用户名: 密码: 验证码:
WC-Co复合粉的原位合成与块体硬质合金的烧结
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的粗晶硬质合金相比,超细晶WC-Co硬质合金具有更高的硬度、耐磨性、断裂韧性与横向断裂强度,是当今硬质合金行业的重点发展方向。原料复合粉末的合成和烧结是制备超细晶硬质合金的关键技术。
     本文首先利用放电等离子烧结(SPS)的特殊优势,研究了以低成本的氧化钨、氧化钴和碳黑在SPS系统内还原-碳化并快速烧结致密化制备块体WC-6wt.%Co硬质合金的一步法工艺。整个制备过程包括预热、还原和碳化、粉末烧结和保温四个阶段,时间总计在30min之内。系统研究了配碳量、反应温度、烧结温度、烧结时间和压力等对块体试样的物相和性能的影响,制备获得了具有高致密度和良好综合力学性能的块体硬质合金材料。首次建立了SPS快速反应机制模型,根据SPS过程中粉末颗粒接触面异常高温造成局部熔化或汽化的现象结合反应热力学揭示了非平衡态下化学反应速率提高、反应物需要量和生成物种类及含量不同于平衡态化学反应的原因,为SPS反应烧结工艺提供了重要的理论依据。
     随后研究了钨氧化物、钴氧化物和碳黑在真空环境下平衡反应的热力学、动力学和分步反应过程。利用反应热力学模型系统研究了平衡态原位反应过程中各物相生成的温度、稳定性及转化规律。计算结果表明,在8500C以下的反应基本为氧化物的还原反应,WO_3碳还原的顺序依次为WO_(2.9)、WO_2、WO_(2.72)和W,其与中间产物CoWO_4及还原产物Co起反应催化剂的作用。高于8500C的反应为钨的碳化和缺碳η相的逐渐消失,当反应温度高于11270C时,因反应自由能的变化为正值,W_2C将无法转化生成WC。系列模型预测结果得到了实验研究的证实。在WC-Co复合粉原位反应合成的动力学研究中,阐释了氧化钨碳还原包括碳黑与氧化钨的直接还原和利用反应气体产物CO与碳黑反应生成的CO_2作为媒介的间接气-固反应的过程;指出提高反应温度和增大生成物的孔隙度有利于加快反应。深入研究表明,氧化钨碳还原颗粒具有明显的层状结构,自外到内钨的化合价递增,还原程度降低;钨的碳化是碳原子替换体心立方钨晶胞的中心钨原子,然后碳原子转换到钨原子点阵间隙再经晶胞常数微调而形成。
     利用系列实验全面研究了反应物配碳量和各种工艺参数对制备的复合粉物相和粒径的影响。延长反应物球磨时间和原位反应时间、提高反应温度和真空度有利于提高物相的纯度;增加球磨时间,降低反应温度和保温时间有利于细化复合粉的粒径。在反应热力学理论模型和实验研究相结合的基础上,获得了最佳的复合粉制备工艺参数组合,开发出了低温、快速、高纯度及粒径可控的超细复合粉原位合成制备的新工艺。
     最后,以制备的复合粉为原料,应用SPS技术研究制备超细晶硬质合金块体材料。全面研究了SPS各工艺参数对烧结硬质合金块体显微组织和性能的影响。实验结果表明,超细复合粉的致密化开始于804℃,于1175℃固相致密化结束;烧结温度、烧结压力和保温时间明显影响WC平均晶粒尺寸及尺寸分布进而影响力学性能。在优化工艺参数-烧结温度1325℃、烧结压力50MPa、保温6-8min的条件下,获得WC-6Co硬质合金块体材料的优良综合性能:硬度92.6HRA、断裂韧性12MPa·m~(1/2)、横向断裂强度为2180MPa。探讨了复合粉中添加晶粒生长抑制剂对烧结块体WC晶粒尺寸和硬度、韧性的影响,并讨论了硬质合金块体材料的断裂机制。
Compared to micro-grained alloy, ultrafine-grained and nanocrystalline cemented carbides have much higher hardness, wear resistant, fracture toughness and transverse rupture strength. Therefore, the research on the ultrafine-grained and nanocrystalline WC-Co cemented carbides becomes an important developing direction in the hardmetal industry. The synthesis of WC-Co powder and its sintering are two key steps in preparing the ultrafine structured cemented carbides.
