用户名: 密码: 验证码:
金属氧化物气敏元件阵列的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氧化物气敏传感器作为“气—电”信息转换器件,实现对气体的检测和生产过程控制,同其它方法相比,具有结构简单、廉价、反应迅速等优点,因而成为应用最广、发展最快的气敏传感器之一。随着现代工农业及信息技术的发展,人们对气体的检测不再满足于监控和报警,而提出了更高的要求,不仅要具有定性判别,还要具有定量指示功能。而满足这种技术要求色不再是一个传感器所能胜任的。在现阶段,金属氧化物半导体气体传感器都是单个器件,普遍存在着体积大、能耗高、灵敏度低、热稳定性差、可靠性、选择性和抗干扰性不够强以及一致性差等缺点,简单的多元件组合不能满足生产中的要求,因而限制了金属氧化物半导体气体传感器的进一步广泛应用。本文从ZnO基半导体气体传感器的微型集成阵列的制备技术出发,以提高传感器阵列的灵敏度、选择性、稳定性为目的,着重研究ZnO的掺杂、粉体预处理、厚膜预处理、烧结工艺等对传感器阵列元件的敏感性和稳定性的影响,并采用复阻抗分析的方法研究传感器稳定性变化对应的厚膜微结构变化。
     首先,介绍了气敏传感器阵列的应用背景,阐述了金属氧化物半导体气敏传感器阵列的结构及原理,综述了金属氧化物微结构气体传感器及其阵列的制备技术研究进展及最新动态,分析了气敏传感器的性能指标,最后详细论述了影响稳定性的因素、改善稳定性的措施及稳定性的研究方法。
     其次,采用了激光微加工方法与丝网印刷制备气敏传感器阵列,对比了各自的特点,并着重研究了气敏浆料的配置及丝网印刷工艺对厚膜的表面形貌及边缘平整度的影响。激光微加工和丝网印刷平面制备工艺都具有很好的稳定性和可靠性。相比之下,激光微加工制备工艺简单,但阵列基片上的温度分布有微小的波动;丝网印刷制备工艺更适合大批量生产,阵列基片上温度分布均匀,基片的机械强度高。配制气敏浆料的有机载体对浆料的稳定性和印刷性、印刷厚膜的一致性有重要影响。由松油醇、丁基卡必醇醋酸酯和邻苯二甲酸二丁酯按6:3:1的质量比组成有机载体的混合溶剂,能获得具有较好层次挥发特性,配以1wt.%1,4-丁内酯,4wt.%司班85、0.5wt.%氢化蓖麻油作流变剂、表面活性剂、触变剂,以7:3的固体粉体与有机载体质量比制备气敏浆料可获得均匀、稳定的、满足印刷工艺要求的气敏浆料。最佳固体粉体与有机载体的质量比因粉体特性的差异应有小的变化。印刷速度、网距、刮板压力、刮板角分别为60 mm/s、3.5mm、2.0kgf、72°时,印刷厚膜具有最高的边缘平整度。
     第三,从四针状纳米ZnO厚膜的烧结工艺、粉体预处理和厚膜预处理工艺研究了纳米ZnO传感器的敏感性和稳定性。烧结温度对敏感性的影响因测试气体种类不同有不同的特点,烧结温度越高,传感器越稳定。环境湿度是传感器稳定性的重要影响因素,在50%RH的测试和存储环境中,传感器能保持最佳的敏感性和稳定性。700℃,3小时预处理四针状纳米ZnO粉体、200℃水浴处理印刷厚膜对元件的敏感性有较强的调控作用,也提高了稳定性。
     第四,采用单一掺杂和复合掺杂的ZnO,结合不同的烧结工艺制备气敏传感器阵列,并研究了气敏性和稳定性。依据掺杂改善敏感性、提高稳定性的原则,选择了Ni、Bi_2O_3和Cu_2O作单一掺杂材料,Al_2O_3、TiO_2、V_2O_5为复合掺杂材料。平行于厚膜表面的磁场诱导5wt.%Ni掺杂的ZnO厚膜对100 ppm甲醛具有最好的敏感性和选择性,同时具有很好的稳定性。一元掺杂ZnO+5wt.%Al_2O_3元件对甲醇、甲醛和丙酮气体具有较好的敏感性;三元复合掺杂ZnO+5wt.%Al_2O_3+10wt.%TiO_2+1wt.%V_2O_5元件对苯、甲苯和二甲苯具有较好的敏感性,也改善了元件的稳定性。10wt.%Cu_2O掺杂的纳米ZnO厚膜元件对各种气体都具有最好的敏感性,分别掺杂5wt.%Bi_2O_3和Cu_2O的纳米ZnO元件敏感性次之,但稳定性更好。
     第五,引入微波烧结工艺研究了单一掺杂和复合掺杂ZnO厚膜阵列元件的气敏性和稳定性。微波烧结ZnO及掺杂ZnO厚膜时间越长,厚膜电导和敏感性越小。在20、40、60min三个烧结工艺中,20min烧结的元件具有最好的敏感性和最低的最佳敏感温度,60min烧结的元件具有最好的稳定性。一元Al_2O_3和三元Al_2O_3、TiO_2、V_2O_5复合掺杂ZnO厚膜改善了稳定性的同时提高了对甲醇的敏感性,二元Al_2O_3和TiO_2复合掺杂ZnO,则降低厚膜的敏感性。微波烧结可以有效调控气敏传感器的敏感性和稳定性,是一种值得深入探索的新的烧结工艺。
     第六,采用复阻抗分析的方法研究了传感器阵列厚膜的微结构及其阵列稳定性变化对应的厚膜微结构变化特征。在恒定高温和热循环中,初期元件的谱线随时间波动较大,阻抗谱对应的相位-频率特性曲线向高频移动。随热循环的进行,晶界电阻逐渐减小,晶界电容逐渐增大。ZnO+5wt.%Cu_2O厚膜中引入了p-n结结构,抑制了元件阻抗谱线和相位-频率特性谱线出现大的波动,使元件表现出相对稳定的特性;微波烧结纯ZnO和ZnO+5wt.%Bi_2O_3厚膜元件具有相同的特征阻抗谱曲线,曲线由两个不同直径的四分之一圆弧组成的压扁的半圆弧,曲线随时间波动较小,表明厚膜中颗粒具有更好的烧结状态,元件稳定性好,Cu_2O掺杂ZnO抑制了厚膜颗粒的烧结,阻抗谱曲线随时间的波动较小,元件稳定性差;水浴处理使纯ZnO和掺杂ZnO厚膜谱线稳定,厚膜具有更均匀,更稳定的晶粒及晶界结构,元件在恒定的高温中具有良好的稳定性,但元件在热循环作用中,阻抗谱线持续波动,厚膜不能有效的释放热循环在厚膜中产生的应力,使厚膜颗粒的烧结结构被损坏,稳定性变差。
Metal oxide gas sensors as the "gas-electricity" transducer to detect gas and control industry production are one of the most widely researched and used gas sensors due to their advantageous features, such as low price, prompt response and simple structure. However, with the development of modern industry and information technology, the use of gas sensors is no longer only limited to annunciating and alarming. Gas sensors are called for not only qualitative discrimination but also quantitative analysis of gas in applications. A single sensor can not competent to do it. At present, metal oxide semiconductor sensors are single devices which have the defects and deficiency as big bulk, high power consumption, poor sensitivity, thermal stability, reliability, selectivity, anti-interference and coherency. Simple multi-devices combined can not meet the needs of industry production. In this dissertation, to increase the sensitivity, selectivity and stability of gas sensor arrays, the effect of doping, pretreatment of powders, pretreatment of thick films and sintering craft were discussed and complex impedance analysis was used to study the thick film micro-structure change according to the sensor stability change, on the basis of the technology to manufacture ZnO based semiconductor gas sensor arrays.
     Firstly, the application and development trend of gas sensors array were introduced in this paper. The structure and gas-sensing mechanisms of metal oxide semiconductor sensor arrays were expatiated. Improvements and current research evolvements of technology to manufacture metal oxide micro-structure gas sensors and their arrays were summarized. Sensor Performance was analyzed. At last, factors to effect stability, ways to improve stability and methods to research it were particularly discussed.
     Secondly, gas sensor arrays were manufactured by laser micromachining and screen-printing technique and features of each method were compared. Research was focused on effects of the preparation of gas-sensing materials paste and screen-printing techniques to the morphology of thick films and the resolution of samples. Both laser micromachining and the screen-printing techniques have good stability and reliability. The laser micromachining technique is a simple preparation method and a tiny fluctuation of temperature distribution was brought out on array substrate. The resistance heater on the array substrate prepared by screen-printing technique provides even temperature distribution, and the screen-printing technique is more suitable for volume-produce. The organic vehicle mixed in the paste has important effects to the stability, the printing property of the paste, and coherency of thick film. The main solvent composed of terpineol. butyl-carbitol-acetate and di-n-butyl phthalate with the ration of each 6:3:1 can meet the real needs with gradual volatility. 