用户名: 密码: 验证码:
中温固体氧化物燃料电池La_(1-x)Sr_xCo_yFe_(1-y)O_3阴极制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锶、铁掺杂的钴酸镧类(La1-xSrxCoyFe1-yO3,LSCF)钙钛矿结构材料具有高氧离子自扩散系数,良好的电子和氧离子混合导电能力,是一种优良的氧还原催化剂,非常适合作为固体氧化物燃料电池的阴极材料。除了LSCF元素组成对性能有着重要影响之外,初始粉体微观形貌以及电极的微观结构对电化学性能也有着非常重要的影响。而粉体合成方法直接决定了粉体的微观形貌,并对电极微观结构也有着重要影响。因此,本文从研究LSCF粉体的合成方法出发,将微波引入到LSCF的合成和电极烧结过程中,提出了一种理想的快速高效合成方法——微波溶胶凝胶法;在此基础上,用极化曲线、电化学阻抗谱和单电池等实验手段,比较研究了LSCF电极、LSCF-GDC复合电极和LSCF-GDC梯度电极三种电极结构的电化学性能及其影响因素,初步分析它们的氧还原反应动力学过程。主要研究结果如下:
     1)提出了微波溶胶凝胶法(微波法)合成LSCF粉体,尝试使用了微波烧结法制备LSCF电极。
     采用微波法合成了LSCF纳米粉体,借助X-射线荧光探针、X-射线衍射、傅立叶红外、BET、扫描电镜和透射电镜等分析手段对材料性能和反应过程进行了分析。初步将LSCF形成过程分为下面几个阶段:(1)在反应初期,LSCF相主要由硝酸盐反应生成;(2)除硝酸锶之外的其它硝酸盐同时分解成为相应的氧化物,这些刚分解形成的氧化物呈无定形状态;(3)硝酸锶与有机物分解产生的二氧化碳生成比较稳定的碳酸锶;(4)在反应中后期,LSCF相主要由碳酸锶与其它金属氧化物之间相互发生固相反应生成。
     采用正交实验分析了混合液初始浓度,PVA加入量,微波处理时间和微波处理功率对合成粉体比表面积的影响。结果发现,微波处理时间对比表面积影响最大,表面活性剂影响次之,微波功率影响较小,而混合液初始浓度基本没有影响。在700W微波功率下,辐射35min可制备出比表面积为38.9(m2/g),粒度为23nm,粒径分布在16nm范围内的纳米粉体。
     2)采用极化曲线、电化学阻抗等方法比较研究了LSCF电极、LSCF-GDC复合电极和LSCF-GDC梯度电极的电化学性能。
     实验发现,复合电极(800℃,Rp=0.03~0.06??cm2)具有最小的极化电阻,梯度电极(800℃,Rp=0.061~0.085??cm2)次之,LSCF电极(800℃,Rp=0.13??cm2)极化电阻最大。与相同条件下的La1-xSrxMnO3(LSM)电极比较后发现,LSCF阴极的极化电阻比LSM电极要小10倍左右。GDC掺混在一定程度上降低了LSCF电极的极化电阻,但降低幅度只有25%~50%,这与LSM电极极化电阻是掺杂YSZ的LSM-YXZ复合电极的10倍相比,优化效果不是很明显。计算比较了LSCF和LSM的三相线长度,900℃时,LSM电极的三相线长度为0.12μm,而LSCF电极为8.6μm。也就是说,对LSM电极,电化学反应基本就发生在电极/电解质界面的几个分子层内,而LSCF电极反应可以深入到电极内部近10个微米的范围内。当添加GDC制成LSCF-GDC复合电极后,三相线长度基本不变。而YSZ掺混的LSM-YSZ复合电极三相反应线长度由原来的0.12μm提高到了6.5μm。由三相线长度及其变化可以初步解释LSM和LSCF电极在分别使用YSZ和GDC掺混后性能的变化趋势。
     根据极化电阻与温度的阿累尼乌斯关系,可计算相应电极上氧还原反应的表观活化能分别为LSCF电极的1.53eV(P.Murray,1.63eV),LSCF-GDC20复合电极的1.54eV(P. Murray ,1.62eV),LSCF-GDC40复合电极的1.47eV(P.Murray,1.69eV),LSCF-GDC60复合电极的1.53eV(P.Murray,1.30eV),LSCF-GDC80复合电极的1.49eV,与P.Murray研究结果接近。
     研究发现,随着温度升高,交换电流密度增大。温度每升高10K,交换电流密度就增大1~3倍,与范霍夫(Vant Hoff)近似规律有类似规律。随着GDC掺混量的增加,交换电流密度呈先升后降趋势。800℃下,LSCF阴极的交换电流密度69.14 mA/cm2,相应复合电极的交换电流密度分别为147.66mA/cm2,77.90mA/cm2,57.19mA/cm2,28.79mA/cm2。
     3)研究了GDC含量对复合电极性能的影响。随着GDC的增加,极化电阻先降后升。当GDC掺杂量在20~40%时,复合电极具有最低的极化电阻。交换电流密度随GDC含量的变化与极化电阻有类似的规律。不同的是,交换电流的最大值出现在20%的GDC掺杂。显然,掺混一定的GDC可提高电极性能,其最佳GDC掺杂量在20~40wt%之间。
     4)从理论和实验两个方面对偏置电压影响进行了分析。研究发现,电解质电阻和导电活化能基本不随偏置电压的变化而变化;在大偏置电压下,偏置电压与电极极化电阻的对数(lnRP)之间具有线性关系,而在小偏置电压下,Rp基本不受偏置电压影响,同时,电极反应的导电活化能随偏置电压的增大而逐渐减小。显然,偏置电压对电化学反应的影响主要是通过影响界面双电层电场,进而影响反应活化能来实现的。也就是说,偏置电压变化只对容抗有影响,而对纯电阻没有作用。
     5)对于LSCF电极和LSCF-GDC复合电极,电极反应对称系数均接近0.5,反应电子数均约等于2。初步判断氧还原过程速控步骤为氧的吸附脱附步骤。