     Firstly, taking advantage of spark plasma sintering (SPS) technique, we investigated the rapid route for synthesis of WC-6wt.%Co composite powder by in situ reduction and carbonization reactions and immediate consolidating the composite powder into the bulk in SPS system, using low-cost tungsten oxide, cobalt oxide and carbon black as raw materials. The whole process with the duration less than 30min could be divided into four stages, i.e., the heating of the powder mixture, in situ reduction and carbonization reactions, sintering densification and isothermal holding. The effects of milling time on the particle size and size distribution, and the effects of the amount of carbon addition in the mixture powders, the reaction temperature, the sintering temperature, the holding time and the sintering pressure on the phases and properties of the as-sintered bulk, were analyzed systematically. The cemented carbides bulks with high density and good combined mechanical properties were obtained. The mechanism of the rapid in situ preparation of cemented carbides bulks in the SPS system was proposed for the first time. According to the phenomenon of melting or boiling at the sintering neck and the thermodynamics of reactions, the reasons of the increased rate in the non-equilibrium reactions and the differences of the reaction amount and the type and amount of the resultant from equilibrium reactions were discussed. This mechanism provided an important theoretical basis for the in situ reaction synthesis in the SPS system.
     Secondly, the thermodynamics, the dynamics and the stepwise reaction processes in vacuum at the equilibrium state, using tungsten oxide, cobalt oxide and carbon black as raw powders, were investigated. By the thermodynamic mechanisms of the reactions in the synthesis process of WC-6wt.%Co composite powder, the starting temperature, regularity and stability of the resultants were quantitatively described. It was found that the reactions of carbon reducing tungsten oxide and cobalt oxide occurred below 8500C, and the sequence of products of WO_3 reduced by carbon was WO_(2.9), WO_2, WO_(2.72) and W. The intermediate product of CoWO_4, the products of Co and tungsten oxides played as the catalytic role. The reactions generated at above 850℃were the carbonization of tungsten, and theηphases disappeared with the reaction temperature increased. W_2C could not be transformed into WC at above 1127℃, as the change of the free energy of the reaction was higher than zero. The results of a series of synthetic experiments verified the mechanism predictions. In the study of the dynamics of in situ reaction synthesis of WC-Co composite powder, the process of tungsten oxide reduced by carbon consisted of the direct reaction of solid carbon with tungsten oxide and the indirect reaction of CO gas reducing tungsten. The fact that increaseing reaction temperature and porosity of the product were favorable to accelerate the reaction was stated. It was shown by further research that the formed tungsten oxide had an obvious layer-like structure, where from outer to inner layer the valence of tungsten increased and the reduction degree decreased. The carbonization of W depended on the replacement of W atom at the center of the body-centered cubic by C atom and the minor adjustment of C atom position and the lattice parameters.
     The carbon content in the raw powders and the effects of preparing parameters on the phase constitution and WC grain size were studied comprehensively by a serials of experiments. Increasing the milling and reaction time, reaction temperature and vacuum degree, were favorable to improve the purity of the phases. Increasing milling time, decreaseing reaction temperature and holding time, were good for refining the particle size. Based on the combination of the thermodynamics of reaction mechnism and experiments, the optimum processing parameters for synthesis of WC-Co composite powder were obtained, and an innovative route with low reaction temperature, short reaction time, pure phases and controllable WC particle size was developed.
     At last, the ultrafine cemented carbide bulk with high properties was prepared by spark plasma sintering the composite powder. The effects of SPS parameters on the microstructure and properties of the as-sintered bulk were investigated systematically. The experimental results showed that the densification temperature of the composite powder started at 804℃and finished at 1175℃. The WC grain size, grain size distribution and mechanical properties were influenced by the sintering temperature, the pressure and the holding time. The WC-6Co cemented carbides bulk with good combined mechanical properties of the hardness of 92.6HRA, the fracture toughness of 12MPa·m~(1/2) and the transverse rupture strength of 2180MPa were obtained, with the optimal sintering parameters of the sintering temperature of 1325℃, the pressure of 50MPa and the holding time of 6-8min. When the grain growth inhibitors were added into the composite powder before sintering, the WC grain was refined and the hardness was improved. The rupture mechanism of the cemented carbides bulk was discussed at the end.