1wt.% 1,4-butyrolactone, 4wt.% span-85, 0.5wt.% hydrogenated castor oil added serve as rheological agent, surfactant, thixotropic agent. Well-proportioned and stable paste was then prepared by mixing solid powders and organic vehicle together with the weight ration 7:3. The most appropriate ration of solid powders and organic vehicle has small adjustments according to the difference of powder properties. The results show that highest resolution of the printing films can be achieved with printing speed 60mm/s, nets high 3.5mm, pressure of scraper 2.0kgf, and scraping angle 72°.
     Thirdly, sensitivity and stability of nano-ZnO sensors were researched in aspects as sintering temperature of thick films, pretreatment of powder, and hydrothermal treatment of thick films. Effects of sintering temperature to sensitivity have different features according to different kinds of gas. The higher sintering temperature is, the more stable sensitivity is. Relative humidity (RH) is another important factor to sensor stability. In testing and storage circumstance of 50%RH, sensors show best sensitivity and stability. Pretreatment of nano-ZnO at 700℃for 3h and hydrothermal treatment of thick films at 200℃have control function to the sensitivity of sensors and also increase their stability.
     Fourthly, single-doped and multi-doped ZnO sensor arrays were fabricated with different sintering craft. And the corresponding sensitivity and stability were studied. The results show that the sensors based on 5wt.% Ni-doped T-ZnO with magnetic-field induced in parallel direction to the thick film surface have the optimized sensitivity and selectivity to 100ppm formaldehyde together with nice stability. ZnO+5wt% Al_2O_3 sensors have comparatively higher sensitivity to methanol, formaldehyde, and acetone; the trinary doped ZnO+5wt.% Al_2O_3+10wt.% TiO_2+1wt.% V_2O_5 sensors are more sensitive to benzene, toluene and xylene and the stability of thick films is also increased; binary doped ZnO+5wt. % Al_2O_3+10wt. % TiO_2 sensors have comparatively lower sensitivity and stability. 10wt.% Cu_2O doped nano-ZnO have optimized sensitivity to all kinds of gas. 5wt.% Bi_2O_3 and Cu_2O each doped ones improve sensitivity and stability.
     Fifthly, microwave sintering technique was employed to study the sensing property and stability of single doped or multi-doped ZnO sensor arrays. The longer the ZnO and doped ZnO thick films are sintered, the lower the sensor conductivity and sensitivity are. The sensors sintered by microwave for 20min have the highest sensitivity and lowest temperature for optimized sensitivity. Those sintered for 60min have the best stability. The single Al_2O_3 and trinary Al_3O_2, TiO_2 and V_2O_5 doped nano-ZnO sensors have higher sensitivity and stability to 100ppm formaldehyde. Microwave sintering technique can effectively modify and control sensibility and stability of gas sensors and thus is worth further research.
     Sixthly, complex impedance analysis was employed to study the microstructure of thick films and its change according to the change of stability of sensors. For the ZnO and 5wt.% Bi_2O_3 doped ZnO sensors sintered in electric cooker, the Impedance curve have comparatively large fluctuation In the early continuous high temperature and heating cycle operation, and the phase-frequency characteristics curve tends to high frequencies. The grain boundary resistance and capacitance of the corresponding sensors decrease and increase gradually, respectively. The impedance curve and phase-frequency curve of the 5wt.% Cu_2O doped ZnO sensors is stable in stability testing process, which are contributed to p-n junction micro-structure in the thick films. The stability of the sensors is improved. The ZnO and ZnO+Bi_2O_3 sensors sintered by microwave have the same characteristics of impedance curve, which is a flat half circular arc composed of two quarters of circular arc with different diameters. The thick films are sintered well, so the sensors resistance is stable. For Cu_2O doped ZnO thick film, Cu_2O suppress of the ZnO particle agglomeration, which lower the sensor stability. The impedance curve of the ZnO and doped ZnO sensors by the hydrothermal treatment had remained unchanged in continuous high temperature operation, which was a quarter of circular arc. It indicated that the more uniform, more stable grain and grain boundary structure in the thick films are obtained. However, in the heating cycle operation, the impedance curves are fluctuant. It indicated that the thick films can not effectively absorb stress from themselves and the substrate. The grain boundary micro-structure in the thick films is spoiled and the stability of the sensors is decreased.
引文
[1] Isold Simon, Nicolae Ba, Michael Bauer, et al. Micro machined metal oxide gassensors: opportunities to improve sensor performance. Sensors and actuators B, 2001,73:1-26
    