Strontium and iron-doped lanthanum cobaltite materials (LSCF)are well known to have high catalytic activity towards the reduction of oxygen, high oxygen self-diffusion coefficients, and high electrical conductivity with mixed conduction that make them suitable as cathode materials. The properties of LSCF depend very much on the powder and cathode morphology besides their composition. In the sense, the synthesis method of the electrode powders plays a very important role in obtaining homogeneous and porous electrodes,which can produce significant improvements on the oxygen conducting properties and oxygen reduction activity of the cathode. In this dissertation, A novel synthesis method, microwave assisted sol-gel method, was used to synthesis the LSCF nanopowders. The properties of three different electrode like pure electrode, composite electrode and functionally graded electrode were studied and compared one another by polarization curves, electrochemical impedance spectroscopy and single cell tests. The kinetic mechanism of oxygen reduction reaction (ORR)was also studied. The major research results are as follows:
     (1)A novel route, microwave assisted sol-gel method (MWSG), was brought forward to synthesis LSCF naopowders; the cathode were also tried to fabricated by microwave.
     Microwave assisted sol-gel route was used for preparation the novel materials. By use of EDAX, X-ray diffraction and FT-IR at different temperatures, SEM and TEM, the properties and synthesized process were studied. The reaction process could be divided into some steps: at the beginning, (a)LSCF phase formation from nitrates, (b)decomposition of reactants into amorphous powders except for strontium nitrate, (c)formation of strontium carbonate from strontium nitrate and carbon bioxides from the decomposition of PVA, and at the medium and terminal stage, (d)LSCF phase formation mainly from strontium carbonate with other oxides.
     The effect of experiment conditions like starting concentration of mixed solution,PVA, microwave treated time and power was systematically studied by orthogonal experiment. LSCF nanopowder could be obtained at 700W for 35 min with a 38.9 m2/g for the BET surface areas and ~23 nm for the grain size. The synthesis period of 20 h usually observed for conventional heating mode is reduced to a few minutes. Thus, the MWSG method is proved to be a novel, extremely facile, time-saving and energy-efficient route to synthesize LSCF powders.