引文
1张凤林,王成勇,宋月贤. WC-Co硬质合金的强韧化.粉末冶金技术. 2003, 21(4): 236~240
    2谭国龙,吴希俊,王彦起.纳米WC硬质合金的制备、结构和力学性能.材料科学与工程. 1998, 16(1): 8~12
    3王国栋.硬质合金生产原理.冶金工业出版社, 1982: 4~5
    4 A. Mortensen, S. Suresh. Functionally Gradient Metals and Metal-ceramic Composites Part 1: Processing. International Materials Reviews, 1995, 40(6): 239~265
    5 Sabine Lay, Marc Loubradou, Patricia Daonnadieu. Ultra Fine Microstructure in WC-Co Cermet. Advanced Engineering Materials. 2004(6): 811~814
    6 W. Acchar, U. U. Gomes, W. A. Kaysser, J. Goring. Strength Degradation of a Tungsten Carbide-Cobalt Composite at Elevated Temperatures. Materials Characterization. 1999, 43: 27~32
    7葛启录,肖振声,韩欢庆.高性能难熔材料在尖端领域的应用与发展趋势.粉末冶金工业. 2000, 10(1): 7~13
    8И.М.牟哈.小批量生产硬质合.周安生.机械工业出版社, 1987: 1~2, 60~62
    9吉田邦彦.硬质合金工具.张超凡,何仁春,唐普林.冶金工业出版社, 1987: 2~10
    10 L. J. Prakash. Application of Fine Grained Tungsten Carbide Based Cemented Carbides. International Journal of Refractory Metal and Hard Materials. 1995, 13(5): 257~264
    11株洲硬质合金厂.硬质合金的生产.冶金工业出版社, 1974: 3~5
    12陈华辉,邢建东,李卫.耐磨材料应用手册.机械工业出版社, 2006: 321~348
    13 E. A. Almond, B. Roebuck. Some Characteristics of Very Fine-grained Hardmetals. Metal Powder Report. 1987, 42(8): 514~515
    14 Z. Z. Fang, X. Wang, T. Ryu, K. S. Hwang, H.Y. Sohn. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide– A review. International Journal of Refractory Metals and Hard Materials. 2009, 27(2): 288~299
    15 G. E. Spriggs. A History of Fine Grained Hardmetal. International Journal of Refractory Metals and Hard Materials. 1995,13(5): 241~255
    16 L. E. McCandlish, B. H. Kear, B. K. Kim. Processing and Properties of Nanostructured WC-Co. Nanostructured Materials.1992, 1(2): 119~124
    17 F. Arenas, I. B. de Arenas, J. Ochoa, S. -A. Cho. Influence of VC on the Microstructure and Mechanical Properties of WC–Co Sintered Cemented Carbides. International Journal of Refractory Metals and Hard Materials. 1999, 17(1-3): 91~97
    18 B. H. Kear, L. E. McCandlish. Chemical Processing and Properties of Nano-structured WC-Co Materials. Nanostructured Materials.1993, 3(1-6): 19~30
    19 R. Porat, S. Berger, A. Rosen. Sintering Behavior and Mechanical Properties ofNanocrystalline WC-Co. Materials Science Forum. 1996, (225-227): 630-634
    20 S. K. Bhaumik, G. S. Upadhyaya, M. L. Vaidya. Alloy Design of WC-10Co Hard Metals with Modification in Carbide and Binder Phases. International Journal of Refractory Metals and Hard Materials. 1992, 11(2): 9~22
    21 T. Fukatsu, K. Kobori, M. Ueki. Micro-grained Cemented Carbide with High Strength. International Journal of Refractory Metals and Hard Materials. 1991, 10(1): 57~60
    22 G. Gille, B. Szesny, K. Dreyer. Submicro and Ultrafine Grained Hardmetals for Microdrills and Metal Cutting Insert. G. Kneringer, P. Rodhammer, H. Wildner. Proceedings of 15th International Plansee Seminar, Tyrol, Austria, 2001. Plansee holding AG: 782~816