    [2] Ozaki Y., Susuki S., Mtsunaga M. Enhanced long-term stability of SnO_2-based CO gassensors modified by sulfuric acid treatment. Sensors and Actuators B, 2000, 62:220-225
    
    [3] Martinelli G, Carotta M.C., Ferroni M., et al. Screen-printed perovskite-type thickfilms as gas sensors for environmental monitoring. Sensors and Actuators B, 1999,55:99-110
    
    [4] Park J. H., Kim K. H.. Improvement of long-term stability in SnO_2 based gas sensorfor monitoring offensive odor. Sensors and Actuators B, 1999,55:50-58
    
    [5] Weisz P. B.. Gas adsorption, absorption and desorption. J. Chem. Phys. 1953,21:1531-1533
    
    [6] Moseley P. T., Tofield B. C. Solid State Gas Sensors. New York: Adam Hilger, 1987.93-94
    
    [7] Mcaleer J. F., Moseley P. T., Norris J. O. W., et al. Tin dioxide gas sensors. PartI-aspects of the surface density revealed by conductance variations. J. Chem. Soc,Faraday Trans. 1987,1 (83):1323-1326
    
    [8] Schierbaum K. D., Weimar U., GOPEL W.. Conductance, work function and catalyticactivity of SnO_2-based gas sensors. Sensors and Actuators B, 1991,3: 205-214
    
    [9] Nakagawa M., Mitsudo H., Thin epitaxial Ge-Si (111) films: Study and control ofmorphology. Surf. Sci. 1986,175:157-159
    
    [10] Clifford P. K., Tuma D.T.. Characteristics of semiconductor gas sensors: I- Steady stategas response. Sensors and Actuators A,1983,3:233-236
    
    [11] Clifford P. K.. Homogenous semiconducting gas sensors: a comprehensive model. inProc. 1st Int. Conf. Chemical Sensors. Kodansha. Japan: Elsevier, 1983. 135-135
    
    [12] Wu Q., Lee K. M., Liu C. C. Development of chemical sensors using microfabricationand micro machining techniques. Sensors and Actuators B, 1993,13-14:1-6
    
    [13] Lee D., Chung W., Choi M., et al. Low-power micro gas sensor. Sensors and ActuatorsB,1996,(33):147-150
    
    [14] Stoev I., Kohl D.. An integrated gas sensor on silicon substrate with sensitive SnO_2layer. Sensors and Actuators B, 1990,2:233-236
    
    [15] 高晓光,李建平,何秀丽等.Si基膜片型气敏传感器微结构单元的热学性能.微细加 工技术,2002,1:50-53
    
    [16] Robert Aigner, Markus Dietl, Rainer Katterloher, et al. Si-planar-pellistor disagns fortemperature modulated operation. Sensors and Actuators B, 1996,33:151 - 155
    
    [17] Danick Briand, Stephan heimgarter, Marc-Alexis Gretillat, et al. Thermal optimizationof micro-hotplates that have a silicon island. J.Micromech. Microeng. 2002,12:971 -978
    
    [18] Fiirjes P, Vizáry Zs, (?)dám M, et al. Materials and processing for realization ofmicro-hotplates operated at elevated temperature. J.Micromech.Microeng. 2002,12:425-429
    
    [19] Dücsó Cs. Porous si bulk micro-machining for thermally iolated membrane formation.Sensors and Actuators A, 1997,60:235-239
    
    [20] Dibbern U.. Asubstrate for thin-film gas sensors in microelectronic technology.Sensors and Actuators B, 1990,2:63-70
    
    [21] 康昌鹤,唐省吾等.气,温敏感器件及其应用.第一版.北京:科学出版社,1988.46-47
    
    [22] 林伟,黄世震,陈伟等.磁控溅射WO_3薄膜特性研究.郑州轻工业学院学报(自然 科学版),2002,174:7-10
    
    [23] Semancik S, Cavacchi R E. The growth of thin, epitaxial SnO_2 films for gas sensing applications. Thin Solid Films, 1991,206:81-873
    
    [24] Addonizio M. L., Antonaia A., Cantele G, et al. Tansport mechanisms of Rf sputtered Al-doped ZnO film by H_2 process gas dilution. Thin Solid Films, 1999,349:93-99
    
    [25] He Xiuli, Li Jianping, Gao Xiaoguang, et al. NO_2 sensing characteristic of WO_3 thin film micro gas sensor. Sensors and Actuators B, 2003, 93:463-467
    
    [26] 贺洪波,范正修.杂质银对氧化锌薄膜气敏光学特性的影响.光学学报,1998, 1812:1676-1679
    
    [27] Tae-Ha Kwon, Sung-hyun Park, Jee-Youl Ryu, et al. Zinc oxide thin film dioped with Al_2O_3, TiO_2 and V_2O_5 as sensitive sensor for trimethylamine gas. Sensors and Actuators B, 1998,46(2):75-79
    
    [28] Sberveglieri G, Faglia G, Groppelli S., et al. Proc 6th Int Conf Solid-state Sensors and Actuators (transdueers'91), San Francisco, CA, USA, 1991: 165-168
    
    [29] Hoefer U., Botter H., Felske A., et al. Thin-film SnO_2 sensor arrays controlled by varivation of contact potential a suitable tool for chemo metric gas mixture analysis in the TLV range. Sensors and Actuators B, 1997,44(1-3):429-433
    
    [30] 王陪英,胡鋟,刘冬梅等.溶胶-凝胶法制备SnO_2薄膜气敏特性的实验研究.传感 器技术学报,1997,9(3):7-11
    
    [31] Randhawa H S, Matthews M D, Dunshaw R F. Thin Solid Films, 1981,83:267-269
    
    [32] Viirola H., Niinisto L.. Controlled growth of tin dioxide thin films by atomic layerepitaxy. Thin Solid Films, 1994,249:144-149
    
    [33] Nayral C, Ould-Ely T., Maisnnat A., et al. Anovelmechanism for the synthesis oftin/tin oxide nanoparticles of low size dispersion and of nanostructured SnO_2 for thesensitive layers of gas sensors. Adv.Mater., 1999,11:61 -63
    
