用户名: 密码: 验证码:
钛酸钡基陶瓷的压电物性与钛酸铜钙陶瓷的高介电物性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电材料和介电材料是两类重要的功能电子材料。压电材料是实现机械能与电能相互转换的一类功能材料,在传感器、驱动器、超声换能器、蜂鸣器、电子点火器等各种电子元件和器件方面有着广泛的应用。目前广泛使用的压电材料主要是锆钛酸铅(Pb(Zr,Ti)O3,简称PZT)基陶瓷材料。但PZT的制备需要使用大量的含铅氧化物作为原料,在生产、使用和废弃后处理过程中都会给人类及生态环境带来严重的影响,发展无铅环境协调性压电陶瓷是一项紧迫且具有重大现实意义的课题。介电材料是一类利用材料的介电性质来制造电容性器件的电子材料,被广泛的应用在电容器、谐振器、滤波器、存储器等重要的电子器件中。近年来,随着电子器件向高性能化和尺寸微型化方向的发展,高介电材料受到越来越多的关注。在前述背景下,本论文主要开展了钛酸钡(BaTiO3)基压电陶瓷材料和钛酸铜钙(CaCu3Ti4O12,简称CCTO)高介电陶瓷材料的制备、物性及相关机理的研究。
     BaTiO3陶瓷是历史上最早发现的一种多晶压电材料,在B. Jaffe等于1954年发现PZT之前曾被广泛地应用。目前,虽然以BaTiO3为基体的陶瓷材料仍被广泛地用于制造各种电容器和PTC电阻等,但作为压电陶瓷材料的应用已很少见,主要的一个原因是由于通常制备的BaTiO3基陶瓷材料的压电活性太低(d33≤190 pC/N)。值得关注的是,最近几年日本研究者相继报道了以水热法合成的BaTi03超微粉为原料制备出压电活性非常高的BaTiO3陶瓷材料的研究结果。利用微波烧结、分段烧结或TGG技术烧结制备的BaTiO3陶瓷的d33值分别达到了360、460和788 pC/N。作者所在的课题组在前期的工作中采用普通的BaCO3和Ti02粉体为原料、通过固相反应方法也制备出了d33值高达419 pC/N的钛酸钡陶瓷。这些结果启示人们需要对钛酸钡基陶瓷作为无铅压电材料应用的潜能进行重新思考。然而,目前人们对于BaTiO3陶瓷呈现如此高的压电活性的物理机理还不是很明确。另外,考虑到BaTiO3在相对较窄的温度范围内具有多个相变点,强压电活性的BaTiO3陶瓷的温度稳定性也是一个值得关注的问题。
     CCTO是一种具有钙钛矿型衍生结构的氧化物,该材料不论是单晶形态还是多晶陶瓷形态都呈现异常高的介电常数,并且其静介电常数在很广的温度范围内几乎不随温度变化。对于CCTO高介电性的起源,有人认为起源于材料内在的晶格结构,也有人认为起因于内部阻挡层电容效应,还有人归结为与样品电极有关的耗尽层效应,因此在机制解释方面存在着很大的争议。另一方面,CCTO的晶粒是半导化的,这一点已经被广大研究者所接受,但目前人们对于半导化的起源及相应的电学输运机制的理解上还存在着较大的分歧。这对于全面理解CCTO的物理特性、研发新型高介电材料是十分不利的,还需要进一步对其研究。
     本论文以传统固相反应法制备的BaTiO3基压电陶瓷和CCTO高介电陶瓷为研究对象。考察了BaTiO3陶瓷的压电晶粒尺寸效应并探讨了相关的物理机理。讨论了BaTiO3陶瓷的温度稳定性问题,并制备了强压电活性高温度稳定性的BaTiO3基压电陶瓷。考察了CCTO陶瓷的微观组织结构、介电、复阻抗以及直流电阻率方面的电学性质,探讨了相关的高介电性的物理机理和晶粒半导化的起源。
     一、以普通碳酸钡和二氧化钛粉体为原料,利用传统的固相反应工艺制备了不同晶粒尺寸的高致密度钛酸钡陶瓷样品,研究了其压电介电物性随晶粒尺寸的变化关系。晶粒尺寸为0.94μm的精细晶粒钛酸钡陶瓷的相对介电常数约为4700,压电常数为340 pC/N,这些结果表明可以通过控制晶粒尺寸来获得较大的介电压电活性。通过比较介电常数和压电常数随晶粒尺寸的变化关系,发现了钛酸钡陶瓷的强压电活性和高介电活性有着共同的起源。但射线分析的结果表明精细晶粒钛酸钡陶瓷中晶格结构的变化不能解释高介电压电活性的起源,因此可以推断钛酸钡的高介电压电活性主要来自于非本征的贡献。内应力对陶瓷介电压电活性有着明显的影响。精细晶粒陶瓷中的内应力会导致相变点的变化,但内应力造成的相变点变化不足以完全解释当前不同晶粒尺寸的钛酸钡陶瓷的室温介电常数和d33的巨大差别,当然也就无法解释精细晶粒钛酸钡陶瓷室温高介电常数和高d33的起源。通过对陶瓷电畴构型的表征,发现了钛酸钡的强介电压电活性是和90°电畴结构密切相关的。钛酸钡陶瓷的介电压电活性随90°电畴宽度减小呈现先增加后减小的变化规律。经过分析,我们认为,随着晶粒尺寸的减小,90°电畴密度的增加和90°畴壁的有效质量的减小是导致介电压电晶粒尺寸效应的主要原因。
     二、考察了强压电活性BaTiO3陶瓷的温度稳定性问题。研究发现,尽管我们可以通过调节制备工艺来获得室温条件下压电活性非常良好的BaTiO3陶瓷,但是其较差的压电活性温度稳定性仍会严重的影响BaTiO3陶瓷作为强压电活性无铅压电材料的应用前景。然而,通过比较四方相和正交相的压电活性的温度稳定性,我们发现BaTiO3基压电材料在正交相具有更好的压电活性温度稳定性,这为我们改善BaTiO3基压电材料的温度稳定性提供了重要依据。通过适量的Zr的Ti位取代,我们成功的把BaTiO3的正交相移动到室温附近,有效地改善BaTiO3陶瓷的温度稳定性。但随着Zr的添加,Ba(Ti,Zr)O3材料的室温压电活性下降,除了Zr取代Ti引起的相移的影响,大晶粒中过多的人字形电畴结构导致的畴壁有效质量的增大也是一个十分重要的因素。减小Ba(Ti,Zr)O3陶瓷的晶粒大小可能是提高其室温压电活性的一个有效方法。研究发现,少量的CuO添加可以有效地降低Ba(Ti,Zr)O3的烧结温度,抑制晶粒生长。小晶粒中较小的畴壁有效质量可能是导致CuO掺杂后Ba(Ti,Zr)O3陶瓷室温压电性能升高的主要原因。