperature approaches a stable value. The stable temperature of activated carbon is primarily determined by the power of microwave. The dosage of activated carbon only affects the stable temperature but shows little influence on the rate of the temperature rise. The flow rate of gas has little effect on the heating rate of the activated carbon. The behavior of activated carbon's temperature rise can be described by the logarithm or the second order polynomial.
    Activated carbons in different sizes were processed under various powers of
    
    
    
    microwave with different time. The pore structures, surface groups, elemental composition, and microstructures of both conventional and modified activated carbon were tested. It was found that modified activated carbon had little change in the surface, modest shrink on pore volume and substantial change in the mediate-size pore, a little change in pore size distribution, compared with the conventional activated carbon. The fundamental crystallites of modified activated carbon aggrandize and its graphitizing increases as well. Heating with microwave induces dissociation of surface groups over activated carbon to form COx. The less the oxygen content and the more content of N element in the form of pyrrole-N were observed under stronger microwave power radiation.
    It was affirmed that the desulfurization capability of activated carbon could be greatly increased by microwave modification. According to the analysis on surface physical and chemical characteristics, a mechanism was concluded: Modified by microwave, functional groups begin to dissociate, alkalescency is enhanced, and surface oxygen content is reduced; the amount of active sites produced by dissociation of oxygen-containing groups increased, so did the pyrrole-N groups. Apparently, the activated energy of SO_(2) adsorption decreased. In the process of microwave processing, in addition to heat effect of microwave, non-heat effect of microwave also exists, which increases the rate of activation process and decreases activated energy of reaction
    The effects of power of microwave, radiation time and activated carbon sizes on desulfurization were studied by a Crossover experiment. The power of microwave is a key factor for SO_(2) adsorption capability. The increase of the power of microwave can enhance adsorption capability of activated carbon. The radiation time can play a significant role on modified activated carbon in 4-5 minutes. The higher adsorption capability of the modified activated carbon was obtained using smaller activated carbon.
    The results of the dynamic experiment of SO_(2) adsorption show that microwave-modified activated carbon has a high desulfurization capability and a long breakthrough time. A higher influent concentration of SO_(2) and a lower flow velocity will prolong the breakthrough time and increase the SO_(2) adsorption capability. The operation temperature is suggested between 60 ℃and 80℃. The
    
    
    
    
    oxygen and vapor concentration in flue gas greatly affects on the SO_(2) adsorption capacity.
    A one-dimension mathematical
引文
1.国家环境保护总局.2000年中国环境公报.环境保护,2001,(7):3-9
    2.刘炳江,郝吉明,贺克斌等.中国酸雨和二氧化硫污染控制区区划及实施政策研究.中国环境科学,1998,18(1):1-7
    3.陈复,柴发合.我国酸沉降控制策略.环境科学研究,1997,10(1):27-31
    4.花日茂,李湘琼.我国酸雨的研究进展(综述).安徽农业大学学报,1998,25(2):206-210
    5.缪天成.我国治理二氧化硫污染的历程和建议.硫酸工业,2000,(1):1-10
    6.郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册.北京:化学工业出版社,2001
    7.国家环保局科技标准司.清华大学环境科学及工程系.燃煤二氧化硫污染控制技术现状与综合评价(一).环境保护.1998,(4):4-6
    8.国家环保局科技标准司,清华大学环境科学及工程系,燃煤二氧化硫污染控制技术现状与综合评价(二).环境保护,1998,(5):3-5,9
    9.郭东明.硫氮污染防治工程技术及其应用.北京:化学工业出版社,2001:19-21
    10.童志权.工业废气净化与利用.北京:化学工业出版社,2001
    11.张晔.中国燃煤电厂烟气脱硫技术现状和研究展望.环境保护,1999,4:20-23
    12. Lizzio A A, De Barr J A. Mechanism of SO_2 removal by carbon. Energy & Fuels. 1997,11(2):284-291
    13. Otake T, Tone S, Yokota Y. Kinetics of sulfur dioxide oxidation over activated carbon. J Chem Engng Japan, 1971, 4(2):155-159
    14.菱沼孝夫.活性炭最近排胗脱硫技术.别册化学工业,1979,23(5):80-83
    15.大连化物所802组.活性炭催化剂用于消除和回收烟气中的低浓度二氧化硫.催化学报,1982,3(3):198-204
    16.张力,刘伟.活性炭吸附烟气脱硫展望.辽宁化工,1996,(5):16-18
    17.陈继录.活性炭烟气脱硫的研究开发.热力发电,1990,(6):51-55
    18.张守玉,曹晏,朱廷钰等.活性炭(焦)脱除烟道气二氧化硫工艺.煤炭转化,1999,22(3):28-34
    19. Davini P. Adsorption and Desorption of SO_2 on Active Carbon: the Effect of Surface Basic
    