    [34] Hosseein-Babaei F., Taghibakhsh F.. Electrophoretically deposited zinc oxide thickfilm gas sensor. Electronics Letters, 2000,36(21): 1815-1816
    
    [35] Akihiko Kawahara, Hiroaki Katsuki, Makoto Egashira. Fabrication of semiconductoroxide thick films by sliced off transfer printing and their NO_2-sensing properties.Sensorsand Actuators B,1998,49(3):273-278
    
    [36] Zhu B.L., Weng. D.W. Wu J., et al. Synthesis and gas sensitivity of In-droped ZnOnanoparticles. Journal Material Science: Materials in Electronics, 2003,14:521-526
    
    [37] Zhu B.L., Xie C.S., Wang W.Y., et al. Improvement in gas sensitivity of ZnO thickfilm to volatile organic compounds (VOCs) by adding TiO_2. Materials Letters, 2004,(58): 624-629
    
    [38] Zhu B.L., Xie C.S., Wang A.H., et al. Electrical conductivity and gas sensitivity ofZn-Sb-O thick films. Materials Research Bulletin,2004, 39:409-415
    
    [39] 王林,张覃轶,祝柏林.激光烧结纳米ZnO气敏传感器的制备及其气敏特性研究. 传感技术学报,2003,16(4):491-494
    
    [40] 傅军,董名友.膜厚影响SO_2厚膜型气敏元件敏感特性研究.无机材料学报, 200l,16(6):1255-1258
    
    [41] 陈玉萍.热处理温度对氧化锡气敏特性的影响.郑州轻工业学院,1999,14(2):62-66
    
    [42] Haglekter C, Hierlemann A., Lange D., et al. Smart single-chip gas microsystem.Letter to Nature, 2001,414(15):293-296
    
    [43] Hyung-Ki Hong, Chul Han Kwon, Seung-Ryeol Kim, et al. Portable electronic nosesystem with gas sensor array and artifical neural network. Sensors and Actuators B,2000,66:49-52
    
    [44] Hyung-Ki Hong, Hyun Woo Shin, Dong Hyun Yun, et al. Electronic nose system withmicro gas sensor arrey. Sensors and Actuators B, 1996, 35-36:338-341
    
    [45] Aronova M.A., Chang K.S., Iakeuch I.. Combinatorial libraries of semiconductor gassensors as inorganic electronic noses. Appled physics letters, 2003, 83(6): 1255-1257
    
    [46] Dae.Sike Lee, Youn Tae Kim, Jeung-SooHuh, et al. Fabrication and characteristics ofSnO_2 gas sensor array for volatile organic compounds recognition. Thin Solid Film,2002,416:271-278
    
    [47] G6ts A., Gracia I., A.Plaza J., et al. A novel methodology for the manufacturability ofrobust CMOS semiconductor gas sensor arrays. Sensors and Actuators B, 2001,77:395-400
    
    [48] Uma Jain, A.H.Harker, A.M.Stoneham, et al. Effect of electrode geometry on sensorresponse. Sensors and Actuators B, 1990,2:111 - 114
    
    [49] Capone S., Siciliano P., Barsan N., et al. Analysis of CO and CH_4 gas mixtures byusing a micromachined sensor array. Sensors and Actuators B, 2001, 78:40-48
    
    [50] Martin Heule, Gauckler L.J.. Miniaturised arrays of tin oxide gas sensors on singlemicrohotplate substrates fabricated by micromolding in capillaries. Sensors andActuators B, 2003, 93:100-106
    
    [51] Chul Han Kwon, Dong Hyun Yun, Hyun-Ki Hong, et al. Mutil-layered thick-film gassensor array for selective sensing by catalytic filtering technology. Sensors andActuators B, 2000,65:327-330
    
    [52] Frank Zee, Jack W.Judy. Micromachined polymer-based chemical gas sensor array.Sensors and Actuators B, 2001,72:120-128
    
    [53] 童茂松.薄膜气体传感器及四单元微结构气体传感器阵列的研究:[博士学位论文]. 吉林:吉林大学图书馆,2001.
    
    [54] 傅刚.纳米金属氧化物气敏传器阵列的研究:[博士学位论文].广州:中山大学图 书馆,2001.
    
    [55] 徐甲强,韩建军,谢冰和云.Au_2In_2O_3 CO气体气敏元件的性能与机理研究.传感 技术学报,2007,20:481-484
    
    [56] Eduard Llobet, Jesus Brezmes, Oscar Gualdron,et al. Building parsimonious fuzzy ARTMAP models by variable selection with a cascaded genetic algorithm: application to multisensor systems for gas analysis. Sensors and Actuators B, 2004,99: 267 - 271
    
    [57] Chaudry A.N., Hawkins T.M., Travers, P.J.. A method for selecting an optimum sensor array. Sensors and Actuators B, 2000,69:236-240
    
    [58] Arnaldo D'Amico, Corrado Di Natale. A Contribution on Some Basic Definitions of Sensors Properties. IEEE Sensors Journal, 2001,1:183 - 186
    
    [59] GOPEL W., Reinhardt G, Sensor Technology, Applications, Markets. Weinheim: Sensors Update, 1996.47-48
    
    [60] Ozaki Y, Suzuki S., Morimitsu M., et al. Enhanced long-term stability of SnO_2 -based CO gas sensors modified by sulfuric acid treatment. Sensors and Actuators B, 2000,62:220-225
    
    [61] Haglekter C, Hierlemann A., Lange D., et al. Smart single-chip gas microsystem. Letter to Nature, 2001,414(15):293-296
    
    [62] 杨留方,王毓德,吴兴惠.QM—Y系半导体气敏传感器的失效分析.传感技术学报, 2000,4:287-291
    
    [63] Briand D., Labeau M., Currie J.F., et al. Pd-doped SnO_2 thin films deposited byassisted ultrasonic spraying CVD for gas sensing, selectivity and effect of annealing.Sensors and Actuators B, 1998,5:395-402
    
    [64] Matsuura Y, Takahata K.. Stabilization of SnO_2 sintered gas sensor. Sensors andActuators B, 1991,5:205 -209
    
    [65] Yamazoe N.. New approach for improving semiconducting gas sensors. Sensors andActuators B, 1991,5:7-19
    
    [66] Giber. J., Perczel I. V., Gerblinger. J., et al. Coadsorption and cross sensitivity on hightemperature semiconducting metal oxides: Water effect on the coadsorption process.Sensors and Actuators B, 1994,18-19:113-118
    
