用户名: 密码: 验证码:
WC-Co梯度硬质合金的设计、制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统均匀硬质合金材料由于其各部分的成分和组织均匀,其硬度和韧性之间存在着尖锐的矛盾,制约了其应用领域的进一步扩大,难以满足现代社会发展对硬质合金提出的“双高”(高硬度,高韧性)要求,所以,研发新型功能梯度硬质合金材料以满足工具不同的部位具有不同的使用功能要求显得尤为重要。为此,本文在国家自然科学基金的资助下,与国有大型硬质合金公司合作,利用有限元分析软件(Marc)、扫描电镜(SEM)、X射线衍射仪(XRD)、能谱仪(EDS)、电子探针(EPMA)和图像分析软件(Q550)等现代材料分析与测试手段,以残余热应力为对象进行梯度结构设计,渗碳处理制备梯度硬质合金,对缺碳硬质合金的组织和性能、渗碳处理过程中的组织转变、梯度形成机理、工艺参数对梯度硬质合金组织和性能的影响、以及梯度硬质合金的裂纹扩展、断裂韧性和高温强度进行了系统研究,得到以下主要结论:
     1)提出以质量百分含量作为模型的基本参数,建立了适合梯度硬质合金成分分布函数、弹性系数、热膨胀系数和热导率模型,预测值与试验结果吻合很好;用MARC有限元软件对YG6梯度硬质合金的残余应力进行数值模拟计算,计算结果与XRD实测值基本一致;YG6梯度硬质合金的梯度结构最优化设计的微观结构为:梯度层厚度为半径的20%~30%,梯度分布指数p的取值在1.5~2.5之间,钴含量峰值在12%~16%之间。
     2)碳含量影响缺碳合金中η相的类型、含量、分布和WC的形状。Co_3W_3C相出现在缺碳程度相对较小的合金中,其含量随碳含量的增大而增大;与之相反,Co_6W_6C相出现在缺碳程度相对严重的合金中,其含量随碳含量增大而减少;合金中η相总量随碳含量增大而线性减少:随着缺碳程度的增加,合金中η相的分散均匀性变差,并且η相趋于形成大块状;WC大多呈现多角特征。
     3)气压烧结缺碳硬质合金的组织和性能优于真空烧结缺碳硬质合金的组织和性能;气压烧结后期有效地控制渗碳气氛能够直接烧结渗碳制备梯度硬质合金;部分Ni替代Co作为粘结相的WC-6(xNiyCo)缺碳硬质合金的组织和性能接近于相同缺碳量的WC-6Co缺碳合金的组织和性能,以此作为渗碳前驱体可制备模具或轴承用无磁或低磁梯度硬质合金。
     4)采用缺碳硬质合金,成功地研究出一种制备高性能梯度硬质合金的简单渗碳万法。梯度组织的特征是合金表层和次表层的η相已经完全消失,为正常的WC+γ两相组织,并在合金的表层形成了一个贫钴区,次表层形成了一个富钴区;合金的芯部依然是没有多大变化的含η相组织。梯度组织的形成主要受碳扩散、碳和η相反应、W原子向合金表面迁移、液相压力差和WC晶粒长大导致的毛细管力等影响。
     5)梯度结构的形成导致合金的硬度和断裂韧性在截面上自外至内呈连续梯度变化;梯度结构的形成有利于提高合金的强度和断裂韧性。梯度硬质合金通过钴含量的梯度分布、引入表面压应力、促使裂纹偏转和桥接等方式增韧,获得了较好的综合性能。
     6)梯度硬质合金的高温强度较传统均匀硬质合金和缺碳硬质合金要显著提高。随温度升高,宏观断口表面趋于平整,穿晶断裂比例下降,沿晶断裂的比例增加。梯度硬质合金的高温强度缓慢下降是由于合金中形成了钴相梯度分布结构,表层钴含量低使得钴的高温软化和氧化造成的强度降低减小、表层中钴固溶了较多的W带来的强化作用及温度升高使得残余拉应力降低等共同作用的结果。
Conventional homogeneous cemented carbide (CHCC) with homogeneous composition and microstructure in bulk has sharp contradiction between hardness and toughness, which restricts further application areas of it. It is difficult to meet the development of modern social on the double high require, namely high hardness and high toughness. So it seems particularly important to develop a new-type of functionally gradient cemented carbide (FGCC) materials to enable tools with different functions at different positions in bulk. For this reason, supported by the National Natural Science Foundation of China and cooperates with the large-scale state-owned cemented carbide enterprises, with modern material analysis and test methods, such as the finite element analysis software Marc, SEM, XRD, EDS, EPMA and picture analysis software Q550, etc, this paper carried out systematic researches on the gradient structure design base on the aim of thermal residual stress, the microstructures and performances of carbon-deficient cemented carbides (CDCC) and the structural transformation, effects of process parameter on microstructures and performance during preparing of gradient cemented carbides by carburizing treatment, the crack propagation, fracture toughness and high temperature strength of the gradient cemented carbides, getting the following conclusions.