    Groups. Carbon,1990,28(4): 565-571
    20.苏发兵,李云峰,马兰等.改性活性炭催化剂脱硫性能研究.防化学报,1999,9(6):22-25
    21.王育红,王宏光,李亚峰.活性焦改性及脱硫效果研究.沈阳建筑工程学院学报,2000,16(2):125-127
    22.蔡光宇,王作周,杨永和.消除及回收烟气中SO_2的糠醛渣活性炭研究.环境科学,1993,14(2):2-6
    23.郑经堂,张引枝,王茂章.多孔炭材料的研究进展及前景.化学进展,1996,8(3):241-250
    24. Raymunao-Pinero R, Cazorla-Amoros D, Linares-Solano A. Temperature programmed desorption study on the mechanism of SO_2 Oxidation by activated carbon and activated carbon fibers. Carbon. 2001,39 (2): 231-242
    25.张守玉,房倚天,黄戒介等.活性焦吸附氧化法脱除烟道起中的SO_2.燃料化学学报,1999,27(6):523-528
    26.H.凯利,E.巴德著,魏同成译.活性炭及其工业应用.北京:中国环境科学出版社,1990:7-13
    27.古可隆.活性炭的应用(一).林产化工通讯,1999,33(4):37-40
    28.范延臻,王宝贞.活性炭表面化学.煤炭转化,2000,23(4):26-30
    29. Taman H, Okazaki M. Influence of Acidic Surface Oxides of Activated Carbon on Gas Adsorption Characteristics. Carbon, 1996,34(6): 741-746
    30. Centi G., Riva A., Passarini N. Et al.. Simultaneous removing of SO_2/NO_x from flue gases. Sorbrnt/Catalyst design and performance. Chem. Engng. Sci.1990, 45(8): 2769-2686.
    31.(日)炭素材料学会.活性炭基础与应用.北京:中国林业出版社,1984:286-300
    32.高德霖.活性炭的孔隙结构与吸附性能.化学工业与工程,1990,7(3):48-54
    33. Lahaye J. The Chemistry of Carbon Surface. Fuel, 1998, 77(6): 543-547
    34. Grajek H et al. Changes in the Surface Chemistry and Adsorptive Properties of Active Carbon Previously Oxidized and Heat-treated at Various Temperatures. I. Physico-chemical Properties of the Modified Carbon Surface. Adsorption Science and Technology, 2001,19(7): 565-576.
    35. Fabish T J, Schleifer D E, Surface chemistry and the carbon black work function. Carbon, 1984, 22(1): 19~38
    