    [67] Yoshinobu Matsuura, Kei Takahata. Stabilization of SnO_2 sintered gas sensors. Sensorsand Actuators B, 1991,5:205-209
    
    [68] 张天舒,沈瑜生,张瑞芳.掺镉纳米SnO_2的电导、热稳定性及气敏性能.功能材 料,1995,26(4):294-297
    
    [69] Jong Hyun Park, Kwang Ho Kim. Improvement of long-term stability in SnO_2-based gas sensor for monitoring offensive odor. Sensors and Actuators B, 1999,56:50-58
    
    [70] Sharma R.K., Philip C.H.Chan; Zhenan T.. Investigation of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devices. Sensors and Actuators B, 2001, 81:9-16
    
    [71] Sayago I., Gutkrrez J., Robla J.I., et al. Long-term reliability of sensors for detection of??nitrogen oxides. Sensors and Actuators B, 1995,26-27:56-58
    
    [72] Garzella C, Comini E., Tempesti E. TiO_2 thin films by a novel sol-gel processing for gas sensor applications. Sensors and Actuators B, 2000, 68:189-196
    
    [73] 庄牧林,蔡可芬.粘接剂对气敏元件特性的影响.郑州轻工业学院学 报,1994,9(11):122-124
    
    [74] Ihokura K., Watson J.. The Stannic Oxide Gas Sensor-Principles and Applications.Boca Raton: CRC Press, 1994.79-80
    
    [75] Ozaki Y., Suzuki S., M.Morimitsu, et al. Enhanced long-term stability of SnO_2-basedCO gas sensors modified by sulfuric acid treatment. Sensors and Actuators B,2000,62:220-225
    
    [76] Ozaki Y., Suzuki S., Morimitsu M., et al. Effects of thiourea treatment on the sensingproperties and stability of SnO_2-based CO gas sensors. Electrochemical Society, 2000,147(4):1589-1591
    
    [77] Galdikas A., Jasutis V., Kaciulis S.. Peculiarities of surface doping with Cu in SnO_2thin film gas sensors. Sensors and Actuators B, 1997,43:140-146
    
    [78] Nam Seok Baik, Go Sakai, Kengo Shimanoe, et al. Hydrothermal treatment of tinoxide sol solution for preparation of thin-film sensor with enhanced thermal stabilityand gas sensitivity. Sensors and Actuators B, 2000,65:97-100
    
    [79] Philip C.H. Chan, Gui-zhen Yan, Lie-yi Sheng, et al. An integrated gas sensortechnology using surface micro-machining. Sensors and Actuators B, 2002, 82(2-3):277-283.
    
    [80] Zheng Jiao, Shengyue Wang, Lifeng Bian. Stability of SnO_2/Fe_2O_3 multilayer thin filmgas sensor. Materials Research Bulletin, 2000,35:741-745
    
    [81] Steffes H, Imawan C, Solzbacher F, et al. Enhancement of NO_2 sensing properties ofIn_2O_3-based thin films using an Au or Ti surface modification. Sensors and ActuatorsB,2001,78(l-3):106-112
    
    [82] Rajnish K. Sharma, Zhenan Tang, Philip C.H. Chan, et al. Compatibility of CO gas??sensitive SnO_2/Pt thin film with silicon integrated circuit processing. Sensors andActuators B, 2000,64:49-53
    
    [83] Angelis L. de, Riva R., Selectivity and stability of a tin dioxide sensor for methane.Sensors and Actuators B, 1995,28:25-29
    
    [84] Cantalini C, Pelino M., Sun H.T. Cross sensitivity and stability of NO_2 sensors fromWO_3 thin film. Sensors and Actuators B, 1996,35-36:112-118
    
    [85] Steiner, Klau, Sulz, et al. Laser annealing of SnO_2 thin-film gas sensors in single chippackages. Sensors and Actuators B, 1995,26:64-67
    
    [86] Dutraive M.S., Lalauze R., Pijolat C. Sintering, catalytic effect and defect chemistry inpolycrystalline tin dioxide. Sensors and Actuators B, 1995,26-27:38-44
    
    [87] Angelis L. de, Riva R.. Selectivity and stability of a tin dioxide sensor for methane.Sensors and Actuators B, 1995,28: 25-29
    
    [88] Behr G, Fliegel W.. Electrical properties and improvement of the gas sensitivity inmultiple doped sensors. Sensors and Actuators B, 1995,26-27:33-37
    
    [89] Xu C, Tamaki J., Miura N., et al. Grain size effects on gas sensitivity of porous SnO_2-based elements. Sensors and Actuators B, 1991,3:147-155
    
    [90] Gopel W., Schierbaum K.D.. SnO_2 sensors: current status and future prospects.Sensors and Actuators B, 1995,26:1-12
    
    [91] Berberich M.S., Zheng J.G., Weimar U., et al. The effect of Pt and Pd surface dopingon the response of nanocrystalline tin dioxide gas sensor to CO. Sensors and ActuatorsB, 1996,31:71-75.
    
    [92] 徐海萍.提高半导体气敏元件检测能力的有效途径.传感器世界.2002,8(2):21-23
    
    [93] 王彩君,黄智进,吴兴惠.抑制气敏元件零点漂移的实用电路.传感器技术,1997,4: 24-25
    
    [94] Pascale Massok, Muriel Loesch, Daniel Bertrand. Comparison between two Figaro sensors (TGS842 and TGS813) for the detection of methane, in terms of selectivity and long-term stability. Sensors and Actuators B,1995,24-25: 525-528
    
    [95] Guidi V., Cardinali G, Don L, et al. Thin-film gas sensor implemented on a lowpowerconsumption micromachined silicon structure. Sensors and Actuators B,1998,49:88-92
    
    [96] Bosc J., Guo Y., Sarihan V., et al. Accelerated life testing for micro-machined chemicalsensors. IEEE Trans. Reliability, 1998,47 (2):135-141
    
    [97] Rajnish K.Sharma, Philip C.H.Chan, Zhenan Tang, et al. Investigation of stability andreliability of tin oxide thin-film for ontegrated micro-machined gas sensor devices.Sensors and Actuators B, 2001,81:9- 16
    
    [98] Scaife B.K.R. Principles of Dielectrics. New York: Oxford University press,1998.281-282
    
    [99] 方俊鑫,殷之文.电介质物理学.第一版.北京:科学出版社,1998.68-70
    
    [100]张良莹,姚喜.电介质物理.第一版.西安:西安交通大学出版社1991.158-159
    
    [101]李标荣,张绪礼.电子陶瓷物理.武汉:华中理工大学出版社1991.46-47
    
    [102] Levinson L. M., Philipp H. R.. Low-temperature ac properties of metal-oxide varistors.J.Appl. Phs., 1978,49(12): 6142-6146
    