     (2)The properties of pure electrode, composite electrode and functionally graded electrode were studied and compared one another by polarization curves, electrochemical impedance spectroscopy.
     Results shows: the LSCF-GDC composite cathode is highest with a polarization resistance (Rp)of 0.03~0.06??cm2 at 800℃, followed the FGC with a Rp of 0.061~0.085??cm2, the lowest is pure cathode with a Rp of 0.13??cm2.
     The Rp for the LSM and LSCF cathodes at various temperatures is compared. The Rp for LSCF cathodes is as 10% lower as that of the LSM cathode. Mixed with GDC, the Rp for the LSCF composite cathode decreased to 20%~50% compared to pure LSCF cathode; for the LSM composite cathode, the Rp change to the 10% compared to pure LSCF cathode. The difference in cathode performance may be explained by the change of the varies of the TPB(three phase boundary). According to Adler et al. studies, the reactions can occur at internal surfaces away from the electrolyte for mixed conductor cathode and electrode reaction zone can extend up to 10μm from the electrolyte.
     The apparent activation energies for the corresponding cathode are 1.53eV(pure LSCF cathode ) ,1.54eV ( LSCF-GDC20 ) ,1.47eV ( LSCF-GDC40 ) , 1.53eV(LSCF-GDC60), 1.49eV(LSCF-GDC80)respectively. That is close to the results reported by P.Murray.
     The exchange current density for the corresponding cathode at 800℃are 69.14 mA/cm2 (pure LSCF cathode), 147.66 mA/cm2 (LSCF-GDC20), 77.90 mA/cm2 (LSCF-GDC40), 57.19mA/cm2 (LSCF-GDC60), 28.79mA/cm2 (LSCF-GDC80)respectively. Reslts also show that the exchange current density increase with the temperature increase. The exchange current density increase to 1~3 times When the temperature increase 10 K. The rule is similar to the Vant Hoff`s approximately law.
     (3)The effects of the GDC on the properties are studied. With the increase of the GDC content, the Rp firstly increases and then decreases. When added 20~40% GDC in the LSCF cathode, the Rp has a lowest value. The exchange current densities also has a highest value when added 20% GDC in LSCF composite cathode.
     (4)The effects of the DC bias on the properties are also studied from experiments and theory. The DC bias are in linear with the ln(Rp)under a large DC bias value, while at small value, the DC bias has no influence on the Rp. At the same time, the apparent activation energies decrease with the increase of the DC bias. So, the DC bias affects electric field of the double layer at electrode-electrolyte interfaces, and then affects the activation energy. That is, the DC bias can only affects the capacitance resistances, but have no effects on the ohm resistances.
     (5)The symmetry factors are near to 0.5, and the charge transfer numbers of the rate-determining step (RDS)are 2 to all cathodes. These phenomena can only be explained by the existence of intermediate species and multi-step reactions, and it is narrow down to the possible mechanisms of the oxygen reduction reaction to three mechanisms: (1)the direct exchange of oxygen vacancies at electrode-electrolyte interface;(2)reduction of intermediately adsorbed oxygen;(3)the adsorption and desorption step of oxygen. The mathematics models are used to explain the mechanisms. Compared to the experiment results, it is found that: the polarization curves simulated by the adsorption and desorption step of oxygen are in agreement with the experimental results at low overpotentials and a little lower at high overpotentials. so we can draw an conclusion that the ORR RDS may be the adsorption and desorption step of oxygen at the LSCF and LSCF-GDC cathode.