    23 X. Wang, Z. Z. Fang, H. Y. Sohn. Nanocrystalline Cemented Tungsten Carbide Sintered by an Ultra-high-pressure Rapid Hot Consolidation Process. J. Engquist. Proceedings of the 2007 International Conference on Powder Metallurgy & Particulate Materials, Denver, US, 2007. Princeton, Newyork, Metal Powder Industries: 8~10
    24 B. Williams. Chinese Cemented Carbide Closes the Technology Gap. Metal Report. 2005, 60(10): 16~22
    25林晨光.中国超细和纳米晶WC-Co硬质合金的研究开发概况.中国钨业. 2005, 20(2): 19~22
    26王兴庆,郭海亮,何宝山.纳米硬质合金制备技术的研究.硬质合金. 2003, 20(1): 1~6
    27李凡,吴炳尧.机械合金化—新型的固态合金化方法.机械工程材料. 1999, 23(4): 22~25
    28 B. G. Butler, J. Lu, Z. Z. Fang, R.. K. Rajamani. Production of Nanometric Tungsten Carbide Powders by Planetary Milling. International Journal of Powder Metallurgy. 2007, 43(1): 35~43
    29 L. Liu, B. Li, X. Z. Ding. X. M. Ma, Z. Z. Qi, Y. D. Dong. Preparation of Nanocrystalline Metal-carbides by Mechanical Alloying. Chinese Science Bulletin. 1994, 39 (14): 1166~1170
    30 M. Sherif El-Eskandarany, Amir A. Mahday, H. A. Ahmed, A. H. Amer. Synthesis and Characterizations of Ball-milled Nanocrystalline WC and Nanocomposite WC–Co Powders and Subsequent Consolidations. 2000, 312(1-2): 315~325
    31宁阳.球磨WC-Co纳米复合末的合成和成形.稀有金属与硬质合金. 2003, 31(1): 53~56
    32 G. L. Tan, Y. S. Zhou, X. J. Wu. Nanostructured W2C Prepared by Mechanical-chemical Reaction. The Chinese Journal of Nonferrous Metals. 1998, 8(Suppl.): 214~216
    33李炯义,曹顺华,林信平,高海燕,李元元.反应热处理技术制备纳米晶WC-6Co硬质合金复合粉末.金属热处理. 2005, 30(7): 56~59
    34张武装,高海燕,黄伯云.纳米晶WC-Co复合粉末制备的研究.稀有金属材料与工程. 2007, 36(7): 1254~1256
    35陈亚军,金松哲,周振华.用球磨法制取WC-Co纳米粉.吉林工学院学报. 2001, 22(1): 11~14
    36 G. E. Spriggs. History of Fine Grained Hardmetal. International Journal of Refractory Metalsand Hard Materials. 1995, 13(5): 241~255
    37邹仿棱.纳米钨和WC-Co粉末制备技术的现状与发展趋势.粉末冶金材料科学与工程. 2005, 10(4):195~199
    38徐志花,马淳安,甘永平.超细碳化钨及其复合粉末的制备.化学通报. 2003, 8: 544~548
    39 G. Lee, G. H. Ha, B. K. Kim. Synthesis of Nanostructure W Base Composite Powders by Chemical Processs. Journal of the Korean Institute of Metals and Materials.1999, 37(10): 1233~1237
    40 Z. Y. Zhang, S. Wahlberg, M. S. Wang, M. Muhammed. Processing of Nanostructured WC-Co Powder from Precursor Obtained by Co-precipitation. Nanostructured Materials. 1999, 12(1-4): 163~166
    41欧阳亚非,邬荫芳,彭泽辉. WC-Co复合粉末的流态化合成及其应用.中国钨业. 1999, 14(5-6): 210~215
    42吴伯麟,邵刚勤,段兴龙,谢济仁,魏明坤,袁润章.纳米晶复合碳化钨-钴粉末的工业化制备技术.材料导报. 2000, 11(7): 55~58
    43刘舜尧,张春友.纳米硬质合金开发与应用.矿冶工程. 2000, 20(1): 70~72
    44 X. Tang, R. Haubner, B. Kieffer. Preparation of Ultrafine CVD WC Powders Deposited from WCl6 Gas Mixtures. Journal De PhysiqueⅣColloque. 1995, C5: 1013~1020
    45 T. Ryu, H. Y. Sohn, G. Han, Y. U. Kim, K. S. Hwang, M. Mena, Z. Z. Fang. Nanograined WC-Co Composite Powders by Chemical Vapor Synthesis. Metallurgical and Materials Transactions B. 2008, 39(1): 1~6
    46邱波.真空碳还原三氧化钨和人造白钨制取钨粉及碳化钨粉的工艺探索.铁合金. 1999, (2): 23~29
    47郭琳.高温快速直接碳化制取超细碳化钨粉末.华南理工大学学报(自然科学版). 2002, 30(3): 87~89