    [103] Chaud hary V. A., Malla I.S., Vijaya mohanan K. Impedance studies of an LPG sensorusing surface ruthenated tin oxide. Sensors and Actuatoes B, 1999,55:127-133
    
    [104]余萍,王欢,杨志华等.γ-Al_2O_3基纳米陶瓷气敏元件稳定性研究.功能材料, 2005,36(5):915-917
    
    [105]苏功宗,张代瑛,李同泉等.高性能钌系低阻值厚膜电阻浆料的研究.电子元件与 材料,1994,12(6):16-21
    
    [106]王印月.半导体物理学.兰州:兰州大学出版社,1999.269-273
    
    [107] Gardner J., Pike A., Rooji N. de, et al. Integrated array sensor for detecting organicsolvents. Sensors and Actuators B, 1995,26(1-3): 135-139
    
    [108] Cavicchi R. E.. Optimized temperature-pulse sequence for the enhancement ofchemicallyspecific response patterns from micro-hotplate gas sensor. Sensors andActuators B, 1996, 33:142-146
    
    [109] Semancik S., Cavicchi R.. Kinetically controlled chemical sensing usingmicromachined structure. Accounts Chem.Res. 1997, 31(5): 279-287
    
    [110] Dibbern U.. Asubstrate for thin-film gas sensors in microelectronic technology.Sensors and Actuators B, 1990,2:63-70
    
    [111] Chung W., Shim C, Choi S., et al. Tin oxide microsensor for LPG monitoring. Sensorsand Actuators B, 1994,20:169-143
    
    [112] Bernhardt G, Silvestre C, Lecursi N., et al. Performance of Zr and Ti adhesion layersfor bonding of platinum metallization to sapphire substrates. Sensors and Actuators B,2001, 77(1-2):368-374
    
    [113] Mishra V., Agarwal R.. Effect of electrode on sensor response. Sensors and ActuatorsB, 1994,22:121-125
    
    [114] Hong-Ming Lin, Shah-Jye Tzeng, Peng-Fan Hsian. Electrode effects on gas propertiesof nanocrystalline ZnO oxide. Nano Structured Materials, 1998,10(3): 465-477
    
    [115] Ionescu R., Vancu A., Buta R, et al. Diode-like SnO_2 gas detection device. Sensors andActuators B, 1997,43(1-3): 126- 131
    
    [116] Hausner M., Zacheja J., Binder J.. Multi-electrode substrate for selectivityenhancement in air monitoring. Sensors and Actuators B, 1997,43(1-3): 11-17
    
    [117] Hoefer U., Botter H., Wagner E., et al. Highly sensitive NO_2 sensor device featuring aJFET-like transducer mechanism. Sensors and Actuators B, 1998,47(1-3): 213-217
    
    [118] Hoefer U., BStter H., Felske A., et al. Thin-film SnO_2 sensor arrays controlled byvarivation of contact potential a suitable tool for chemo metric gas mixture analysis inthe TLV range. Sensors and Actuators B, 1997,44(1-3):429-433
    
    [119] Hoefer U., Steiner K., Wagner E.. Contact and sheet resistances of SnO_2 thin filmsfrom transmission-line-measurement. Sensor and Actuators B, 1995,26-27:59-63
    
    [120] Qu Wenmin, Wojtek Wlodarski. A thin-film sensing element for ozone, humidity andtemperature. Sensors and Actuators A, 2000,64:42-48
    
    [121]罗世永,庞远燕,郝燕萍等.电子浆料用有机载体的挥发性能.电子元件与材料,??2006,25(8):49-51
    
    [122]张君启,堵永国,为军等.厚膜电阻浆料用有机载体挥发特性研究.电子元件与 材料,2003,22(11):40-42
    
    [123]唐雯楠.光敏银浆的制备与性质研究:[硕士学位论文].南京:东南大学,2005.
    
    [124]钱逢麟,竺玉书.涂料助剂—品种和性能手册.第一版.北京:化学工业出版社, 2003.68-70
    
    [125]郑忠,李宁.分子力与胶体的稳定和聚沉.第一版.北京:高等教育出版社,1995. 75-76
    
    [126]李历历.纳米锑锡氧化物粉末的制备及导电浆料稳定性研究:[博士学位论文].湖 南:中南大学,2005.
    
    [127]巴顿T.C..涂料流动和颜料分散.郭隽奎.北京:化学工业出版社,1988.155-156
    
    [128] Zhenan Tang, Philip C. H. Chan, Rajnish K. Sharma, et al. Investigation and control ofmicrocracks in tin oxide gas sensing thin-films. Sensors and Actuators B,2001,79:39-41
    
    [129] Rajnish K. Sharma, philip C.H.Chan, Zhenan Tang, et al. Investigation of stability andreliability of tin oxide thin-film for integrated micro-machined gas sensor devices.Sensors and Actuators B,2001,81:9-16
    
    [130]杨留方,吴兴惠,吴兴惠.QM-Y系半导体气敏传感器的失效分析.传感技术学报, 2000,13(4):287-291
    
    [131] Allen J, W Smith D J, Smith D J.. Investigating the Long-term Heating and Analyte Exposure Effects on Tin Oxide Thick-film Sensors. Sensors, 2002,2:1260-1265
    
    [132] Wolfrum J.Edward, Meglen M. Robert, Darren Peterson, et al. Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels. Sensors and Actuators B, 2006,115:322-329
    