引文
[1]李瑛,王林山.燃料电池.北京:冶金工业出版社, 2000:1
    [2] Dong Hwee Kim, Jisu Choi, Young Taik Hong et al. , Phase separation andmorphology control of polymer blend membranes of sulfonated and nonsulfonatedpolysulfones for direct methanol fuel cell application, ournal of Membrane Science,2007, 299: 19-27
    [3] Lei Li, Yongming Zhang, Jean-Francois Drillet et al. , Preparation andcharacterization of Pt direct deposition on polypyrrole modified Nafion compositemembranes for direct methanol fuel cell applications, Chemical Engineering Journal,2007, 133: 113-119
    [4] N. Q. Minh, T. Takahashi, Science and Technology of ceramic fuel cells, Elsevier,Amsterdam, 1995
    [5] E. F. Sverdrup, D. H. Archer, A. D. Glaser, Am. Chem. Soc. Adv. Chem. Ser. 1969,90: 301
    [6] T. Takeda, R. Kanno, Y. Kawamoto, J. Electrochem. Soc. , 2000, 147: 1730-1733
    [7] R. Doshi, V. Richads, J. D. Carter, et al. , J. Electrochem. Soc. , 1999, 146:1273-1278
    [8] S. Elangovan, A. Khandkar. In Proceedings of the first International Symposium onIonic and Mixed Conducting Ceramics. 1991, Phoenix, AZ, T. A. Ramanarayanan,H. L. Tuller (eds. ). Electrochemical Society, Pennington, NJ, 1991: 122~128
    [9] O. Yamamoto. Solid oxide fuel cells: fundamental aspects and prospects.Electrochimica Acta, 2000, 45: 2423~2435
    [10] T. Ishihara, T. Kudo, H. Matsuda et al. , J. Electrchem. Soc. , 1995, 142: 1519
    [11] B. C. H. Steele, Materials for IT-SOFC stacks: 35 years R&D: the inevitability ofgradualness? Solid State Ionics, 2000, 134: 3~20
    [12] R. Doshi, V. L. Richards, J. D. Carter, et al, J. electrochem. Soc. 1999, 146: 1273~1278
    [13] B. C. H. Steele, Appraisal of Ce1?yGdyO2?y/2 electrolytes for IT-SOFC operation at500°C, Solid State Ionics, 2000, 129: 95~110
    [14] S. Sunde, in 10th SOFC Workshop, Les Diablerets, 1997(McEvoy, A. J. etal. )192-195
    [15] T. Kenjo, M. Nishiya, LaMnO air cathodes containing ZrO electrolyte for hightemperature solid oxide fuel cells3 2, Solid State Ionics, 1992, 57: 295-302
    [16] V. Dusas tre, J. A. Kilner, Oxygen transport in La1?xSrxMn1?yCoyO3±δperovskites:Part II. Oxygen surface exchange, Solid State Ionics, 1999, 126: 153-161
    [17] T. Kenjo, M. Nishiya, LaMnO air cathodes containing ZrO electrolyte for hightemperature solid oxide fuel cells,3 2Solid State Ionics, 1992, 57: 295-302
    [18] M. Sahibzada, S. J. Bension, R. A. Rudkin, et al. , Pd-promoted La Sr Co FeO cathodes0. 6 0. 4 0. 2 0.8 3 , Solid State Ionics, 1998, 113-115: 285-290
    [19] R. Doshi, V. L. Richards, J. D. Carter et al. , J. Electrochem. Soc. , 1995, 146(4):1273-1278
    [20] D. Mori, H. Oka, Y. Suzuki et al. , Synthesis, structure, and electrochemicalproperties of epitaxial perovskite La0. 8Sr0. 2CoO3 film on YSZ substrate, SolidState Ionics, 2006, 177( 5-6): 535-540
    [21]金钦汉,微波化学,北京:科学出版社, 2001:17