此外,CuO的掺杂还有助于电畴结构的稳定,提高材料的抗经时老化特性。并且CuO的掺杂扩展了正交相的温度范围,扩展了相变点附近的两相共存区,进一步改善了Ba(Ti,Zr)O3陶瓷的温度稳定性。其中,1 mol% CuO改性的Ba(Ti0.9625Zr0.0375)O3陶瓷的室温d33高达300 pC/N,k33在-60℃-85℃的温度范围内均大于50%,并且在-30℃-55℃的温度范围内几乎不随温度变化,表现出较好的压电活性和温度稳定性。三、考察了高介CCTO陶瓷的微观结构以及电学性质。研究发现,随着烧结时间的延长,CCTO陶瓷的平均晶粒尺寸增大、介电常数增高。在对CCTO室温以上的高温区域的介电性的研究中,发现除了已知的在低温和常温下可观察到的100 kHz以上的类德拜弛豫色散之外,在100 Hz-100 kHz的频率范围内还有一个新的类弛豫性介电色散存在。因此,CCTO陶瓷的高温介电谱上包含两个类德拜型弛豫和一个巨大的低频介电响应。利用特征弛豫频率与温度的关系,求出了两个弛豫频率的激活能分别为0.086 eV和0.632 eV。通过对CCTO复阻抗谱的分析,发现高温下CCTO的复阻抗谱包含三个阻抗半圆弧,而不是以前报道的两个。进一步的分析发现,这三个阻抗圆分别代表了三种不同的电学机制。通过对不同电极样品的室温介电谱和高温介电谱的分析,我们发现高频介电弛豫是和电极效应无关的,而中频介电弛豫则主要是电极效应的贡献。据此我们推论高频下的阻抗半圆弧主要起源于晶粒,而中频和低频下的半圆弧主要起源于晶界和电极效应的贡献。根据前面的实验结果分析,我们提出了一个在三个不随频率变化的RC并联电路(RgCg, RgbCgb和RxCx)中加入一项与空间电荷输运行为相关的、随频率变化的阻抗的新的等效电路模型,其中RgCg,RgbCgb和RxCx分别代表来自晶粒、晶界和电极效应的贡献。利用该等效电路模型,成功地对实验数据进行了拟合处理,并得到了描述三种不同机制效应的相应的特征电阻的激活能分别为0.107 eV、0.627 eV和0.471 eV。最后,经过理论推导证明,介电谱上的两个特征频率主要是由RbCgb和RgbCx的大小决定的。
     四、研究了CCTO陶瓷不同温度下的Ⅰ-Ⅴ曲线和直流电阻率随温度的变化关系。研究发现,在高温强电流条件下,CCTO陶瓷晶界和电极处的势垒处于击穿态,测量得到的电阻主要来自于晶粒的贡献。通过对CCTO陶瓷不同温度条件下的直流电阻率的测量,我们发现高温下CCTO的晶粒电阻率随温度的变化规律符合绝热近似的小极化子跳跃传导的行为,而非半导体能带传导的Arrhenius定律。据此我们推测CCTO晶粒中存在着小极化子。样品还原气氛处理的结果表明氧缺陷并不是导致CCTO晶粒半导化的原因,可能的传导机制来自于Cu或Ti的变价。考虑到我们测量得到的负的Seebeck值,我们认为CCTO陶瓷晶粒内的电荷输运主要通过Ti3+/Ti4+的小极化子跳跃传导。
Piezoelectric and dielectric materials are two important classes of electronic materials. Piezoelectric materials are a class of functional materials that realize the conversion between mechanical energy and electrical energy and thus are popularly utilized to fabricate sensors, actuators, transducers and other electronic devices. Currently, Pb(Zr,Ti)O3 (PZT)-based piezoelectric ceramics take the predominated position in the market of practical piezoelectric materials because of their excellent electrical properties. However, due to the toxicity of lead oxide that is largely used during the production process, there is an increasing demand to replace PZT with the environment-benign lead-free alternatives. Dielectric materials are widely used to form capacitive devices such as capacitance, resonators and filters. Those dielectric materials with high dielectric permittivity have attracted considerable interest in recent years since they might offer the opportunity to enhance the performance or shrink the dimensional sizes of the microelectronic device. Under these circumstances, this thesis concentrates on the studies of material preparations, physical properties and the related mechanisms for BaTiO3-based piezoelectric ceramics and CaCu3Ti4O12 (CCTO) high-dielectric ceramics.