    48 E. J. Rees, C. D. A. Brady, G. T. Burstein. Solid-state Synthesis of Tungsten Carbide from Tungsten Oxide and Carbon and its Catalysis by Nickel. Materials Letters. 2008, 62(1-3): 1~3
    49罗崇玲,易茂中,谭兴龙,戴煜.新型直接碳化法制备超细WC粉及其烧结体的结构与性能.粉末冶金技术. 2007, 25(4): 243~250
    50 Z. G. Ban, L. L. Shaw. Synthesis and Processing of Nanostructured WC-Co Materials. Journal of Materials Science. 2002, (37): 3397~3403
    51刘紫兰,李强,张钦钊;黄向东.机械与热综合活化法制备超细WC-Co粉末.中国有色金属学报. 2005, 15(6): 929~934
    52刘瑞,易丹青,李荐.纳米WC粉末的制备研究.材料科学与工程学报. 2006, 24(3): 418~422
    53刘清才,王海波,孙亚丽.以紫钨为原料制备优质超细WC粉末的实验.重庆大学学报(自然科学版). 2007, 30(5): 100~102
    54李继刚,吴希俊,谭洪波,刘金芳.纳米碳化钨粉的制备及其热稳定性研究.稀有金属材料与工程. 2004, 33(7): 736~739
    55 F. F. P. Medeiros, S. A. De Oliveira C. P. De Souza, A. G. P. Da Silva, U. U. Gomes, J. F. De Souza. Synthesis of Tungsten Carbide through Gas-solid at Low Temperatures. Materials Science and Engineering: A. 2001, 315(1-2): 58~62
    56谭国龙,吴希俊,甘波.化学气相法低温合成纳米WC-Co-VC粉体.中国有色金属学报. 1998, 8(Suppl.2): 283~285
    57 L. Gao, B. H. Kear. Synthesis of nanophase WC Powder by a Displacement Reaction Process. NanoStructured Materials. 1997, 9: 205~208
    58 R. Koc, S. K. Kodambaka. Journal of the European Ceramic Society. 2000, 20(11): 1859~1869
    59 M. F. Zawrah. Synthesis and Characterization of WC-Co Nanocomposites by Novel Chemical Method. Ceramics International. 2007, 33(2): 155~161
    60 C. Adorjan, A. Bock, S. Myllymaki, W. D. Schubert, K. Kontturi. WC/Co-composite Powders via Hydrothermal Reduction of Co3O4-suspensions. International Journal of Refractory Metals and Hard Materials. 2008, 26(6): 569~574
    61 Subrahnanyam. Composites by Combustion Synthesis. Key Engineering Materials. 1995, 108~110: 105~122
    62缪曙霞,殷声,李建勇,赖和怡.自蔓燃高温合成法(SHS)制备碳化钨.中国有色金属学报. 1994, 4(2): 79~81
    63 H. H. Nersisyan, H. I. Won, C. W. Won, J. H. Lee. Study of the Combustion Synthesis Process of Nanostructured WC and WC–Co. Materials Chemistry and Physics. 2005, 94(1): 153~158
    64 Y. T. Zhu, A.Manthiran. New Route for the Synthesis of Tungsten Carbide-cobalt Nanocomposites. Journal of the American Ceramic Society. 1994, 77(10): 2777~2778
    65 J. F. Sun, F. M. Zhang, J. Shen. Characterizations of Ball-milled Nanocrystalline WC–Co Composite Powders and Subsequently Rapid Hot Pressing Sintered Cermets. Materials Letters. 2003, 57(21): 3140~3148
    66 C. C. Jia, L. Sun, H. Tang, X. H. Qu. Hot Pressing of Nanometer WC-Co Powder. International Journal of Refractory Metals and Hard Materials. 2007, 25(1): 53~56
    67 C. G. Lin, E. Kny, G. Yuan, B. Djuricic. Microstructure and Properties of Ultrafine WC–0.6VC–10Co Hardmetals Densified by Pressure-assisted Critical Liquid Phase Sintering. Journal of Alloys and Compounds. 2004, 383(1-2): 98~102
    68齐志宇,李静,李成威,杨大正.高压热等静压工艺烧结超细WC-10Co复合粉烧结体.鞍山科技大学学报. 2007, 30(2): 124~127
    69 I. Azona, A. Ordonez, J. M. Sanchez, F. Castro. Hot Isostatic Pressing of Ultrafine TungstenCarbide-cobalt Hardmetals. Journal of Materials Science. 2002, 37: 4189~4195
    70谢宏,肖逸锋,贺跃辉,丰平,黄自谦.低压烧结对硬质合金组织和性能的影响.中国钨业. 2006, 21(6): 27~31