    [22] Roussy G, Pierce J A. Foundation and industrial applications of Microwave andradio frequency field. New York: Wiley, 1995, 126
    [23]高建峰,刘亚飞,刘杏芹等,微波固相反应合成La 1-xSrxCoO3阴极材料的研究,硅酸盐学报, 2002: 75
    [24] L. -W. Tai, M. M. Nasrallah, H. U. Anderson et al. , Structure and electricalproperties of La1?xSrxCo1?yFeyO . Part 1. The system 3 La0. 8Sr0. 2Co1?yFeyO3, SolidState Ionics, 1995, 76: 259-271
    [25] L. -W. Tai, M. M. Nasrallah, H. U. Anderson et al. , Structure and electricalproperties of La1?xSrxCo1 ? yFeyO3. Part 2. The system La1 ? xSrxCo0. 2Fe0. 8O3, SolidState Ionics, 1995, 76: 273-283
    [26] C. C. Chen, M. M. Nasrallah, H. U. Anderson, J. Electrochem. Soc. , 1995, 142(2):491-496
    [27] Ioong-Myeon Bae, B. C. H. Steele, Properties of La Sr Co Fe O(LSCF)double layer cathodes on gadolinium-doped cerium oxide (CGO)electrolytes:I. Role of SiO0. 6 0. 4 0. 2 0. 8 3?δ2, Solid State Ionics, 1998, 106: 247-253
    [28] Ioong-Myeon Bae, B. C. H. Steele, Properties of La0. 6Sr0. 4Co0. 2Fe0. 8O3?x(LSCF)double layer cathodes on gadolinium-doped cerium oxide (CGO)electrolytes:II. Role of oxygen exchange and diffusion, Solid State Ionics, 1998, 106: 255-261
    [29] J. A. Lane, S. J. Benson, D. Waller et al. , Oxygen transport in La0. 6Sr0. 4Co0. 2Fe0.8O3 ?δ, Solid State Ionics, 1999, 121: 201-208
    [30] H. Yokokawa, N. Sakai, T. Kawada etal. , J. Electrochem. Soc. , 138(1991)2719-2727
    [31] L. Kindermann, D. Das, H. Nichel, et al. , Chemical compatibility of the LaFeO base perovskites (3La0. 6Sr0. 4)zFe0. 8M0. 2O3 ?δ(z = 1, 0. 9; M = Cr, Mn, Co, Ni)with yttria stabilized zirconia, Solid State Ionics, 89(1996)215-220
    [32] L. -W. Tai, M. M. Nasrallah, H. U. Anderson, in S. C. Singhal, H. Iwahara(eds. ), SOFCⅢ, Proceedings Volume, Vol 93-4, Electrochemical Society, NJ, 1993, P. 241~251
    [33] E. Perry Murray, M. J. Sever, S. A. Barnett. Electrochemical performance of (La, Sr)(Co, Fe)O3-(Ce, Gd)O3 composite cathodes. Solid state ioncis, 2002, 148: 27-34
    [34] R. Doshi, V. L. Richards, J. D. Carter et al. J. Electrchem. Soc. , 1999, 146: 1273
    [35] D. Waller, J. A. Lane, J. A. Kilner et al. The effect of thermal treatment on the resistance of LSCF electrodes on gadolinia doped ceria electrolytes, solid state ionics, 1996, 86-88 : 767-772
    [36]查全性.电极过程动力学导论.北京:科学出版社(第三版), 2002:213~216
    [37]史美伦.交流阻抗谱原理及应用. 2001:25
    [38] S. B. Adler, solid state ionics. Mechanism and kinetics of oxygen reduction on porous La1?xSrxCoO3?δelectrodes 1998, 111: 125-134
    [39] F. Deganello, V. Esposito, M. Miyayama, J. Electrochem. Soc. , 2007, 154: A89-A96
    [40]马文会.固体氧化物燃料电池复合掺杂阴极材料的研究.博士学位论文,华中科技大学图书馆, 2001
    [41] D. Mori, H. Oka, Y. Suzuki, Synthesis, structure, and electrochemical properties of epitaxial perovskite La0 . 8 Sr0 . 2 CoO3 film on YSZ substrate, Solid State Ionics 2006, 177 : 535-540