     BaTiO3 ceramics is historically the first polycrystalline piezoelectric material and had been once widely used as a piezoelectric material before the discovery of PZT. Nowadays, however, its main technical applications are no longer as a piezoelectric but as a dielectric material, largely because of its poor piezoelectric properties (usually, d33≤190 pC/N) compared with PZT. Nevertheless, surprisingly high d33 values (350, 460 and 788 pC/N, respectively) were reported recently for those BaTiO3 ceramics that were prepared from hydrothermally synthesized fine BaTiO3 powders by some special fabrication techniques like microwave sintering, two-step sintering and templated grain growth (TGG). More importantly, we have recently succeeded in obtaining BaTiO3 ceramics with high piezoelectric properties through conventional solid-state reaction route with starting raw materials of ordinary BaCO3 and TiO2 powders. These results indicate that BaTiO3-based ceramics possess a high possibility to become a good lead-free piezoelectric material. However, related mechanism for the excellent piezoelectric properties remains unclear. Furthermore, considering BaTiO3 undergoes three polymorphic phase transitions in a relatively narrow temperature region, the piezoelectric temperature dependence of the recently obtained high piezoelectric constant BaTiO3 ceramics another concern.
     CCTO is an oxide that has a cubic perovoskite-related crystal structure and exhibits an enormously large dielectric permittivity (ε') at low frequencies in both forms of single crystals and ceramics. The dielectric permittivity keeps almost constant in the low frequency range below 100 kHz at room temperature and is nearly independent of temperature over the wide temperature region. So far, several models have been proposed to explain the dielectric behavior but are quite controversial, including both intrinsic and extrinsic mechanism explanations from the viewpoint such as crystal structure, internal barrier layer capacitance (IBLC) effect and contact-electrode depletion effect. Besides, though it is widely accepted that the grains of CCTO ceramics are semiconductive, the origin of the semiconductive and relevant conduction behavior are still disputable. This situation is extremely unfavorable for a full understanding of the unusual dielectric property and its related mechanism of CCTO and further research needs to be done.
     This thesis takes the BaTiO3-based piezoelectric ceramics and CCTO high-dielectric ceramics prepared by the conventional solid-state reaction as research objects. For BaTiO3-based piezoelectric ceramics, the grain size effect on the piezoelectric properties of BaTiO3 ceramics is investigated. The piezoelectric temperature dependence of BaTiO3 ceramics is discussed and ceramics with high piezoelcectric activities and stable temperature dependence are successfully obtained. For CCTO high-dielectric ceramics, the effects of microstructure and electrode on the dielectric and electrical properties are investigated and the high temperature conduction behavior is discussed.
     1. BaTiO3 ceramics with high piezoelectric coefficient (d33) have been successfully obtained through the conventional solid-state reaction route starting from ordinary BaCO3 and TiO2 powders. The BaTiO3 ceramic with an average grain size about 0.94μm is found to have the excellent piezoelectric properties of d33= 340 pC/N andε'= 4700. This result suggests that it is possible to obtain very high piezoelectric activities and permittivity by the grain size control. By carefully analyzing the variations of permittivity and piezoelectric activities with the changing of grain sizes, it is found that the high piezoelectric acitivities and the high permittivity have the same physical origins. XRD analyzing results show that changes of crystal structure in fine grain BaTiO3 ceramics can not account for the high permittivity and high piezoelectric constant. Some extrinsic contributions must exist in BaTiO3 ceramics with high dielectric permittivity and piezoelectric acitivities. The effect of internal stress on the dielectric permittivity and piezoelectric constant can not be ignored in BaTiO3 ceramics. Internal stress in fine grain BaTiO3 ceramics can lead to phase transition temperature shifts, but great differences of room-temperature dielectric permittivity and piezoelectric constant can not be fully ascribed to the shift of phase transition temperature. However, it is found that high dielectric permittivity and piezoelectric constant are closely related to domain configuration. The d33 values firstly increases and then decreases with the decrease of average domain width. A possible mechanism that results in the piezoelectric properties grain size effect in the present BaTiO3 ceramics is discussed. It is suggested that both density and effective mass of the 90°-domain wall in the BaTiO3 ceramics are considered to be important factors which significantly influence the d33 value.
     2. The piezoelectric temperature dependence of BaTiO3 ceramics is discussed. Though BaTiO3 ceramics with high piezoelectric activities can be obtained by choosing appropriate preparing parameters, the temperature unstability is a great obstacle to the application of BaTiO3 ceramics. However, by comparing the piezoelectric properties in tetragonal phase with that in orthorhombic phase, it is found that BaTiO3 ceramics exhibit more stable piezoelectric properties in the orthorhombic phase than in the tetragonal phase. This is a very important clue for us to gain the good piezoelectric temperature stability in BaTiO3-based ceramics. Partially substituting Ti with Zr can shift the phase transition temperature upward and is effective in reducing the piezoelectric temperature dependence. However, it is found that the piezoelectric activities decrease with the substituting Ti with Zr. Beside the effect of phase shift, more herringbone pattern domains in the large grain Ba(Ti,Zr)O3 ceramics is an important factor that lead to the decrease of piezoelectric activities. It is found that this could be overcome by incorporating a small amount of CuO additive. Furthermore, the CuO-modified BZT ceramics exhibit weaker long-time degradation and better temperature stability. CuO-modified Ba(Tio.9625Zro.o375)03 ceramics possess piezoelectric properties of d33= 300 pC/N, kp= 0.493, and k33= 0.651 with tanδ= 0.011, and its k33 remains larger than 0.50 in the broad temperature range from -60 to 85℃and is almost constant between -30 and 55℃. The results indicate that CuO-modified Ba(Ti,Zr)O3 ceramics are a promising low-cost lead-free material for practical applications.