     1) Putting forward the model suiting for gradient cemented carbides, such as the composition distributing function, the elastic coefficient, the hot expansion coefficient and heat transfer coefficient model, basing on the basic parameter with the mass percent of model. The results of the new established models are very well identical with the test results. The residual stress of YG6 gradient cemented carbides calculated by numerical simulation with the MARC finite element software is basically unanimous with the XRD test values. The best optimization design microstructure of YG6 gradient cemented carbides is the thickness of gradient layer should be of 20% to 30% radius, the value of the gradient distribution exponent p should be between 1.5 to 2.5 and the best cobalt content peak value should be between 12% to 16%.
     2) In CDCC, carbon content affects the type, amount and distribution ofη phase, and WC shape of alloys, etc. Co_3W_3C phase appears in alloys with relative lower degree of carbon-deficient and whose amount increase with increasing carbon content, whereas Co_6W_6C phase varies reversely. The total amount ofηphase decreases with increasing carbon content. With the increase of degree of carbon-deficient, the homogeneity ofηphase distribution decreases,ηphase tends to form clump shape and WC mostly maintains multangular character.
     3) The structure and properties of CDCC by Sintering-HIP are better than that of by Vacuum Sintering. The valid controlution of carburization atmosphere during the later stage of Sintering-HIP can directly prepare gradient cemented carbides. The WC-6(xNiyCo) CDCC with binder of xNiyCo alloyed powder, namely some Ni takes place of Co, can get near microstructures and performances of WC-6Co CDCC with same carbon content, which has application prospects in preparing no magnetism or low magnetism gradient cemented carbides for die industry or bearing.
     4) High performance gradient cemented carbide was successfully be prepared by a simple carburizing treatment on CDCC. The characteristic of the gradient microstructure is thatηphases in surface layer and sublayer have already totally disappeared, where consists of normal WC +γtwo phases. A cobalt-deficient area and a cobalt-rich area was formed on the surface layer and sublayer of the alloy respectively, however, the core area of the alloy has few change includingηphase. The forming of the cobalt gradient is influenced mainly by the carbon diffusion, reaction between carbon andηphase, outward migration of W atoms, pressure difference caused by liquid phase and the capillary force caused by grain grows of WC crystalline, etc.
     5) The hardness and the fracture toughness take on a continuous gradient change along the gradient direction on the cross section of alloys for the forming of the gradient structure. The gradient cemented carbides have better comprehensive performance, toughened by the gradient distribution of cobalt content, forming compressive stress at surface, inducing crack deflection and crack bridge, etc.
     6) The high temperature strength of gradient cemented carbides is higher than that of CHCC and CDCC. With the increasing of test temperature, the macroscopical fracture surface tends to smooth and the transcrystalline fracture proportion decreases while the intercrystalline fracture proportion increases. The slow decrease of high temperature strength of the gradient cemented carbides is the combined actions of the forming of cobalt gradient distribution, which weakens the soften and oxidation of metal cobalt at elevated temperature for lower cobalt content on surface layer, the strengthening for more tungsten dissolved in cobalt at surface layer and the relaxation of thermal residual tensile stress with the increasing of test temperature, etc.