    [133] Dang Hyok Yoon, Gyeong Man Choi. Microstructure and CO gas sensing properties of porous ZnO produced by starch addition. Sensors and Actuators B, 1997,45:251-257
    [134] Yamazoe N., Fuchigami J., Kishikawa M., et al. Interaction of tin oxide surface with O_2) H_2O and H_2. Surface Science, 1979,86:335—344
    [135] Ionescu R., Vancu A., Moise C, et al. Role of water vapour in the interaction of SnO_2 gas sensors with CO and CH_4. Sensors and Actuators B, 1999,61:39~42
    [136] Ghennady Korotchenkov, Vladimir Brynzari, Serghei Dmitriev. Electrical behavior of SnO_2 thin films in humid atmosphere. Sensors and Actuators B, 1999, 54:197~201
    [137] Heiland G., Kohl D., Chemical Sensor Technology. Tokyo: Kodansha, 1988.15—38
    [138] Morrison S R. The Chemical Physics of Surfaces. 2nd edn. New York: Plenum Press, 1990.326-328
    [139] Henrich V A, Cox P A. The Surface Science of Metal Oxides. Cambridge: Cambridge University Press,1994.312~313
    [140] Egashira M, Nakashima M, Kawasumi S. Change of thermal desorption behaviour of adsorbed oxygen with water coadsoption on Ag+doped Tin (IV) oxide. Journal of the Chemical Society: Chemical Communications, 1981,1047—1049
    [141] Barsan N., Ionescu R. The mechanism of the interaction between CO and a SnO_2 surface: the role of water vapour. Sensors and Actuators B, 1993,12: 71—75
    [142] Yan Yanfa, M. M. Al-Jassim, Su-Huai Wei. Oxygen-vacancy mediated adsorption and reactions of molecular oxygen on the ZnO (1010) surface. Physical Review B,2005,72:161307~161311
    [143] Wol'kenstain T.T.. Theory of Electronic Catalysis on Semiconductors, Pergamon: Oxford press, 1963. 151 —153
    [144] Sonder E., Levinson L.M., Katz W.. Role of short-circuiting pathway in reduced ZnO varistors. J. Appl.Phys. 1985,58(11):420—425
    [145] Wolf Schmid, Nicolae Barsan, Udo Weimar. Sensing of hydrocarbons with tin oxide sensors: possible reaction path as revealed by consumption measurements. Sensors and Actuators B,2003,89:232—236
    [146] Kitano M., Hamabe T., Maedas S., et al. Growth of large tetrapod-like ZnO crystals. J.
    ??Cryst. Growth,1990,102: 965-968
    
    [147] Zhu.Y. W., Zhang H. Z., Sun X. C, et al. Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters, 2003, 83:144-146
    
    [148]徐红燕.氧化物多孔纳米固体气敏传感器的研究:[博士学位论文].济南:山东大 学图书馆,2006.
    
    [149]徐红燕,刘秀琳.利用纳米ZnO粉制备厚膜气敏传感器的研究.功能材料与器件 学报,2005,11(2):241-245.
    
    [150] Delaunay J.J., Yanagisawa K., Nishino T., et al. Enhancement of gas response of ZnO micro-nano structured films through plasma treatment. Proceedings of SPIE, 2007 -link.aip.org
    
    [151] Ozaki Y., Suzuki S.. Enhanced long-term stability of SnO_2-based CO gas sensors modified by sulfuric acid treatmen. Sensors and Actuators B, 2000,62: 220-225
    
    [152]徐红燕.李梅.水热处理对SnO_2厚膜气敏传感器性能的影响.功能材料,2005, 9(36):1415-1417
    
    [153] Kawamura K., Kerman K., Fujihara M., et al. Development of a novel hand-heldformaldehyde gas sensor for the rapid detection of sick building syndrome. Sensorsand Actuators B,2005,105:495-501
    
    [154] Korpan Y.I., Gonchar M.V., Sibirny A.A., et al. Development of highly selective andstable potentiometric sensors for formaldehyde determination. Biosens. Bioelectron.2000,15:77-83
    
    [155] Kataky R., Bryce M.R., Goldenberg L., et al. A biosensor for monitoring formaldehydeusing a new lipophilic tetrathiafulvalenetetracyanoquinodimethane salt and apolyurethane membrane, Talanta,2002,56:451 -458 .
    
    [156] Air Quality Guidelines, second ed., WHO Regional Office for Europe, Copenhagen,Denmark, 2001. (Chapter 5.8)
    
    [157] Dirksen J.A., Duval K., Ring T.A.. NiO thin-film formaldehyde gas sensor. Sens.Actuators B, 2001,80:106- 115
    
    [158] Chia-Yen Lee, Che-Ming Chiang, Yu-Hsiang Wang, et al. A self-heating gas sensorwith integrated NiO thin-film for formaldehyde detection. Sensors and Actuators B,2007,122:503-510
    
    [159] Daza L., Dassy S., Delmon B.. Chemical sensors based on SnO_2 and WO_3 for thedetection of formaldehyde: cooperative effects. Sensors and Actuators B,1993,10:99-105
    
    [160] Zhang B.W., Xie C.S., Hu J.H., et al. Novel 1-3 metal nanoparticle/polymercomposites induced by hybrid external fields. Composites Science and Technology,2006,66:1558-1563
    
    [161] Kofstad P.. Non-stoichiometry, Diffusion, and Electrical Conductivity in Binary MetalOxides. New York: Wiley, 1972. 32-34
    
    [162] Wang Y.D., Wu X., Zhou Z.. Ammonia-sensing characteristics of Pt and SiO_2 dopedSnO_2 materials. Solid-State Electron, 2001,14:4603-4606
    
    [163] Monica Tanase, Laura Ann Bauer, Anne Hultgren, et al. Magnetic Alignment ofFluorescent Nanowires. Nano Lett. 2001,1:155-158
    
    [164]康昌鹤,唐省吾,气/湿敏感器件及其应用.北京:科学出版社,1988,66-67
    
    [165] Minami T., Nanto H., Takata S. High conductive transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering. J. Appl. Phys. 1984, 23:280-282
    
    [166]伦宁,徐红燕,李梅等.掺杂Al_2O_3纳米粉对ZnO厚膜气敏传感器性能的影响.功 能材料与器件学报,2006,12:329-332
    
    [167] Zhang Yongheng, Han Juan. Microstructure and temperature coefficient of resistivity for ZnO ceramics doped with Al_2O_3. Materials Letters, 2006,60:2522-2525
    
    [168]薛天锋,胡季帆,秦宏伟等.掺铝ZnO纳米粉的制备与气敏特性研究.金属功能 材料,2003,10(4):20-23
    
    [169] Lin H.M., Keng C.H., Tung C.Y.. Gas-sensing properties of nanocrystalline TiO_2. Nanostructured Materials,1997,9(1 -8):747-750
    
    [170] Zhu B L ,Xie C S ,Wang W Y, et al. Improvement in Gas Sensitivity of ZnO Thick Film to Volatile Organic Compounds (VOCs) by Adding TiO_2. Materials Letters, 2004,58:624-629
    
    [171]邱美艳,杜鹏,孙以材.掺TiO_2的ZnO薄膜气敏特性研究.电子器件,2007, 30:37-41
    
    [172]汤兆胜,孙玉琴,范正修.V_2O_5薄膜用作SO_2气敏传感器.功能材料,2002, 33(1):52-54
    
    [173] Matsuura Y., Takahata K.. Stabilization of SnO_2 sintered gas sensors. Sens. ActuatorsB, 1991,5:205-209
    
    [174] Carotta M., Ferroni M., Gherardi S., et al. Thick-film gas sensors based onanadium-titanium oxide powders prepared by sol-gel sythesis. J. Eur. Ceram. Soc,2004,24:1409-1413
    
    [175] Tsai Jyh-Kuang, Wu Tai-Bor. Non-ohmic characteristics of ZnO-V_2O_5 ceramics. J.Appl. Phys. 1994,76 (8):15-18
    
    [176] Kwon Tae-Ha, Park Sung-Hyun, Ryu Jee-Youl, et al. Zinc oxide thin film doped withAl_2O_3, TiO_2 and V_2O_5 as sensitive sensor for trimethylamine gas. Sensors andActuators B, 1998,46:75-79
    
    [177] Kofstad P.. Nonstoichiometry, Diffusion and Electrical Conductivity in Binary MetalOxides. New York:Wiley,1972.15-21.
    