    [42]刘石明,邢长生,钱晓良等. La0. 8Sr0. 2Co0. 2Fe0. 2O3纳米粉料的制备与表征.华中科技大学学报, 2005: 33: 81-83
    [43] Lei Ge, Wei Zhou, Ran Ran, et al. , Facile autocombustion synthesis of La SrCo Fe O0. 6 0. 4 0. 2 0. 8 3?δ(LSCF)perovskite via a modified complexing sol–gel process with NH4 NO3 as combustion aid, Journal of Alloys and Compounds, In Press
    [44] M. Sase, J. Suzuki, K. Yashiro, Electrode reaction and microstructure of La SrCoO0. 6 0. 4 3?δthin films, Solid State Ionics, 2006, 177: 1961-1964
    [45]何凤姣主编.无机化学.北京:科学出版社, 2001:184
    [46]倪静安.无机及分析化学.北京:化学工业出版社, 2000:176
    [47]闻辂.矿物红外光谱学.重庆:重庆大学出版社, 1989:49
    [48]彭文世,刘高魁.矿物红外光谱图集.北京:科学出版社, 1982:108,150
    [49]傅献彩,沈文霞.物理化学.北京:高等教育出版社(第四版), 1995
    [50] Kudo T, Obayashi H. J. Electrochem. Soc. , 1975, 122(1): 142
    [51]张祥麟.络合物化学.北京:冶金工业出版社, 1979
    [52]袁春波,赵大庆,吴亦洁等. 13C NMR研究稀土柠檬酸配合物的容易配位结构.化学学报, 1996
    [53]邢长生. PVA法合成La0. 8Sr0. 2Co1-yFeyO3阴极材料的制备及其性能研究.硕士学位论文, 2005
    [54]许并社等编著.纳米材料及应用技术.北京:化学工业出版社,慈云祥周天泽,分析化学中的配位化合物, 1986: 206
    [55]梁英教,车荫昌.无机物热力学数据手册.东北大学出版社, 1993
    [56] J. A. Dean. Lange`s handbook of chemistry(15th). McGraw-Hill, New York 2001
    [57] H. Yokokawa, N. Sakai, T. Kawada et al. J. Am. Ceram. Soc. , 1990, 73(3): 649-658
    [58] H. Yokokawa, N. Sakai, T. Kawada et al. Thermaldynamic analysis of reaction profiles between LaMO3 (M=Ni, Co, Mn)and ZrO2. J. Electrochem. Soc, 1991, 138(9): 2719-2727
    [59] H. Yokokawa, T. Kawada, M. Dokiya. Thermodynamic regularities in perovskite and K2NiF2 compounds. J Am. Ceram. Soc. , 1989, 72, 2104-2110
    [60] Pradyot patnaik, handbook of inorganic chemicals, McGraw-Hill, New York 2001
    [61]谢光远.博士学位论文.华中科技大学图书馆, 2001
    [62]衣宝廉.燃料电池——原理,技术,应用.北京:化学工业出版, 2003
    [63] E. P. Murray, S. A. Barnett, (La, Sr)MnO3–(Ce, Gd)O2?x composite cathodes for solid oxide fuel cells, Solid State Ionics , 2001, 143: 265-273
    [64] Z. Li, M. Behruzi, L. Fuerst, D. Stover, in: S. C. Singhal, H. Iwahara (Eds. ), SOFC-III, PV 93-4, The Electrochemical Society, Pennington, NJ, 1993: 171
    [65] I. Yasuda, K. Ogasawara, M. Hishinuma et al. , Oxygen tracer diffusion coefficient of (La, Sr)MnO3±δ, Solid State Ionics, 1996, 86-88: 1197-1201
    [66] S. Carter, A. Selcuk, R. J. Chater et al. , Oxygen transport in selectednonstoichiometric perovskite-structure oxides, Solid State Ionics, 1992, 53-56: 597-605
    [67] G. Ch. Kostogloudis, Ch. Ftikos, Properties of A-site-deficient La Sr Co FeO0. 6 0. 4 0. 2 0. 8 3?δ-based perovskite oxides, Solid State Ionics, 1999, 126: 143-151
    [68] Y. Teraoka, T. Nobunaga, K. Okamoto et al. , Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability, Solid State Ionics, 1991, 48: 207-212
    [69] Adler S B, Lane J A, Steele B C H , Journal of electrochemical society , 1996, 143: 3554-3562
    [70] B. C. H. Steele, Interfacial reactions associated with ceramic ion transport membranes, Solid State Ionics , 1995, 75: 157-165