引文
[1]李沐山.八十年代世界硬质合金技术进展.株洲:株洲市印刷装潢厂,1992.1-7
    [2]《国外硬质合金》编写组.国外硬质合金.北京:冶金工业出版社,1976.2,488-517
    [3]Bhaumik S K,Upadhyaya G S,Vaidya M L.Full density processing of complex WC-based cemented carbides.Journal of Materials Processing Technology,1996,58(1):45-52
    [4]Upadhyaya A,Sarathy D,Wagner G.Advances in sintering of hard metals.Materials &Design,2001,22(6):499-506
    [5]李沐山.20世纪90年代世界硬质合金材料技术进展.株洲:《硬质合金》编辑部,2004.6
    [6]Prakash L J.Application of fine grained tungsten carbide based cemented carbides.International Journal of Refractory Metals and Hard Materials,1995,13(5):257-264
    [7]Lisovsky A F.New grades of hardmetals for a rock cutting tools.Powder Metallurgy and Metal Ceramics,2002,41(7-8):430-435
    [8]Upadhyaya G S.Materirals science of cemented carbide-an overview.Materials &Design,2001,22(6):483-489
    [9]Mills B.Recent development in cutting tool materials.Journal of Materials Processing Technology,1996,56(1-4):16-23
    [10]谭志国.我国硬质合金涂层技术的新发展.稀有金属与硬质合金,1986,14(1):25-32
    [11]Greason A,James M,Tillman M,et al.The future of finer grain hard metals.In:Proceeding of the 16th Int.Plansee Seminar,Vol.2:314-338,Plansee Holding AG.Reutte,2005
    [12]罗茵.全国硬质合金行业2004年统计年鉴.中国钨业协会硬质合金分会,2005,4
    [13]孔昭庆,刘良先,田雪芹.2006年中国钨工业发展报告.中国钨业,2007,22(2):1-7
    [14]Yang Bohua,Zhang Zhongjian.Current status of China's cemented carbide industry and its future development.In:Proceeding of the 10th International Tungsten Symposium,Report 9,ITIA,Changsha,China,Sept.1,2005
    [15]王国栋.硬质合金生产原理.北京:冶金工业出版,1988.1-316
    [16]曾德麟.粉末冶金材料.北京:冶金工业出版社,1989.187-189
    [17]German R M.Sintering theory and practice.New York:John Wiley & Sons,1996
    [18]Andren H O.Microstructures of cemented carbides.Materials & Design,2001,22(6):491-498
    [19]株洲硬质合金厂.硬质合金的生产.北京:冶金工业出版,1976.249-284
    [20]Beste U.On the Nature of Cemented Carbide Wear in Rock Drilling:[Doctoral Dissertation].Uppsala,Sweden:Uppsala University,2004
    [21]Kim S,Han S H,Park J K,et al.Variation of WC grain shape with carbon content in the WC-Co alloys during liquid-phase sintering.Scripta Materialia,2003,48(5):635-639
    [22]BUSS K.High temperature deformation mechanisms of cemented carbides and cermets:[Doctoral Dissertation].Lausanne,Switzerland:Ecole Polytechnique F(?)d(?)rale de Lausanne,2004
    [23]Petersson A.Cemented carbide sintering:constitutive relations and microstructural evolution:[Doctoral Dissertation].Stockholm,Sweden:Royal Institute of Technology,2004
    [24]Pollock C B,Stadelmaier H H.The eta carbides in the Fe-W-C and Co-W-C systems.Metall.Trans.,1970,1,767-770
    [25]刘寿荣.WC-Co硬质合金中η1相和碳含量的磁性测定原理.有色金属,1994,46(1):63-67
    [26]周菊秋.我国钨工业发展现状及可持续发展建议[C].中国有色金属工业协会.2007中国钨钼业发展高层论坛论文集.乌鲁木齐:北京安泰科信息开发有限公司,2007:17-36
    [27]左铁镛.树立科学发展观实现我国钨业可持续发展.中国钨业,2008,23(1):6-9
    [28]孔昭庆.我国钨业目前的形势和任务.中国钨业,2007,22(1):1-3
    [29]林伯颖,张忠健.中国硬质合金工业发展中的隐忧与思考.中国钨业,2006,21(6):1-4
    [30]张忠健,汪晓,李仁琼,等.中国硬质合金产业的技术进步.硬质合金,2007,24(1):33-37
    [31]Tsuda K,Ikegaya A,Isobe K,et al.Development of functionally graded sintered hard materials.Powder Metallurgy,1996,39(4):296-300
    [32]Konyashin I Y.Improvements in reliability and serviceability of cemented carbides with wear-resistant coatings.Materials Science and Engineering A,1997,230(1-2):213-220
    [33]Richter V,Ruthendorf M V.On hardness and toughness of ultrafine and nanocrystalline hard materials.International Journal of Refractory Metals and Hard Materials,1999,17(1-3):141-152