    71王忆民.“高温粉末”WC和气压烧结对YG8硬质合金性能的影响.硬质合金. 2005, 22(2): 86~89
    72 Z. Xiong, G. Q. Shao, X. L. Shi, X. L. Duan, L. Yan. Ultrafine Hardmetals Prepared by WC–10 wt.%Co Composite Powder. International Journal of Refractory Metals and Hard Materials. 2008, 26(3): 242~250
    73 X. L. Shi, G. Q. Shao, X .L. Duan, Z. Xiong, H. Yang. Characterizations of WC–10Co Nanocomposite Powders and Subsequently Sinterhip Sintered Cemented Carbide. Materials Characterization. 2006, 57(4-5): 358~370
    74 D. K. Agrawal. Microwave Processing of Ceramics. Current Opinion in Solid State and Materials Science, 1998, 3(5): 480~485
    75 S. Huang, K. Vanmeensel, J. Vleugels, L. Li, O. Van edr Biest. WC Grain Growth Inhibition in Microwave Sintered WC-Co Hardmetals Prepared from Nanopowders. G. Kneringer, P. R?dhammer and H. Wildner . Proceedings of 16th International Plansee Seminar, Tyrol, Austria, 2001. Plansee holding AG: 378~389
    76沈以赴,冯尚龙,李景新,黄因慧,杨明川.纳米WC/Co经激光烧结后的晶粒再细化.焊接学报. 2005, 26(1): 9~11
    77 H. C. Kim, D. Y. Oh, G. J Jiang, I. J. Shon. Synthesis of WC and Dense WC–5 vol.% Co Hard Materials by High-frequency Induction Heated Combustion. Materials Science and Engineering: A. 2004, 368(1-2): 10~17
    78 H. C. Kim, I. J. Shon. Rapid Sintering of Ultra-fine WC-10wt%Co by High-frequency Induction Heating. Journal of Materials Science. 2005, 40: 2849~2854
    79 H. C. Kim, D. Y. Oh, I. J. Shon. Sintering of Nanophase WC–15vol.%Co Hard Metals by Rapid Sintering Process. International Journal of Refractory Metals and Hard Materials. 2004, 26(4-5): 197~203
    80 H. C. Kim, I. K. Jeong, I. J. Shon, I. Y. Ko, J. M. Doh. Fabrication of WC–8wt.%Co Hard Materials by Two Rapid Sintering Processes. International Journal of Refractory Metals and Hard Materials. 2007, 25(4): 336~340
    81 W. Chen, U. Anselmi-Tamburini, J. E. Garay, J. R. Groza, Z. A. Munir. Fundamental Investigations on the Spark Plasma Sintering / Synthesis Process: I. Effect of Dc Pulsing on Reactivity. Materials Science and Engineering: A. 2005, 394(1-2): 132~138
    82 U. Anselmi-Tamburini, S. Gennari, J. E. Garay, Z. A. Munir. Fundamental Investigations on the Spark Plasma Sintering / Synthesis Process: II. Modeling of Current and Temperature Distributions. Materials Science and Engineering: A. 2005, 394(1-2): 139~148
    83 U. Anselmi-Tamburini, J. E. Garay, Z. A. Munir. Fundamental Investigations on the Spark PlasmaSintering / Synthesis Process: III. Current Effect on Reactivity. Materials Science andEngineering: A. 2005, 407(1-2): 24~30
    84 X. Y. Song, X. M. Liu, J. X. Zhang. Neck Formation and Self-adjusting Mechanism of Neck Growth of Conducting Powders in Spark Plasma Sintering. Journal of American Ceramics. Society. 2006, 89(2): 494~500
    85 D. Sivaprahasam, S. B. Chandrasekar, R. Sundaresan. Microstructure and Mechanical Properties of Nanocrystalline WC–12Co Consolidated by Spark Plasma Sintering. International Journal of Refractory Metals and Hard Materials. 2007, 25(2): 144~152