     3. A series of CCTO ceramics are prepared by the conventional solid-state reaction method under various sintering conditions. Dielectric properties and complex impedance spectra are investigated within the frequency range of 40 Hz-110 MHz at room temperature and within the frequency range of 40 Hz-4 MHz at higher temperatures up to 350℃. The high dielectric constant is found to closely relate to the microstructure. A Debye-like relaxation appears above 75℃in the frequency range of 100 Hz-100 kHz, which shows the larger dielectric dispersion strength than that existing in the frequency region higher than 100 kHz. High-temperature dielectric dispersion exhibits a large low-frequency response and two Debye-like relaxations. Their characteristic frequencies follow the Arrhenius-law with the activation energy values of 0.086 eV and 0.632 eV, respectively. Furthermore, the existence of three semicircles in the complex impedance plane is disclosed in the present study, which differs in the reported number of two in literature. These semicircles are considered to represent different electrical mechanisms. The contact-electrode depletion effect is examined. From the analysis, we attribute the impedance semicircle in the high frequency region to the contribution of semiconducting grains and the other two to the contributions of the grain boundaries and electrode depletion effect respectively. An equivalent electrical circuit model is suggested to explain the dielectric and electrical properties, in which a frequency-dependent ZUDR term is included in parallel to one of three in-series connected RC elements. The model well fits simultaneously the data of dielectric dispersion and complex impedance. The activation energy values of the three resistances are calculated to be 0.471 eV,0.627 eV and 0.107 eV, respectively.
     4. The electrical property of CaCu3Ti4O12 ceramics was studied over the high temperature range of 300-800℃. The Seebeck coefficient S is negative with a large absolute value of~560μV/K at 300℃. The measuredⅠ-Ⅴresponses are highly linear, which indicates that CCTO ceramics as a whole are ohmic at high temperatures and that the measured p reflects essentially the electrical conduction property in the grains of ceramic polycrystalline structure. The change of p with T follows the rule of adiabatic hopping conduction of small-polaron rather than the one of thermally activated conduction. Possible mechanism for the small-polaron formation and transport is discussed. Oxygen vacancy is not the reason for the grain semiconductivity. Possible conduction mechanism may come from the aliovalence of Cu or Ti. A model that the small polaron originates from the aliovalence of Ti4+/Ti3+ is proposed.
引文
[1]方俊鑫,殷之文,电介质物理学,科学出版社,北京(1998).
    [2]李翰如,电介质物理导论,成都科技大学出版社,成都(1990).
    [3]孙目珍,电介质物理基础,华南理工大学出版社,广州(2002).
    [4]王春雷,李吉超,赵明磊,压电铁电物理,科学出版社,济南(2009).
    [5]B. Jaffe, W. R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, London (1971).
    [6]许煜寰等,铁电与压电材料,科学出版社,北京(1978).
    [7]张沛霖,钟维烈,压电材料与器件物理,山东科学技术出版社,济南(1994).
    [8]Gene H. Haertling, "Ferroelectric Ceramics:History and Technology," J. Am. Ceram. Soc.82 (4),797-818 (1999).
    [9]钟维烈,铁电体物理学,科学出版社,北京(1998).
    [10]林声和,叶至碧,王裕斌,压电陶瓷,国防工业出版社,北京(1979).
    [11]J. Valasek, "Piezo-Electric and Allied Phenomena in Rochelle Salt," Phys. Rev. 17 (4),475-481 (1921).
    [12]W. G. Cady, Piezoelectricity, McGraw-Hill Book Co., New York (1946).
    [13]B. Jaffe, R. S. Roth, S. Marzullo, "Piezoelectric Properties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics," J. Appl. Phys.25 (6), 809-810(1954).
    [14]B. Jaffe, R. S. Roth, S. Marzullo, "Properties of Piezoelectric Ceramics in the Solid-Solution Series Lead Titanate-Lead Zirconate-Lead Oxide:Tin Oxide and Lead Titanate-Lead Hafnate," J. Res. Natl. Inst. Stan.55,239-254 (1955).
    [15]B. Jaffe, USA Patent No.2 708 244 (1955).
    [16]F.Kulcsar, USA Patent No.2 911 370(1959).
    [17]Turuvekere R. Gururaja, USA Patent No.5 345 139 (1994).
    [18]F. Kulcsar, "Electromechanical Properties of Lead Titanate Zirconate Ceramics Modified with Certain Three-or Five-Valent Additions," J. Am.
    Ceram. Soc.42 (7),343-349 (1959).
    [19]G. A. Smolenskii, A. I. Agranovskaya, "Dielectric polarization of a number of complex compounds," Sov. Phys.-Solid State (Engl. Transl.) 1 (10),1429-1437 (1960).
    [20]Tadashi Takenaka, Kei-ichi Maruyama, Koichiro Sakata, "(Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys.30 (Part 1, No.9B),2236 (1991).
    [21]Hajime Nagata, Tadashi Takenaka, "Lead-Free Piezoelectric Ceramics of (Bi1/2Na1/2)TiO3-KNbO3-1/2(Bi2O3*Sc2O3) System," Jpn. J. Appl. Phys.37 (Part 1, No.9B),5311 (1998).
    [22]Atsushi Sasaki, Tatsuya Chiba, Youichi Mamiya, and Etsuo Otsuki, "Dielectric and Piezoelectric Properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 Systems," Jpn. J. Appl. Phys.38 (Part 1, No.9B),5564 (1999).