    [34]Lengauer W,Dreyer K.Functionally graded hardmetals.Journal of Alloys and Compounds,2002,338(1-2):194-212
    [35]Andren H O.Microstructure development during sintering and heat-treatment of cemented carbides and cermets.Materials Chemistry and Physics,2001,67(1-3):209-213
    [36]Ung(?)r T,Borb(?)ly A,Goren-Muginstein G R,et al.Particle-size,size distribution and dislocations in nanocrystalline tungsten-carbide.Nanostructured Materials,1999,11(1):103-113
    [37]Jia K,Fischer T E,Gallois B.Microstructure,hardness and toughness of nanostructured and conventional WC-Co composites.Nanostructured Materials,1998,10(5):875-891
    [38]Goren-Muginstein G R,Berger S,Rosen A.Sintering study of nanocrystalline tungsten carbide powders.Nanostructured Materials,1998,10(5):795-804
    [39]Fang Z Z,Eason J W.Study of nanostructured WC-Co composites.International Journal of Refractory Metals and Hard Materials,1995,13(5):297-303
    [40]卫唏,罗振璧,胡宗森,等.纳米硬质合金刀具切削性能的研究.机械工程学报,1999,35(1):57-60
    [41]林信平,曹顺华,李炯义.纳米硬质合金烧结技术进展.稀有金属与硬质合金,2004,32(1):40-45
    [42]Cha S I,Hong S H,Ha G H,et al.Microstructure and mechanical properties of nanocrystalline WC-10Co cemented carbides.Scripta Materialia,2001,44(8-9):1535-1539
    [43]Agrawal D,Cheng J,Seegopaul P,et al.Grain growth control in microwave sintering of ultrafine WC-Co composite powder compacts.Powder Metallurgy,2000,43(1):15-16
    [44]Rodiger K,Dreyer K,Gerdes T,et al.Microwave sintering of hardmetals.International Journal of Refractory Metals and Hard Materials,1998,16(4-6):409-416
    [45]沈军,张法明,孙剑飞.高能球磨-快速热压烧结工艺制备纳米晶粒WC-Co硬质合金.矿冶工程,2003,23(5):89-92
    [46]宋长江,刘向阳,梁高飞,等.电磁场在材料加工中的应用现状及发展趋势.铸造,2004,53(10):775-778
    [47]李景新,黄因慧,赵剑峰,等.纳米材料激光选择性烧结成形的研究.电加工与模具,2002,(1):43-46
    [48]罗锡裕.放电等离子烧结材料的最新进展.粉末冶金工业,2001,11(6):7-16
    [49]张利波,彭金辉,张世敏.等离子体活化烧结在材料制备中的新应用.稀有金属,2000,24(6):445-449
    [50]Kobori K,Ueki M,Saito T,et al.Some properties of WC-βt-Co cemented carbide having stratified structures of sheet-like WC phases.Journal of the Japan Society of Powder Metallurgy,1989,36(4):41-46
    [51]Sommer M,Schubert W D,Zobetz E,et al.On the formation of very large WC crystals during sintering of ultrafine WC-Co alloys.International Journal of Refractory Metals and Hard Materials,2002,20(1):41-50
    [52]Kinoshita,Saito T,Kobayashi M,et al.Mechanisms for formation of highly oriented plate-like triangular S prismatic WC grains in WC-Co base cemented carbides prepared from W and C instead of WC.Journal of the Japan Society of Powder &Powder Metallurgy,2001,48(1):51-60
    [53]朱丽慧,赵海锋,黄清伟,等.高能球磨-热压烧结制备定向排布板状WC硬质合金.中南大学学报(自然科学版),2004,35(3):358-362
    [54]Konyashin I Y.PVD/CVD technology for coating cemented carbides.Surface and Coatings Technology,1995,71(3):277-283
    [55]Fitzsimmons M,Sarin V K.Development of CVD WC-Co coatings.Surface &Coatings Technology,2001,137(2-3):158-163
    [56]Wang Z Y,Sahay C,Rajurkar K P.Tool temperatures and crack development in milling cutters.Int J mach Tools Manufact,1996,36(1):129-140
    [57]Narasimhan K,Boppana S P,Bhat D G.Development of a graded TiCN coating for cemented carbide cutting tools-a design approach.Wear,1995,188(1-2):123-129
    [58]Frykholm R,Ekroth M,Jansson B,et al.A new labyrinth factor for modelling the effect of binder volume fraction on gradient sintering of cemented carbides.Acta Materialia,2003,51(4):1115-1121
    [59]Frykholm R,Ekroth M,Jansson B,et al.Effect of cubic phase composition on gradient zone formation in cemented carbides.International Journal of Refractory Metals and Hard Materials,2001,19(4-6):527-538
    [60]Frykholm R,Andren H O.Development of the microstructure during gradient sintering of a cemented carbide.Materials Chemistry and Physics,2001,67(1-3):203-208