    86 A. Michalski, D. Siemiaszko. Nanocrystalline Cemented Carbides Sintered by the Pulse Plasma Method. International Journal of Refractory Metals and Hard Materials. 2007, 25(2): 153~158
    87 J. F Zhao, T. Holland, C. Unuvar, Z. A. Munir. Sparking Plasma Sintering of Nanometric Tungsten Carbide. International Journal of Refractory Metals and Hard Materials. 2009, 27(1): 130~139
    88 L. Sun, C. G. Lin, C. C Jia, X. Jia, M. Xian. Change in Relative Density of WC-Co Cemented Carbides in Spark Plasma Sintering Process. Rare Metals. 2008, 27(1): 74~77
    89赵海锋,朱丽慧,黄清伟.放电等离子技术快速烧结纳米WC-10%Co-0.8%VC硬质合金.稀有金属材料与工程. 2005, 34(1): 82~85
    90 F. M. Zhang, J. Shen, J. F. Sun. Processing and Properties of Carbon Nanotubes nano-WC-Co Composites. Materials Science and Engineering: A. 2004, 381(1-2): 86~91
    91 B. Huang, L. D. Chen, S. Q. Bai. Bulk Ultrafine Binderless WC Prepared bySpark Plasma Sintering. Scripta Materialia. 2006, 54(3): 441~445
    92解迎芳,王兴庆,陈立东,李晓东,郭海亮.放电等离子烧结纳米硬质合金的研究.硬质合金. 2003, 20(3): 138~142
    93夏阳华,丰平,胡耀波,熊惟皓. SPS技术的进展及其在硬质合金制备中的应用.硬质合金. 2003, 20(4): 216~218
    94 X. L. Shi, G. Q. Shao, X. L. Duan, R. Z. Yuan. Atomic Force Microscope Study of WC-10Co Cemented Carbide Sintered from Nanocrystalline Composite Powders. Journal of University of Science and Technology Beijing. 2005, 12(6): 558-563
    95史晓亮,邵刚勤,段兴龙,张卫丰,袁润章.纳米复合WC-6Co粉末的快速烧结.稀有金属材料与工程. 2005, 34(8): 1283~1286
    96 M. Tokita. Large-size WC/Co Functionally Graded Materials Fabricated by Spark Plasma Sintering (SPS) Method. Materials Science Forum. 2003, 423-425: 39~44
    97 J. X. Zhang, G. Z. Zhang, S. X. Zhao, X. Y. Song. Binder-Free WC Bulk Synthesized by Spark Plasma Sintering. Journal of Alloys and Compounds. 2009, In Press, Accepted Manuscript, Available online
    98 J. X. Zhang, G. Z. Zhang, L. P. Zhang. SPS In Situ Synthesis of WC CoMPact by Tungsten Oxide Direct Carbonization. Proceedings of 16th International Plansee Seminar, Tyrol, Austria,2005. Plansee holding AG: 588~593
    99 M. Fukumoto. The Current Status of Thermal Spraying in Asia. Journal of Thermal Spray Technology. 2008, 17(1): 5~13
    100张启修,赵秦生.钨钼冶金.冶金工业出版社, 2005: 12~13
    101 N. C. Angastiniotis. Synthesis of Nanostructured Tungsten and Tungsten-base Phases. Ph.D Dissertation of The State University of New Jersey. 1994: 12~15
    102 B. C.拉柯夫斯基,H. P.安捷尔斯.硬质合金生产原理.冶金工业出版社, 1958: 40~41
    103吴恩熙,颜练武,胡茂中.直接碳化法制备碳化钒的热力学分析.粉末冶金材料科学与工程. 2004, 9(3): 192~195
    104颜练武,吴恩熙.超细Cr3C2粉末的制备.硬质合金. 2006, 23(1): 11~14
    105曹瑞军,林晨光,孙兰,赵诣林,刘总,贾成厂.超细粉末的团聚及其消除方法.粉末冶金技术.2006, 24(6): 460~466
    106陈立东,王士维.脉冲电流烧结的现状与展望.陶瓷学报. 2001, 22(3): 204~207
    107左演声,陈文哲,梁伟.材料现代分析方法.北京工业大学出版社, 2000: 290~297
    108李宇春,周涛,朱志平.热分析方法在金属陶瓷材料研究中的应用.长沙电力学院学报(自然科学版). 2002, 17(3): 78~79
    109梁志德,王福.现代物料测试技术.冶金工业出版社, 2003: 88~91
    110黄惠忠.纳米材料分析.化学工业出版社, 2003: 243~246
    111黄培云.粉末冶金原理. 2.冶金工业出版社, 1997: 153~156, 267~287, 327~328
    112杨道媛,马成良,孙宏魏.马尔文激光粒度分析仪粒度检测方法及其优化研究.中国粉体技术. 2002, 8(5): 27~30