    [23]Ming-Lei Zhao, Chun-Lei Wang, Wei-Lie Zhong, Jin-Feng Wang, and Zheng-Fa Li, "Grain-Size Effect on the Dielectric Properties of Bi0.5Na0.5TiO3," Chinese Phys. Lett. (2),290 (2003).
    [24]D. M. Lin, D. Q. Xiao, J. G. Zhu, P. Yu, H. J. Yan, and L. Z. Li, "Synthesis and piezoelectric properties of lead-free piezoelectric [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 ceramics," Mater. Lett.58 (5),615-618 (2004).
    [25]G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, "New ferroelectrics of complex composition," Sov. Phys.-Solid State (Engl. Transl.) 2 (11), 2651-2654(1961).
    [26]X. X. Wang, X. G. Tang, H. L. W. Chan, "Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics,"Appl. Phys. Lett.85 (1),91-93 (2004).
    [27]Z. H. Zhou, J. M. Xue, W. Z. Li, J. Wang, H. Zhu, and J. M. Miao, "Ferroelectric and electrical behavior of (Na0.5Bi0.5)TiO3 thin films," Appl. Phys. Lett.85 (5),804-806 (2004).
    [28]Y. Yuan, S. R. Zhang, X. H. Zhou, and J. S. Liu, "Phase transition and temperature dependences of electrical properties of [Bi0.5Na1-x-yKxLiy)0.5]TiO3
    ceramics," Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers 45 (2A),831-834 (2006).
    [29]Y. W. Liao, D. Q. Xiao, D. M. Lin, J. G. Zhu, P. Yu, L. Wu, and X. P. Wang, "The effects of CeO2-doping on piezoelectric and dielectric properties of Bi0.5(Na1-x-yKxLiy)0.5TiO3 piezoelectric ceramics," Mat. Sci. Eng. B-Solid 133 (1-3),172-176(2006).
    [30]Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-free piezoceramics," Nature 432 (7013),84-87 (2004).
    [31]Y. P. Guo, K. Kakimoto, H. Ohsato, "Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics," Appl. Phys. Lett.85 (18),4121-4123 (2004).
    [32]Y. P. Guo, K. Kakimoto, H. Ohsato, "(Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics," Mater. Lett.59 (2-3),241-244 (2005).
    [33]M. Matsubara, K. Kikuta, S. Hirano, "Piezoelectric properties of (K0.5Na0.5)(Nb1-xTax)O3-K5.4CuTa10O29 ceramics," J. Appl. Phys.97 (11), 114105(2005).
    [34]E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter, "Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics," Appl. Phys. Lett. 87(18),182905(2005).
    [35]H. Y. Park, C. W. Ahn, H. C. Song, J. H. Lee, S. Nahm, K. Uchino, H. G. Lee, and H. J. Lee, "Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics," Appl. Phys. Lett.89 (6),062906 (2006).
    [36]S. J. Zhang, R. Xia, T. R. Shrout, G. Z. Zang, and J. F. Wang, "Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics," J. Appl. Phys.100 (10),104108 (2006).
    [37]R. Z. Zuo, C. Ye, "Structures and piezoelectric properties of (NaKLi)1-x(Bi,Na,Ba)xNb1-xTixO3 lead-free ceramics," Appl.Phys. Lett.91 (6), 062916(2007).
    [38]L. Wu, J. L. Zhang, C. L. Wang, and J. C. Li, "Influence of compositional ratio K/Na on physical properties in (KxNa1-x)NbO3 ceramics," J. Appl. Phys.103 (8),084116 (2008).
    [39]Y. J. Dai, X. W. Zhang, G. Y. Zhou, "Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics," Appl. Phys. Lett.90 (26),262903 (2007).
    [40]S. J. Zhang, R. Xia, T. R. Shrout, "Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range," Appl. Phys. Lett.91 (13), 132913 (2007).
    [41]L. Wu, J. L. Zhang, S. F. Shao, P. Zheng, and C. L. Wang, "Phase coexistence and high piezoelectric properties in (K0.40Na0.60)0.96Li0.04Nb0.80Ta0.20O3 ceramics," J. Phys. D:Appl. Phys.41 (3),035402 (2008).
    [42]J. L. Zhang, X. J. Zong, L. Wu, Y. Gao, P. Zheng, and S. F. Shao, "Polymorphic phase transition and excellent piezoelectric performance of (K0.55Na0.45)0965Li0.035Nb0.80Ta0.20O3 lead-free ceramics," Appl. Phys. Lett.95 (2),022909 (2009).
    [43]A. von Hippel, R. G. Breckenridge, F. G. Chesley, and Laszlo Tisza, "High dielectric constant ceramics," Industrial& Engineering Chemistry 38 (11), 1097-1109(1946).
    [44]B. M. Wul, I. M. Goldman, "Dilelectric Constants of Titanates of Metal of the Second Group," Dokl. Akad. Nauk. SSSr,46 154-157 (1945); Compt. Rend. Acad. Sci. URSS 49,139-142 (1945).
    [45]Shepard Roberts, "Dielectric and Piezoelectric Properties of Barium Titanate," Phys. Rev.71 (12),890-895 (1947).
    [46]W. P. Mason, "Electrostrictive Effect in Barium Titanate Ceramics," Phys. Rev. 74(9),1134-1147(1948).
    [47]Hirofumi Takahashi, Yoshiki Numamoto, Junji Tani, Kazuya Matsuta, Jinhao Qiu, and Sadahiro Tsurekawa, "Lead-Free Barium Titanate Ceramics with Large Piezoelectric Constant Fabricated by Microwave Sintering," Jpn. J. Appl. Phys.45 (1), L30-L32 (2006).