    [61]Frykholm R,Jansson B,Andren H-O.The influence of carbon content on formation of carbo-nitride free surface layers in cemented carbides.International Journal of Refractory Metals and Hard Materials,2002,20(5-6):345-353
    [62]Ekroth M,Frykholm R,Lindholm M,et al.Gradient zones in WC-Ti(C,N)-Co-based cemented carbides:experimental study and computer simulations.Acta Materialia,2000,48(9):2177-2185
    [63]新野正之,平井敏雄,渡边龙三.倾斜机能材料.宇宙机用超耐热材料を目指す.日本复合材料学会志,1987,13(6):257-264
    [64]Suresh S,MortensenA.功能梯度材料基础:制备及热机械行为.李守新,等译.北京:国防工业出版社,2000.11-70
    [65]新野正之.倾斜机能材料の发想と开发动向.工业材料,1990,38(12):18-22
    [66]羊建高.梯度结构硬质合金的制备原理及梯度形成机理研究:[博士学位论文].长沙:中南大学,2004
    [67](?)kerman J,Fischer U,Hartzell E.Cemented carbide body with extra tough behavior.US Patent:No.5453241,1995-09-26
    [68](?)kerman J,Fischer U,Hartzell E.Cemented carbide body with extra tough behavior.US Patent:No.5279901,1994-01-18
    [69]Drougge L.Tool of cemented carbide for cutting,punching or nibbling.US Patent:No.5235879,1993-08-17
    [70]Fischer U K R,Hartzell E T,(?)kerman J.Cemented carbide with a binder phase gradient and method of making the same.US Patent,No.4820482,1989-04-11
    [71]Fischer U K R,Hartzell E T,(?)kerman J.Cemented carbide body used preferalbly for rock drilling and mineral cutting.US Patent:No.4743515,1988-05-10
    [72]高荣根,李沐山.梯度结构硬质合金的开发与应用.硬质合金,2000,17(2):77-84
    [73]PM Special Feature.Rock tools leads the way in drilling.Metal Powder Report,1992,47(12):48-50
    [74]邹序枚.硬质合金烧结时钻相的质量迁移.硬质合金,1992,9(1):6-12
    [75]Gustafson P,Akesson L.Formation of stratified binder phase gradients.Mater Sci Eng.A,1996,209,192-196
    [76]余立新,胡惠勇.世界硬质合金材料技术新进展.硬质合金,2006,23(1):52-57
    [77]Zackrisson J,Rolander U,Weinl G,et al.Microstructure of the surface zone in a heat-treated cermet material,International Journal of Refractory Metals and Hard Materials,1998,16(4-6):315-322
    [78]李永,张志民,马淑雅.耐热梯度功能材料的热应力研究进展.力学进展,2000,30(4):571-579
    [79]Nan C,et al.The elastoplastic behavior of metal/ceramic functionally gradient materials.Ceramic Transactions,1993,34:91-98
    [80]Markworth A J,Ramesh K S,Parks W P.Modelling studies applied to functionally graded materials.J Mate Sci,1995,30(9):2183-2193
    [81]Li Yong,Zhang Zhimin,Ma Shuya.Progress of the study on thermal stress of heat-resisting functionally gradient materials.Advances in Mechanics,2000,(4):571-580
    [82]Wakashima K,Hirano T,Niino M.Improvement in design accuracy of functionally gradient material for space plane applications.In:Proc Int Symp Space Technol Sci 1990,Tokyo,Jpn,501-504
    [83]张晓丹,刘东青,葛昌纯.稳态温度场下轴对称梯度功能材料的热应力分析.功能材料,1994,25(5):452-455
    [84]张晓丹,戚国安,汪朝霞.梯度功能材料设计中的数学模型及其热应力分析.应用科学学报,1995,13(2):202-207
    [85]Tomota Y,Kukori K,Mori T,Tamura I.Mater Sci Eng A,1976,24:85-91
    [86]Cho K,Gurland J:Metall.Trans.A,1988,19 A:2027-2040
    [87]Williamson R L,Rabin B H,Drake J T.Finite element analysis of thermal stresses at graded ceramic-metal interfaces Part Ⅰ-Model description and geometrical effect.Applied Physics,1993,74(1):1310-1320
    [88]Drake J T,Williamson R T,Rabin B H.Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces Part Ⅱinterface optimi- zation for residual stress reduction.Applied Physics,1993,74(2):1321-1326
    [89]Giannakopoulos AE,Suresh S,Finot M,Olsson M.Elastoplastic analysis of thermal cycling:Layered materials with compositional gradients.Acta Metall Mater,1995,43:1335-1354
    [90]Finot M,Suresh S,Bull C,Sampath S.Curvature changes during thermal cycling of a compositionally graded Ni-A1203 multi-layered material.Mater.Sci.Eng.,1996,205A:59-71.