    
    36. Boehm H P. Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon, 1994, 32(5): 759-769
    37.(日)立本英机,安部郁夫主编,高尚愚译编。活性炭的应用技术—其维持管理及存在问题。南京:东南大学出版社,2002:254-467
    38. Boehm H P, Diehl E, Heck W, et al.. Surface oxides of carbon. Angew. Chem. Int. Ed., 1964, (3): 669.
    39.刘军利,古可隆.高温处理对活性炭孔隙结构的影响.林产化学与工业,1999,19(3):37-40.
    40. Teng H. Yeh Ts, Hsuc Y. Preparation of Activated Carbon from Bituminous Coal with Phosphoric Activation. Carbon, 1998, 36(9): 1387-1395
    41. Vinke P, Van Verbee.M, Voskamp A F et al. Modification of the Surfaces of Gas-Activated Carbon and a Chemically Activated Carbon with HNO_3. Carbon,1994,32(4): 675-686
    42. Kicharo Hall F et al. the Preparation and Properties of Some Activated Carbons Modified by Treatment with Phosgene or Chlorine. Carbon, 1992,30(2): 173-176
    43. Moreno-Castilla C, Carrasco-Marin F, Maldonado-Hodar F J, et al. Effect of non-oxidant and oxidant acid treatment on the surface properties of an activated carbon with very low ash content. Carbon, 1998,36(1-2): 145-151
    44. Coma Jeray. Energy Heterogeneity of Activated Carbon Fibers Modified with Copper and Iron Compounds. Przem.Chem., 1993, 72(4): 49-51.
    45.楚文玲等.杂多酸在活性炭上的固栽化:1.几种国产活性炭的表面性质.离子交换与吸附,1995,11(2):128-136
    46.王道,桑鸿勋,彭立新等.改性活性炭对苯的吸附性能.环境化学,1992,11(4):19-23
    47. Radovic L R, Silva I F, Ume J I et al. An Experimental and Theoretical Study of Adsorption of Aromatics Processing Electron-withdrawing and Electron-Donating Functional Groups by Chemical Modified Activated Carbon. Carbon, 1997,35(9):1339-1348
    48. Barton S S, Evans M J B, Halliop E et al. Acidic and Basic Site on the Surface of Porous Carbon. Carbon, 1997,35(9): 1361-1366
    49. Menendez J A, Phillips J, Xia B et al. On the Modification of Chemical Surface Properties of Activated Carbon: In the Search of Carbon with Stable Basic Properties. Langmuir,
    
    1996,12:4404-4410
    50.谭小耀,李秀贞.吴迪镛.改性活性炭低温催化氧化脱除H_2S的研究.石油化工,1995,24(10):716-720
    51.王国兴,黄新伟,叶敬东,孔渝华.活性炭精脱硫剂的开发及应用.洁净煤技术,1997,3(3):25-27.
    52. Menéndez J.A., Menéndez EM., Garcia A.et al.Thermal Treatment of Activate Carbons: A comparison between microwave and electrical heating.Journal of Microwave Power and Electromagnetic Energy, 1999, 34(3): 137-142
    53.邱介山,王艳斌,邓贻钊.几种活性炭表面酸性基团的测定及其对吸附性能的影响.炭素技术,1996(4):11-16.
    54.邱介山.低温等离子体技术在炭材料改性方面的应用.新型炭材料,2001,16(3):58-63
    55.傅大放,邹宗柏,曹鹏.活性炭的微波辐照再生试验.中国给水排水,1997,13(5):7-9
    56.张颖,李光明,陈玲.活性炭再生技术的发展.化学世界。2001,(8):441-443
    57.北川睦夫.活性炭处理水的技术与管理.北京:新时代出版社,1987
    58.翁元声.活性炭再生及强制放电再生技术.中国给水排水,1990,6(5):50-54
    59.赵树森.粉状活性炭再生工艺条件的研究.东北林业大学学报,1993,21(5):61-64
    60.吕德隆.高频脉冲活性炭再生新技术.新技术新工艺,1996,(9):40-41
    61.赵建夫.湿式氧化再生活性炭研究进展.世界科学,1998,(3):23-25
    62.王三反.超声波再生活性炭的初步研究.中国给水排水,1998,14(2):24-26
    63.陈皓.超临界CO2萃取再生活性炭技术研究进展.上海环境科学,1997,16(12):26-28
    64.臧志清.超临界二氧化碳再生活性炭法治理甲苯废气.环境科学研究,1998,11(5):62-64
    65.宁平,田森林,王学谦等.微波辐照再生载甲苯活性炭.化学工业与工程,2001,18(2):109-113
    66.孙晓娟,苏跃增.金凤明.微波化学非热效应初探.江苏石油化工学院学报,2000,12(3):42-45
    67.黄艳,彭强.谢明贵.微波在高分子中的应用.化学研究与应用,2002,14(1):84-89
    68.苟斌,吴菊清,李祥萍.微波与物质相互作用过程中非热效应的机理分析.上海有色金属,2001,22(1):6-8
    