    [48]Hirofumi Takahashi, Yoshiki Numamoto, Junji Tani, and Sadahiro Tsurekawa, "Piezoelectric Properties of BaTiO3 Ceramics with High Performance Fabricated by Microwave Sintering," Jpn. J. Appl. Phys.45 (9B),7405-7408 (2006).
    [49]Tomoaki Karaki, Kang Yan, Toshiyuki Miyamoto, and Masatoshi Adachi, "Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder," Jpn. J. Appl. Phys.46 (4), L97-L98 (2007).
    [50]Satoshi WADA, Kotaro TAKEDA, Tomomitsu MURAISHI, Hirofumi KAKEMOTO1, Takaaki TSURUMI, and Toshio KIMURA, "Preparation of [110] Grain Oriented Barium Titanate Ceramics by Templated Grain Growth Method and Their Piezoelectric Properties," Jpn. J. Appl. Phys.46 (10B), 7039-7043 (2007).
    [51]Hirofumi TAKAHASHI, Yoshiki NUMAMOTO, Junji TANI, and Sadahiro TSUREKAWA, "Domain Properties of High-Performance Barium Titanate Ceramics," Jpn. J. Appl. Phys.46 (10B),7044-7047 (2007).
    [52]T. Karaki, K. Yan, M. Adachi, "Barium titanate piezoelectric ceramics manufactured by two-step sintering," Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications& Review Papers 46 (10B),7035-7038 (2007).
    [53]H. Takahashi, Y. Numamoto, J. Tani, and S. Tsurekawa, "Considerations for BaTiO3 Ceramics with High Piezoelectric Properties Fabricated by Microwave Sintering Method," Jpn. J. Appl. Phys.47 (11),8468-8471 (2008).
    [54]Shao Shoufu, Zhang Jialiang, Zhang Zong, Zheng Peng, Zhao Minglei, Li Jichao, and Wang Chunlei, "High piezoelectric properties and domain configuration in BaTiO3 ceramics obtained through the solid-state reaction route," J. Phys. D:Appl. Phys.41 (12),125408 (2008).
    [55]S. Wada, S. Suzuki, T. Noma, T. Suzuki, M. Osada, M. Kakihana, S. E. Park, L. E. Cross, and T. R. Shrout, "Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations," Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes& Review Papers 38 (9B), 5505-5511 (1999).
    [56]Wada Satoshi, Yako Koichi, Kakemoto Hirofumi, Tsurumi Takaaki, and Kiguchi Takanori, "Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes," J. Appl. Phys.98 (1),014109 (2005).
    [57]K. Yako, H. Kakemoto, T. Tsurumi, and S. Wada, "Domain size dependence of d33 piezoelectric properties for barium titanate single crystals with engineered domain configurations," Mat. Sci. Eng. B 120 (1-3),181-185 (2005).
    [58]J. Grigas, Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials, Gordon and Breach, New York (1994).
    [59]Yu M. Polavko, Sov. Phys. Solid State 15,991 (1973).
    [60]G. Arlt, P. Sasko, "Domain configuration and equilibrium size of domains in BaTiO3 ceramics," J. Appl. Phys.51 (9),4956-4960 (1980).
    [61]G. Arlt, "Twinning in ferroelectric and ferroelastic ceramics:stress relief," J. Mater. Sci.25 (6),2655-2666 (1990).
    [62]M. C. McQuarrie, W. R. Buessem, "The Aging Effect in Barium Titanate," Am. Ceram. Soc. Bull.34,402 (1955).
    [63]K. W. Plessner, "Ageing of the Dielectric Properties of Barium Titanate Ceramics," Proc. Phys. Soc. B (12),1261-1268 (1956).
    [64]A. V. Turik, A. I. Chernobabov, "Orientational contribution to the dielectric, piezoelectric, and elastic properties of a ferroelectric ceramic," Sov. Phys. Solid State (Eng. Transl.) 22 (9),1127-1130 (1977).
    [65]G. Arlt, H. Dederichs, "Complex elastic, dielectric and piezoelectric constants by domain wall damping in ferroelectric ceramics," Ferroelectrics 29 (1), 47-50(1980).
    [66]G. Arlt, H. Dederichs, R. Herbiet, "90°-domain wall relaxation in tetragonally distorted ferroelectric ceramics," Ferroelectrics 74 (1),37-53 (1987).
    [67]G. Arlt, N. A. Pertsev, "Force constant and effective mass of 90° domain walls in ferroelectric ceramics," J. Appl. Phys.70 (4),2283-2289 (1991).
    [68]G. Arlt, presented at the Ultrasonics Symposium,1990. Proceedings., IEEE 1990.
    [69]N. A. Pertsev, G. Arlt, "Forced translational vibrations of 90° domain walls and the dielectric dispersion in ferroelectric ceramics," J. Appl. Phys.74 (6), 4105-4112(1993).
    [70]Q. M. Zhang, H. Wang, N. Kim, and L. E. Cross, "Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics," J. Appl. Phys.75 (1),454-459 (1994).
    [71]Q. M. Zhang, W. Y. Pan, S. J. Jang, and L. E. Cross, "Domain wall excitations and their contributions to the weak-signal response of doped lead zirconate titanate ceramics," J. Appl. Phys.64 (11),6445-6451 (1988).
    [72]Damjanovic Dragan, Demartin Marlyse, "The Rayleigh law in piezoelectric ceramics,"J. Phys. D:Appl. Phys. (7),2057-2060 (1996).
    [73]Damjanovic Dragan, Demartin Marlyse, "Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics," J. Phys.:Condens. Matter (23),4943-4953 (1997).