    [91]Fischmeister H,Karlsson B.Plasticity of two-phase materials with a coarse microstructure.Z.Metallkunde,1977,68:311-327
    [92]Tamura I,Tomota Y,Ozawa I.Strength and ductility of Fe-Ni-C alloys composed of austenite and martensite with various strength.Institute of Metals,1973,1(3):611-615
    [93]Ravichandran K S.Thermal residual stresses in a functinalluy gradient system.Mater Sci and Eng,1995,A201:269-276
    [94]Fan Z,Tsakiropoulos P,Miodownik A P.Generalized law of mixtures.Journal of Materials science,1994,29(1):141-150
    [95]Fahmy A A,Ragi A N.Thermal expansion behaviour of twophase solids.Journal of Applying Physics,1970,41,5108-5111
    [96]Kerner E H.The elastic and thermo-elastic properties of composite media.Proclaimation of Physics Society B,1956,69:808-813
    [97]中国金属学会,中国有色金属学会.金属材料物理性能手册(1)-金属物理性能及测试方法.北京:冶金工业出版社.1987.186-208
    [98]Noda N,Tsuji T.Steady thermal stresses in a functionally gradient material plate (influence of mechanically boundary conditions).Transactions of JSME A.1992,58(553):1689-1695
    [99]Noda N,Tsuji T.Steady thermal stresses in a plate of functionally gradient material with temperature-dependent properties.Transactions of JSME A.1991,57(535):625-631
    [100]Obata Y,Noda N.Unsteady thermal stresses in a functionally gradient material plate (analysis of one-dimensional unsteady heat transfer problem).Transactions of JSME A.1993,59(560):1090-1096
    [101]Tanigawa Y,Akai T,Kawamura R,et al.Transient heat conduction and thermal stress problem of a nonhomogeneous plate with temperature dependent material properties.Journal of Thermal Stress,1996,19(1):77-102
    [102]Tanigawa Y,Ootao Y,Kawamura R.Thermal bending of laminated composite rectangular plates and nonhomogenous plates due to partial heating.Journal of Thermal Stresses,1991,14(3):285-308
    [103]Ootao Y,Akai T,Tanigawa Y.Three-dimensinal transient thermal stress analy- sis of nonhomgeneous hollow circular cylinder.Transactions of JSME A,1993,59(563):1684-1690
    [104]张幸红,曲伟,张学忠,等.TiC-Ni梯度功能材料的优化设计.材料科学与工艺,2000,8(1):81-83
    [105]ZHANG B S,Gasik M M.Stress evolution in graded materials during densification by sintering processes.Computational Materials Science,2002,25(1-2):264-271
    [106]曹文斌,葛昌纯.TiC基对称成分功能梯度材料残余热应力分析.粉末冶金工业,2002,12(2):13-15
    [107]凌云汉,白新德,葛昌纯.偏滤器部件W/Cu功能梯度材料的热应力缓和.清华大学学报(自然科学版),2003,43(6):750-753
    [108]Lee Y D,Erdogan F.Interface cracking of FGM coatings under steady-state heat flow.Engineering Fracture Mechanics,1998,59(3):361-380
    [109]Kieback B,Neubrand A,Riedel H.Processing techniques for functionally graded materials.Mater Sci Eng A,2003,362(1-2):81-105
    [110]Colin C,Durant L,Favrot N,et al.Processing of Composition Gradient WC-Co Cermets.In:Proceedings of the 13th International Plansee Seminar,Metallwerk Plansee,Reute,1993,2:522-536
    [111]Eso O,Fang Z Z,Griffo A.Liquid phase sintering of functionally graded WC-Co composites.International Journal of Refractory Metals and Hard Materials,2005,23(4-6):233-241
    [112]Fang Z Z,Eso O.Liquid phase sintering of functionally graded WC-Co composites.Scripta Materialia,2005,52(8):785-791
    [113]程继贵,夏永红,王华林,等.热压法制备WC-Co梯度硬质合金的研究.矿冶工程,2001,21(3):90-92
    [114]Lin W,Bai X D,Ling Y H,et al.Fabrication and properties of axisymmetric WC/Co functionally graded hard metal via microwave sintering.Functionally Graded Materials Vii,2003,423-424:55-58
    [115]Uchino K.Characterization of compositionally graded cemented carbide-steel composite.Journal of the Japan Society of Powder & Powder Metallurgy,1997,44(3):269-274
    [116]Tokita M.Large-size WC/Co functionally graded materials fabricated by spark plasma sintering(SPS) method.Functionally Graded Materials Ⅴⅱ,2003,423-424:39-44
    [117]Lisovsky A F.Composition and Structure of Cemented Carbides Produced by MMT-Process.Powder Metallurgy,1991,23(3):157-161
    [118]Gasik M.Isotropic and gradient hard metals fabrication by infiltration.In:Proceedings of the 13th International Plansee Seminar,Metallwerk Plansee,Reute,1993,2:553-561
    [119]Colin C,Durant L,Favrot N,et al.Processing of functional gradient WC-Co cermets by powder metallurgy.International Journal of Refractory Metals and Hard Materials,1994,12(3):145-152.