    
    69.史尚钊,刘万生等.微波加热技术在材料工程中的应用与进展.耐火材料,1995,29(4):231-233,237
    70. Menende J A et al. Modification of the Surface Chemistry of Active Carbons by Means of Microwave-induced Treatments. Carbon, 1999,37(7): 1115-1121
    71. Boudou J.P., Martinez-Alonzo A., Tascon J.M.D..Introduction of acidic groups at the surface of activated carbon by microwave-induced oxygen plasma at low pressure. Carbon,2000,38 (7): 1021-1029
    72.一弓.活性炭的微波低温等离子体处理及其表面性能.等离子体应用技术快报,1999,(5):16-17
    73. Deng S.G., Lin Y.S.. Microwave heating synthesis of supported sorbents. Chemical Engineering Science, 1997,52(10): 1653-1575.
    74. Jia Guo, Lua Aik Chong. Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation. Carbon,2000,38(14): 1985-1993
    75. Norman, Loren M., Cha C.Y..Production of activated carbon from coal chars using microwave energy, Chemical Engineering Communications,1996,(140): 87-110
    76. Carrott P.J.M., Nabais J.M.V., Ribeiro Carrott M.M.L, Menendez J.A.. Thermal treatments of activated carbon fibres using a microwave furnace. Microporous and Mesoporous Materials, 2001, 47(2-3): 243-252
    77. Raymundo-Pinero E., Cazorla-Amoros D., Salinas-Martinez de Lecea C..Factors controlling the SO_2 removal by porous carbons: relevance of the SO_2 oxidation step. Carbon, 2000,38(3): 335-344
    78.李开喜,吕春祥,凌立成.活性炭纤维的脱硫性能.燃料化学学报,2002,30(1):89-96
    79. Bradshaw S.M., Van Wyk E.J., De Swardt J.B..Microwave heating principles and the application to the regeneration of granular activated carbon. Journal of The South African Institute of Mining and Metallurgy. 1998,98(4): 201-210
    80. Van Wyk E.J., Bradshaw S.M., de Swardt J.B..Dependence of microwave regeneration of activated carbon on time and temperature. Journal of Microwave Power and Electromagnetic Energy, 1998, 33(3): 151-157
    81. Coss P. Moses,Cha Chang Yul. Microwave regeneration of activated carbon used for removal of solvents from vented air. Journal of the Air and Waste Management
    
    Association,2000,50(4): 529-535
    82. Fang C.S., Lai Peter M.C.Microwave regeneration of spent powder activated carbon. Chemical Engineering Communications, 1996,(147): 17-27
    83. Bradshaw S.M., Van Wyk E.J., de Swardt J.B.. Preliminary economic assessment of microwave regeneration of activated carbon for the carbon in pulp process. Journal of Microwave Power and Electromagnetic Energy, 1997,32(3): 131-144
    84. Polovina M, Babic B, Kaluderovic B, et al. Surface characterization of oxidized activated carbon cloth. Carbon, 1998, 35(8): 1047-1052.
    85.汤鸿,庞亚芳,李启东.改性活性炭对氨和三甲胺的吸附特性研究.环境化学,2000,19(5):431-435.
    86.黄正宏,康飞宇,吴慧,梁开明.湿氧化改性多孔炭对低浓度苯和丁酮蒸汽的吸附.清华大学学报(自然科学版),2000,40(10):111-115.
    87. Yuji Kawabuchi, Hidetoshioka, Shizuo Kawano ea al. The modification of pore size in activated carbon fibers by chemical vapor desorption and its effects on molecular sieve selectivity. Carbon, 1998,36(4): 377-382
    88. Mangun C.L., Debarr J.A., Economy J.. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers.Carbon,2001,39(11): 1689-1696
    89.曾戎,岳中仁,曾汉民.活性炭纤维的热处理及其氧化还原吸附银的研究.合成纤维工业,1999,22(1):15-18
    90.刘振宇,郑经堂,王茂章.活性炭纤维孔结构控制和表面改性.离子交换与吸附,1997,13(4):353-358
    91. Jones D.A.,Lelyveld T.P., Mavrofidis S.D., Kingman S.W.,Miles, N.J. Microwave heating applications in environmental engineering-A review. Resources, Conservation and Recycling, 2002, 34(2): 75-90
    92.刘植昌,凌立成,乔文明等.高温热处理对中孔比较发达的沥青基球状活性炭孔结构的影响.材料科学与工程,1999,17(3):78-81
    93. Kaneko K et al. Origin of Super-high Surface Area and Microcrystalline Graphitic Structures of Activated Carbon. Carbon,1992,30(7): 1075-1088
    94.徐息.活性炭吸附烟气脱硫技术的工业试验.二氧化硫污染治理技术汇编,249-253:2001年全国烟气脱硫成套技术工程应用实例分析及学术研讨会,2001年10月10-12日,
    