    [74]Takuya Hoshina, Kayo Takizawa, Jianyong Li, Takeshi Kasama, Hirofumi Kakemoto, and Takaaki Tsurumi, "Domain Size Effect on Dielectric Properties of Barium Titanate Ceramics," Jpn. J. Appl. Phys.47 (9),7607-7611 (2008).
    [75]Takuya Hoshina, Yoichi Kigoshi, Saki Hatta, Hiroaki Takeda, and Takaaki Tsurumi, "Domain Contribution to Dielectric Properties of Fine-Grained BaTiO3 Ceramics," Jpn. J. Appl. Phys.48 (9),09KC01 (2009).
    [76]G. Arlt, D. Hennings, G. de With, "Dielectric properties of fine-grained barium titanate ceramics," J. Appl. Phys.58 (4),1619-1625 (1985).
    [77]S. Nabunmee, G. Rujijanagul, N. Vittayakorn, and D. P. Cann, "Observation of high dielectric constants in x(Pb(Zn,/3Nb2/3)O3-(0.2-x)Pb(Ni1/3Nb2/3)O3-0.8Pb(Zr1/2Ti1/2)O3 ternary solid solutions," J. Appl. Phys 102 (9),094108 (2007).
    [78]W. Jo, T. H. Kim, D. Y. Kim, "Effects of grain size on the dielectric properties of Pb(Mg1/3Nb2/3)O3-30 mol% PbTiO3 ceramics," J. Appl. Phys 102 (7),
    (2007).
    [79]Cheng-Fu Yang, "An Equivalent Circuit for CuO Modified Surface Barrier Layer Capacitors," Jpn. J. Appl. Phys.36 (Part 1, No.1A),188 (1997).
    [80]Cheng-Fu Yang, "Improvement of the Sintering and Dielectric Characteristics of Surface Barrier Layer Capacitors by CuO Addition," Jpn. J. Appl. Phys.35 (Part 1, No.3),1806(1996).
    [81]A. Deschanvres, B. Raveau, F. Tollemer, Bull. Soc. Chim. Fr.,4077 (1967).
    [82]B. Bochu, M. N. Deschizeaux, J. C. Joubert, A. Collomb, J. Chenavas, and M. Marezio, "Synthese et caracterisation d'une serie de titanates perowskites isotypes de CaCu3Mn4O12," J. Solid. State. Chem.29 (2),291-298 (1979).
    [83]A. Collomb, D. Samaras, B. Bochu, J. Chenavas, M. N. Deschizeaux, G. Fillion, J. C. Joubert, and M. Marezio, "Magnetic structures of some AC3B4O12 compounds with a perovskite-like structure," Physica. B.86-88 (Part 2),927-928(1977).
    [84]B. Bochu, J. Chenavas, A. Collomb, M. N. Deschizeaux, G. Fillion, J. C. Joubert, and M. Marezio, "Synthesis, structure characterisation and magnetic properties of some new magnetic perovskite-like oxides," Physica. B.86-88 (Part 2),929-930 (1977).
    [85]M. Labeau, B. Bochu, J. C. Joubert, and J. Chenavas, "Synthese et caracterisation cristallographique et physique d'une serie de composes ACu3Ru4O12 de type perovskite," J. Solid. State. Chem.33 (2),257-261 (1980).
    [86]B. Bochu, J. L. Buevoz, J. Chenavas, A. Collomb, J. C. Joubert, and M. Marezio, "Bond lengths in CaMn3Mn4O12:A new Jahn-Teller distortion of Mn3+ octahedra," Solid. State. Commun.36 (2),133-138 (1980).
    [87]M. A. Subramanian, Dong Li, N. Duan, B. A. Reisner, and A. W. Sleight, "High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases," J. Solid. State. Chem.151 (2),323-325 (2000).
    [88]C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto,and A. P. Ramirez, "Optical response of high-dielectric-constant perovskite-related oxide,"
    Science 293 (5530),673-676 (2001).
    [89]D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, "CaCu3Ti4O12: One-step internal barrier layer capacitor," Appl. Phys. Lett.80 (12),2153-2155 (2002).
    [90]P. Lunkenheimer, R. Fichtl, S. G. Ebbinghaus, and A. Loidl, "Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12," Phys. Rev. B 70 (17),172102(2004).
    [91]L. Zhang, Z. J. Tang, "Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12," Phys. Rev. B 70(17),174306(2004).
    [92]W. Kobayashi, I. Terasaki, "Unusual impurity effects on the dielectric properties of CaCu3-xMnxTi4O12," Physica. B.329,771-772 (2003).
    [93]D. Capsoni, M. Bini, V. Massarotti, G. Chiodelli, M. C. Mozzatic, and C. B. Azzoni, "Role of doping and CuO segregation in improving the giant permittivity of CaCu3Ti4O12," J. Solid. State. Chem. 177 (12),4494-4500 (2004).
    [94]G. Chiodelli, V. Massarotti, D. Capsoni, M. Bini, C. B. Azzoni, M. C. Mozzati, and P. Lupotto, "Electric and dielectric properties of pure and doped CaCu3Ti4O12 perovskite materials," Solid. State. Commun.132 (3-4),241-246 (2004).
    [95]T. B. Adams, D. C. Sinclair, A. R. West, "Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics,",Adv. Mater.14 (18),1321-1323 (2002).
    [96]A. R. West, T. B. Adams, F. D. Morrison, and D. C. Sinclair, "Novel high capacitance materials:BaTiO3:La and CaCu3Ti4O12," J. Eur. Ceram. Soc.24 (6),1439-1448(2004).