    113 W. D. Schubert, H. Neumeister, G. Kinger, B. Lux. Hardness to Toughness Relationship of Fine-grained WC-Co Hardmetals. International Journal of Refractory Metals and Hard Materials. 1998, 16(2): 133~142
    114陈世朴,王永瑞.金属电子显微分析.机械工业出版社, 1992: 156~159
    115 M. H. Enayati, G. R. Aryanpour, A. Ebnonnasir. Production of Nanostructured WC–Co Powder by Ball Milling. International Journal of Refractory Metals and Hard Materials. 2009, 27(1): 159~163
    116 P. Gustafson, L. ?kesson. Formation of Stratified Binder Phase Gradients. Materials Science and Engineering: A. 1996, 209 (1-2): 192~196
    117 A. Upadhyaya, D. Sarathy, G. Wagner. Advances in Alloy Design Aspects of Cemented Carbides. Materials & Design. 2001, 22(6): 511~517
    118李志华,戴永年,薛怀生.真空碳热还原氧化镁的热力学分析及实验验证有色金属. 2005, 57(1): 56~59
    119吴长春.冶金热力学.机械工业出版社, 1993: 165~170
    120叶大伦,胡建华.实用无机物热力学数据手册. 2.冶金工业出版社, 2002: 10~1151
    121廖寄乔,黄志锋,吕海波,陈绍衣,邹志强.不同氧化钨氢还原制取超细钨粉.中南工业大学学报(自然科学版). 2000, 31(1): 51~55
    122黄兴无.有色冶金原理.冶金工业出版社, 1993: 53~68
    123曹战民,宋晓艳,乔芝郁.热力学模拟计算软件FactSage及其应用. 2008, 32(2): 216~219
    124 A. J. Haslam, S. R. Phillpot, D. Wolf, D. Moldovan, H. Gleiter. Mechanisms of Grain Growth in Nanocrystalline FCC Metals by Molecular-dynamics Simulation. Materials Science and Engineering: A. 2001, 318(2): 293~312
    125果世驹.粉末烧结原理.冶金工业出版社, 1998: 1~155
    126刘雪梅.金属和金属/陶瓷粉体的SPS过程模拟及实验研究.北京工业大学博士论文. 2007: 74~75
    127姜伟之,赵时熙,王春生,张峥.工程材料的力学性能.北京航空航天大学出版社, 2000: 29~86
    128 Z. Z. Fang. Correlation of Transverse Rupture Strength of WC–Co with Hardness. International Journal of Refractory Metals and Hard Materials. 2005, 23(2): 119~127
    129 S. I. Cha, K. H. Lee, H. J. Ryu, S. H. Hong. Effect of Size and Location of Spherical Pores on Transverse Rupture Strength of WC-Co Cemented Carbides. Materials Science and Engineering: A. 2008, 486(1-2): 404~408
    130张俊善.材料强度学.哈尔滨工业大学出版社. 2004, 2~115
    131孙宝琦.关于WC-Co硬质合金的强度和结构问题Ⅱ.稀有金属与硬质合金. 2004, 32(2): 29~34
    132 C. S. Kim. Microstructural-Mechanical Property Pelationships in WC-Co Composites. Ph. D Thesis of Carnegie Mellon University. 2004, 117~128
    133张国珍.放电等离子烧结(SPS)技术制备WC、WC-Co硬质合金的研究.北京工业大学博士论文. 2005: 33~36
    134 H. B. Zhang, Z. Z. Fang. Characterization of Quasi-plastic Deformation of WC–Co Composite Using Hertzian Indentation Technique. International Journal of Refractory Metals and Hard Materials. 2008, 26(2): 106~114
    135Μ.Γ.洛沙克.硬质合金的强度和寿命.黄鹤翥.冶金工业出版社. 1990, 16~21
    136龙坚战.超细硬质合金晶闰长大抑制剂段优化及烧结工艺的研究.四川大学硕士学位论文. 2005: 53~58
    137贾佐诚.超细硬质合金的发展.硬质合金, 2007, 17(1): 58~62
    138吴恩熙,雷贻文.超细硬质合金中晶粒生长抑制剂的作用.硬质合金, 2002, 19(3): 136~139
    139 X. Wang, Z. Z. Fang, H. Y. Sohn. Grain Growth during the Early Stage of Sintering of Nanosized WC–Co Powder. International Journal of Refractory Metals and Hard Materials. 2008, 26(3): 232~241
    140 Y. W. Lei, J. Sun, X. W. Du, Q. Zhai, S. L. Hu. Properties and Microstructure of VC/Cr3C2-doped WC/Co Cemented Carbides. Rare Metals. 2007, 26(6): 584~590

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700