    成都,中国环境保护学会
    95. Lizzio AA, De Barr J A. Effect of surface area and chemisorbed oxygen on the SO_2 adsorption capacity of activated char. Fuel. 1996, 75(13): 1515-1522
    96.赵修松,蔡光宇,王作周等.活性炭催化剂上SO_2转化活性中心的研究.环境化学,1993,12(3):194-199
    97.杨全红,郑经堂等.由含氮官能团的演变考察PAN—ACF的改性.炭素。1998,(1):26-28
    98.林肇信,郝吉明,马广大。大气污染控制工程实验.北京:高等教育出版社,1990:66-71
    99. Muniz J, Herrero J E, Fuertes A B. Treatment to enhance the SO_2 capture by activated fibers. Appl Catal B: Environmental. 1998,18(1-2):171-179
    100. Carrasco-Martin F, U trera-Hidalgo E et al. Adsorption of SO_2 in flowing air onto activated carbons from olive stone. Fuel. 1992,71(5):575-578
    101. Moreno-astilla C, Carrasco-Marin F. et al. Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content. Carbon. 1998,36(1-2):145-152
    102. Biniak S, Szymanskj G. et al. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon, 1997,35(12):1799-1810
    103.李开喜,凌立成,刘朗等.热处理改性活性炭纤维的脱硫活性.催化学报,2000,21(3):264-268
    104.李开喜,凌立成,刘朗等.热处理对含氮活性炭纤维脱除SO_2能力的影响.环境科学.1999,20(2):22-25
    105.赵修松,蔡光宇,王作周等.消除烟道气中二氧化硫的活性催化剂——SO_2催化剂上动态吸附研究.环境科学,1993,13(5):67-70
    106. MenendezJ.A, Xia Ba, Phillips Jonathan et al. On the modification and characterization of chemical surface properties of activated carbon:Microcalorimetric, electrochemical, and thermal desorption probes. Langmuir, 1997,13(13):3414-3421
    107. Figueiredo J.L., Pereira M.F.R., Freitas M.M.A. et al. Modification of the surface chemistry of activated carbons. Carbon, 1999,37(9):1379-1389
    108. Paolo Davini. Adsorption and desorption of SO_2 on active carbon: The effect of surface basic groups. Carbon, 1990,28(4):65-571
    
    
    109.中国标准出版社编.化学工业标准汇编(无机化工).北京:中国标准出版社,1994:290-292
    110.李永祥,程振民,袁渭康.低浓度SO_2在部分润湿活性炭上的催化氧化.化工学报,2000,51(4):485-488
    111.李开喜.凌立成,宋燕等.氧气和水蒸气对球状活性炭吸附SO_2能力的影响.环境化学,1999,18(3):205-209
    112.李开喜,凌立成,刘朗等.不同反应温度下活性炭纤维脱除SO_2的能力.新型炭材料,1999.14(1):8-11
    113. Isao Mochida, Yozo Kvrai, Masuaki Shirahama. Removal of SO_x and NO_x over activated carbon fibers. Carbon, 2000, 38(2): 227-239
    114.叶振华.化工吸附分离过程.北京:中国石化出版社,1992
    115.叶振华.吸着分离过程基础.北京:化学工业出版社,1988
    116.马晓讯,张美华.改性活性炭吸附H_2S总传质系数的测定及动力学研究.化学工程,1993,21(2):60-65.
    117.程振民,蒋正兴,袁渭康.SO_2在活性炭床层中的透过曲线.化工学报,1996,47(5):515-521
    118.Chang Yul Cha, Dang Sik Kim.Microwave induced reactions Of sulfur dioxide and nitrogen oxides jn char and anthracite bed.Carbon,2001, 39(8):1159-1166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700