    [120]Tokita M.Large-size WC/Co functionally graded materials fabricated by spark plasma sintering(SPS) method.Mater Sci Forum,2003,423-425:39-44
    [121]Put S,Vleugels J,Van der Biest O.Functionally graded WC-Co materials produced by electrophoretic deposition.Scripta Materialia,2001,45(10):1139-1145
    [122]Put S,Anne G,Vleugels J,et al.Advanced symmetrically graded ceramic and ceramic-metal composites.Journal of Materials Science,2004,39(3):881-888
    [123]Liu Yong,Wang Haibing,Yang Jiangao,et al.Formation of gradient Structure in WC-Co Hard Alloy.J of Mater Sci Letters,2004,39:4397-4399
    [124]张武装,刘咏,羊建高,等.正碳烧结法制备WC-Co梯度结构硬质合金的研究.稀有金属与硬质合金,2004,32(1):32-35
    [125]羊建高,王海兵,刘咏,等.碳含量对矿用硬质合金梯度结构形成的影响.中国有色金属学报,2004,14(3):424-428
    [126]Hartzell,Torbjorn E,Akerman J.et al.Cemented carbide body used preferably for abrasive rock drilling and mineral cutting.US Patent:No.5286549,1994-02-15
    [127]孙绪新.梯度硬质合金的研制.粉末冶金技术,1998,16(4):262-266
    [128]RabinB H,Williamson R L,Bruck H A,et al.Proc 4th Int Symp On functionnally graded materials,Tsukuba,Japan,1996,Shiota I and Miyamoto Y,eds,Elsevier Science,1997,387-396
    [129]Cherradi N,Delfosse D,Hschncr B.Proc 4th Int Symp On functionnally graded materials,Tsukuba,Japan,1996,Shiota I and Miyamoto Y,eds,Elsevier Science,1997,379-386
    [130]Schubert W D,Neumeeister H,Kinger G,et al.Hardness to toughness relationship of free-grained WC-Co hardmetals.International Journal of Refractory Metals and Hard Materials,1998,16(1/2):133-142
    [131]张立,陈述,熊湘君,等.双相结构功能梯度WC-Co合金的微观组织结构与小负荷维氏硬度.中国有色金属学报,2005,15(8):1194-1199
    [132]Milman Y V,Luyckx S,Goncharuck V A,et al.Results from bending tests on submicron and micron WC-Co grades at elevated temperatures.International Journal of Refractory Metals and Hard Materials,2002,20(1):71-79
    [133]Nomura T,Moriguchi H,Tsuda K,et al.Material design method for the functionally graded cemented carbide tool.International Journal of Refractory Metals and Hard Materials,1999,17(6):397-404
    [134]Lisovsky A F.Some speculations on an increase of WC-Co cemented carbide service life under dynamic loads.International Journal of Refractory Metals and Hard Materials,2003,21(1/2):63-67
    [135]Bowman K J.Mechanical behavior of materials.Hoboken,N J:John Wiley.2004,334
    [136]宋士泓,李健纯.WC-Co合金微裂纹形核过程的探讨.金属学报,1987,23(6):521-526
    [137]蔡和平,朱维斗,姜喜春,等.硬煤截齿刀头硬质合金的热疲劳失效分析.西安交通大学学报,1997,31(3):12-17
    [138]Chen L M,Lengauer W,Peter E,et al.Fundamentals of liquid phase sintering for modern cermets and functionally graded cemented carbonitrides(FGCC).International Journal of Refractory Metals and Hard Materials,2000,18(6):307-322
    [139]许雄亮.一次烧结法制备两相梯度合金的研究.硬质合金,2008,25(1):12-18
    [140]黄艳华.共沉淀法制备Ni-Co合金粉末及其在金刚石薄壁钻头中的应用研究:[硕 士学位论文].长沙:中南大学,2007
    [141]杨桂通.弹塑性力学引论.北京:清华大学出版社,2004.190-197
    [142]美国金属学会主编.金属手册(第七卷)粉末冶金:有色合金及纯金属.北京:机械工业出版社,1994.1062-1067
    [143]Krawitz A D,Crapenhoft M L,Reichel D G,et al.Residual stress distribution in cermets.Materials Science and Engineering A,1988,105-106:275-281
    [144]Spiegler R,Schmauder S,Exner HE.Finite element modeling of the thermal residual stress distribution in a WC-10wt%Co alloy.Journal of Hard Material,1992,3(2):143-151
    [145]Larsson C,Od(?)n M.X-ray diffraction determination of residual stresses in functionally graded WC-Co composites.International Journal of Refratory Metal and Hard Materrials,2004,22(4-5):177-184
    [146]王零森.特种陶瓷.长沙:中南工业大学出版社,1994.35-36
    [147]Fischmeister H F,Schmauder S,Sigl L S.Finite element modelling of crack propagation in WC-Co hard metals.Materials Science and Engineering A,1988,105-106:305-311
    [148]Kieffer R,Schwarzkopf P.硬质合金.王少刚,等译.北京:中国工业出版社,1963.306,337
    [149]李震夏,黄玉祥,阮允翔,等.世界有色金属材料成分与性能书册.北京:冶金工业出版社,1992.1340-1341
    [150]Haglund S,(?)gren J.W content in Co binder during sintering of WC-Co.Acta mater,1998,46(8):2801-2807
    [151]Adorjan A,Schubert W D,Schon A,et al.WC grain growth during the early stages of sintering.International Journal of Refractory Metals and Hard Materials,2006,24(5):365-373