    [178] Tomchenko A.A., Khatko V.V., Emelianov I.L.. WO_3 thick-film gas sensors. Sensorsand Actuators B,1998,46:8-14
    
    [179] Tomchenko A.A., Emelianov I.L., Khatko V.V.. Tungsten trioxide-based thick-film NOsensor: design and investigation. Sensors and Actuators B,1999,57(1-3):166-170
    
    [180] Tomchenko A.A.. Structure and gas-sensitive properties of WO_3-Bi_2O_3 mixed thickfilms. Sensors and Actuators B,2000,68 (1 -3): 48-52
    
    [181]张循海,林蔚,唐万侠等.掺杂Bi_2O_3及Sb_2O_3的SnO_2陶瓷气敏性研究.齐齐哈尔 大学学报,2002,18(2):27-29
    
    [182]祝柏林,谢长生,增大文等.ZnO-Bi_2O_3混合氧化物厚膜的结构和气敏性能.无机 材料学报,2005,20(3):706-711
    
    [183]梁彤翔,田民波,何卫等.陶瓷金属化中的化学反应及热力学考虑.硅酸盐通 报,1994,13(6):21-24
    
    [184]侯振雨,谷永庆,张玉泉.CuO气敏元件的制备及气敏性能研究.河南科技学院学 报(自然科学版),2006,34:69-71
    
    [185] Miyaymae M., Hikita K., Uozumi G, et al. Ac impedance analysis of gas-sensing property in CuO/ZnO heterocontacts. Sensors and Actuators B, 1995,24-29:383-387
    
    [186] Seiyama T, Kato A, Fujiishi K, et al. A new detector for gaseous components using semiconductor thin film. Anal Chem., 1962,34:1502-1504.
    
    [187]王林,张覃轶,祝柏林等.激光烧结纳米ZnO气敏传感器的制备及其气敏特性研 究.传感器技术学报,2003,16(4):488-491
    
    [188] Wroe R.. Evidence for a non-thermal microwave effect in the sintering of partically stabilized zirconia. Journal of Materials Science,1996,31:2019-2026
    
    [189]李云凯,钟家湘,钟家湘.纳米Al_2O_3-ZrO_2(3Y)复相陶瓷的微波烧结.硅酸盐学报, 1998,26(06):740-744
    
    [190]刘亚飞.微波技术在先进陶瓷材料研究中的应用.新材料产业,2005,8:65-69
    
    [191] Roy R, Cheng Jiping, Cheng Jiping. Full sintering of powder-metal bodies in amicrowave field. Nature,1999,399(17): 668-670
    
    [192] Whittaker A G Diffusion in Microwave-Heated Ceramics. Chem.Mater, 2005,17(13):3426-3432
    
    [193] Birnboim A., Calame J. P., Carmel Y. Microfocusing and polarization effects inspherical neck ceramic microstructures during microwave processing. Journal ofApplied Physics, 1999,85(1):478-482
    
    [194] Su H., Johnson D. L.. Master sintering curve: a practical approach to sintering. J. Am.Ceram. Soc. 1996,79:3211-3217
    
    [195] Johnson D. L.. Reaction of YBa_2Cu_2O_(7-8) Powder with NOx Gas in an Aerosol Reactor.??J. Am. Ceram. Soc, 1991,74:849-853
    
    [196] Zhu B.L., Xie C.S., Wang A.H., et al. The gas-sensing properties of thick film basedon tetrapod-shaped ZnO nanopowders. Materials Letters, 2005, 59:1004-1007
    
    [197] Seiyama T., Kagawa S.. Study on a detector for gaseous components usingsemiconductive thinfilm. Anal. Chem. 1966, 38:1069-1073
    
    [198] Gong H., Wang Y.J., Teo S.C., et al. Interaction between thin-film tin oxide gas sensorand five organic vapors. Sens. Actuators B,1999, 54:232-235
    
    [199] Barsan N., Weimar U.. Understanding the fundamental principles of metal oxide basedgas sensors: the example of CO sensing with SnO_2 sensors in the presence of humidity.J. Phys.: Condens. Matter, 2003,15: 813-839
    
    [200] Gutierrez J., Ares L., Horillo M.C.. Use of complex impedance spectroscopy inchemical sensor characterization. Sens. Actuators B, 1991,4:359-363
    
    [201] Owede E.F., Jonscher A.K.. Time- and frequency-dependent surface transport onhumid insulators. J. Electrochem. Soc, 1988,135:1757-1765
    
    [202]刘关松,宝曼玲,潘孝人.二氧化锡超微粒子薄膜的复数阻抗谱研究.华东理工 大学学报,1996,22:4-8
    
    [203] Chakraborty S., Sen A., Maiti H.S.. Complex plane impedance plot as a figure of meritfor tin dioxide-based methane sensors. Sensors and Actuators B, 2006,119:431-434
    
    [204] Ce-Wen Nan, A. TschOpe, S. Holten, et al. Grain size-dependent electrical propertiesof nanocrystalline ZnO. J. Appl. Phys., 1999,85(11): 7736-7741
    
    [205] Bauerle J. E.. Study of Solid Electrolyte Polarization by a Complex AdmittanceMethod. J. Phys. Chem. Solids, 1969,30: 2657-2670
    
    [206] Fleig J., Maier J.. The Influence of Laterally Inhomogeneous Contacts on theImpedance of Electroceramics. J. Electroceram. 1997,1: 73-76
    
    [207] Kiss G, Pinter Z., Perczel I.V., et al. Study of oxide semiconductor sensor materials byselected methods. Thin Solid Films, 2001, 391:216-223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700