    [71] Y. S. Hsiao, Characterization of porous SOFC electrodes. UN doctor thesis, 1996
    [72] S. P. Jiang, A comparison of O reduction reactions on porous (La, Sr)MnO and (La, Sr)(Co, Fe)O electrodes, 2 33 Solid State Ionics, 2002, 146: 1-22
    [73] H. Kusaba, Y. Shibata, K. Sasaki and Y. Teraoka, Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide, Solid State Ionics, 2006, 177: 2249-2253
    [74] Fu Qiang, KeNing Sun, NaiQing Zhang et al. , Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy, Journal of Power Source, 2007, 168: 338-345
    [75] E. Siebert, A. Hammouche, M. Kleitz, Impedance spectroscopy analysis of La1 -x Srx MnO3 yttria-stabilized zirconia electrode kinetics, Electrochimica Acta, 1995, 40: 1741-1753
    [76]查全性.电极过程动力学导论.北京:科学出版社(第三版), 2002: 364
    [77]高瑞平,李晓光,施剑林等.先进陶瓷物理与化学原理及技术.北京:科学出版社, 2001: 279~341
    [78] C. R. Xia and M. L. Liu, Microstructures, conductivities, and electrochemical properties of Ce0. 9Gd0. 102 and GDC-Ni anodes for low-temperature SOFCs, Solid State Ionics, 2002, 152: 423-430
    [79] K. Eguchi, T. Setoguchi, T. Inoue et al. , Electrical properties of ceria-based oxides and their application to solid oxide fuel cells, Solid State Tonics, 1992, 52: 165-172
    [80] T. S. Zhang, P. Hing, H. T. Huang et al. , Ionic conductivity in the CeO2-Gd2O3 system (0. 05<=Gd/Ce <= 0. 4)prepared by oxalate coprecipitation, Solid StateIonics, 2002, 148 (3-4): 567-573
    [81] C. Y. Tian and S. W. Chan, Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3, Solid State Ionics, 2000, 134 (1-2): 89-102
    [82] R. S. Torrens, N. M. Sanunes, G. A. Tompsett, Characterisation of (Ce02)(0. 8)(GdO1. 5)(0. 2)synthesised using various techniques, Solid State Ionics, 1998, 111 (1-2): 9-15
    [83] R. S. Torrens, N. M. Sanunes and G. A. Tompsett, Characterisation of (Ce02)(0. 8)(GdO1. 5)(0. 2)synthesised using various techniques, Solid State Ionics, 111 1998, (1-2): 9-15
    [84] S. Dikmen, P. Shuk, M. Greenblatt et al. , Hydrothermal synthesis and properties of Cel-xGdx02-delta solid solutions, Solid State Sci, 2002, 4 (5): 585-590
    [85] K. Yamashita, K. V. Ramanujachary , M. Greenblat, Hydrothermal Synthesis And Low-Temperature Conduction Properties可Substituted Ceria Ceramics, Solid State Ionics, 1995, 81: 53-60
    [86] P. S. Manning, J. D. Sirman, J. A. Kilner, Oxygen self-diffusion and surface exchange studies of oxide electrolytes having the fluorite structure, Solid State Ionics, 1997, 93 : 125-132
    [87]郭鹤桐,刘淑兰.理论电化学.北京:宇航出版社, 1984
    [88] E. Perry Murray, M. J. Sever, S. A. Barnett. Electrochemical performance of (La, Sr)(Co, Fe)O3-(Ce, Gd)O3 composite cathodes. Solid state ioncis, 2002, 148: 27-34
    [89] N. T. Hart, Functionally graded cathodes for solid oxide fuel cells. Journal of materials sciences. 2001, 36: 1077-1085

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700