    [152]刘寿荣,宋俊亭,郝建民,等.WC-Co硬质合金的相转变.硬质合金,2001,18(3):129-133
    [153]Kim S,Han S H,Park J K,et al.Variation of WC grain shape with carbon content in the WC-Co alloys during liquid-phase sintering.Scripta Materialia,2003,48(5):635-639
    [154]贾佐诚,孙俊川.热等静压工艺对硬质合金性能的影响.粉末冶金工业,2005,15(4):17-20
    [155]曾青,吴恩熙.气压烧结对硬质合金机械性能的影响.硬质合金,1995,12(2):82-84
    [156]王国栋.硬质合金生产原理.北京:冶金工业出版社,1988.315-323
    [157]Xu Z H,(?)gren J.A modified hardness model for WC-Co cemented carbides.Materials Science and Engineering A,2004,386:262-268
    [158]Larsson C,Od(?)n M.Hardness profile measurements in functionally graded WC-Co composites.Materials Science and Engineering A,2004,382:141-149
    [159]Fang Z Z.Correlation of transverse rupture strength of WC-Co with hardness.International Journal of Refractory Metals and Hard Materials,2005,23(2):119-127
    [160]郭智兴,熊继.WC-Ni硬质合金的研究与应用.工具技术,2005,39(8):15-19
    [161]Tracey V A.Nickel in hard metals.International Journal of Refractory Metals and Hard Materials,1992,11(3):137-149
    [162]龙郑易,刘咏,贺跃辉,等.渗碳时间对梯度硬质合金显微组织和抗弯强度的影响.中国有色金属学报,2007,17(2):326-330
    [163]Upadhyaya A,Sarathy D,Wagner G.Advances in alloy design aspects of cemented carbides.Materials and Design,2001,22(6):511-517
    [164]Brookes K.How gradient hardmetals function.Metal powder reports,2007,62(4):19-25
    [165]史晓亮,杨凯华,汤凤林,等.稀土Ce的添加方式对WC-Co硬质合金性能的影响.中南大学学报(自然科学版),2005,36(2):204-208
    [166]Milman Y V,Chugunova S,Gonchbaruck V A,et al.Low and high temperature hardness of WC-6wt%Co alloys.International Journal of Refractory Metals and Hard Materials,1997,15(1-3):97-101
    [167]Milman Y V,Luyckx S,Northrop I T.Influence of temperature,grain size and cobalt content on the hardness of WC-Co alloy.International Journal of Refractory Metals and Hard Materials,1999,17(1-3):39-44
    [168]Spiegler R,Schmauder S,Sigl L S.Fracture toughness evaluation of WC-Co alloys by indentation testing.Journal of Hard Material,1990,1(3):147-158
    [169]Shetty D K,Wright I G,Mincer P N,et al.Indentation fracture toughness of WC-Co composites.J.Mater Sci,1985,20(5):1873-1882
    [170]Ravichandran K S.Fracture toughness of two phase WC-Co cermets.Acta Metallurgica et Materialia,1994,42(1):143-150
    [171]Peters C T.The relationship between Palmqvist indentation toughness and bulk fracture toughness for some WC-Co cemented carbides.J.Mater.Sci.,1979,14(7):1619-1623
    [172]Shin Y,Cao W,Sargent G,et al.Effects of microstructure on hardness and Palmqvist fracture toughness of WC-Co alloys.Mater.Sci.Eng A,1988,105-106:377-382
    [173]Rabin B H,Heaps R J.Powder processing of Ni/A1203 FGM.Ceramic transations, 1993,34:173-180
    [174]Tanihara K,MiyanotoY,Matsushita K,et al.Fabrication of Cr3C2/Ni fimctionaliy gradient materials by gas-pressure combustion sintering.Ceramictransations,1993,34:361-369
    [175]刘曼朗,姚振海,崔玉梅.硬质合金中WC的微观结构及其断裂机制.钢铁,1984,19(11):20-28
    [176]李晨辉,余立新,熊惟皓.硬质相粒度对金属陶瓷断裂韧性的影响.复合材料学报,2003,20(1):1-6
    [177]Mari D,Bolognini S,Feusier G,et al.Experimental strategy to study the mechanical behaviour of hardmetals for cutting tools.International Journal of Refractory Metals &Hard Materials,1999,17(1-3):209-225
    [178]Schaller R.Mechanical spectroscopy of the high temperature brittle-to-ductile transition in ceramics and cermets.Journal of Alloys and Compounds,2000,310(1-2):7-15
    [179]Kindermann P,Schlund P,Sockel H G,et al.High-temperature fatigue of cemented carbides under cyclic loads.International Journal of Refractory Metals and Hard Materials,1999,17(1-3):55-68
    [180]刘寿荣.WC-Co硬质合金γ相相变.稀有金属,2003,24(2):101-105
    [181]Voitovich V B,Sverdel V V,et al.Oxidation of WC-Co,WC-Ni and WC-Co-Ni hard metals in the temperature range 500-800℃.Int J Refractory Metals and Hard Mater,1996,14(4):289 -295
    [182]Basu S,Sarin V.Oxidation behavior of WC-Co.Mater Sci Eng A,1996,209:206-212

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700