    [97]Y. Lin, Y. B. Chen, T. Garret, S. W. Liu, C. L. Chen, L. Chen, R. P. Bontchev, A. Jacobson, J. C. Jiang, E. I. Meletis, J. Horwitz, and H. D. Wu, "Epitaxial growth of dielectric CaCu3Ti4O12 thin films on (001) LaAlO3 by pulsed laser depesition," Appl. Phys. Lett.81 (4),631-633 (2002).
    [98]W. Si, E. M. Cruz, P. D. Johnson, P. W. Barnes, P. Woodward, and A. P.
    Ramirez, "Epitaxial thin films of the giant-dielectric-constant material CaCu3Ti4O12 grown by pulsed-laser deposition," Appl. Phys. Lett.81 (11), 2056-2058 (2002).
    [99]L. Fang, M. R. Shen, "Deposition and dielectric properties of CaCu3Ti4O12 thin films on Pt/Ti/SiO2/Si substrates using pulsed-laser deposition," Thin. Solid. Films.440 (1-2),60-65 (2003).
    [100]A. P. Ramirez, M. A. Subramanian, M. Gardel, G Blumberg, D. Li, T. Vogt, and S. M. Shapiro, "Giant dielectric constant response in a copper-titanate," Solid. State. Commun.115 (5),217-220 (2000).
    [101]N. Kolev, R. P. Bontchev, A. J. Jacobson, V. N. Popov, V. G. Hadjiev, A. P. Litvinchuk, and M. N. Iliev, "Raman spectroscopy of CaCu3Ti4O12," Phys. Rev. B 66(13),132102(2002).
    [102]J. L. Zhang, P. Zheng, C. L. Wang, M. L. Zhao, J. C. Li, and J. F. Wang, "Dielectric dispersion of CaCu3Ti4O12 ceramics at high temperatures," Appl. Phys. Lett.87 (14),142901 (2005).
    [103]L. Zhang, "Electrode and grain-boundary effects on the conductivity of CaCu3Ti4O12,"Appl. Phys. Lett.87 (2),022907 (2005).
    [104]S. Krohns, P. Lunkenheimer, S. G. Ebbinghaus, and A. Loidl, "Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12 ," Appl. Phys. Lett.91 (2),022910 (2007).
    [105]S. Krohns, P. Lunkenheimer, S. G. Ebbinghaus, and A. Loidl, "Colossal dielectric constants in single-crystalline and ceramic CaCu3Ti4O12 investigated by broadband dielectric spectroscopy," J. Appl. Phys 103 (8),084107 (2008).
    [106]A. Koitzsch, G. Blumberg, A. Gozar, B. Dennis, A. P. Ramirez, S. Trebst, and S. Wakimoto, "Antiferromagnetism in CaCu3Ti4O12 studied by magnetic Raman spectroscopy," Phys. Rev. B 65 (5),052406 (2002).
    [107]Y. J. Kim, S. Wakimoto, S. M. Shapiro, P. M. Gehring, and A. P. Ramirez, "Neutron scattering study of antiferromagnetic order in CaCu3Ti4O12 ," Solid. State. Commun.121 (11),625-629 (2002).
    [108]Yun Liu, Ray L. Withers, Xiao Yong Wei, "Structurally frustrated relaxor
    ferroelectric behavior in CaCu3Ti4O12," Phys. Rev. B 72 (13),134104 (2005).
    [109]Yu Hongtao, Liu Hanxing, Hao Hua, Guo Liling, Jin Chengjun, Yu Zhiyong, and Cao Minghe, "Grain size dependence of relaxor behavior in CaCu3Ti4O12 ceramics," Appl. Phys. Lett.91 (22),222911 (2007).
    [110]Shanming Ke, Haitao Huang, Huiqing Fan, "Relaxor behavior in CaCu3Ti4O12 ceramics," Appl. Phys. Lett.89 (18),182904 (2006).
    [111]Sung-Yoon Chung, Il-Doo Kim, Suk-Joong L. Kang, "Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate," Nat. Mater.3 (11),774-778 (2004).
    [112]S. Y. Chung, J. H. Choi, J. K. Choi, "Tunable current-voltage characteristics in polycrystalline calcium copper titanate," Appl. Phys. Lett.91 (9),091912 (2007).
    [113]Lixin He, J. B. Neaton, Morrel H. Cohen, David Vanderbilt, and C. C. Homes, "First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12," Phys. Rev. B 65 (21),214112 (2002).
    [114]M. A. Subramanian, A. W. Sleight, "ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy," Solid. State. Sci.4 (3), 347-351 (2002).
    [115]M. H. Cohen, J. B. Neaton, L. X. He, and D. Vanderbilt, "Extrinsic models for the dielectric response of CaCu3Ti4O12," J. Appl. Phys 94 (5),3299-3306 (2003).
    [116]T. B. Adams, D. C. Sinclair, A. R. West, "Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics," Phys. Rev. B 73(9),094124(2006).
    [117]M. Li, Z. J. Shen, M. Nygren, A. Feteira, D. C. Sinclair, and A. R. West, "Origin(s) of the apparent high permittivity in CaCu3Ti4O12 ceramics: clarification on the contributions from internal barrier layer capacitor and sample-electrode contact effects," J. Appl. Phys 106 (10),104106 (2009).
    [118]M. C. Ferrarelli, D. C. Sinclair, A. R. West, H. A. Dabkowska, A. Dabkowski, and G. M. Luke, "Comment on the origin(s) of the giant permittivity effect in
    CaCu3Ti4O12 single crystals and ceramics," J. Mater. Chem.19 (33), 5916-5919(2009).
    [119]T. T. Fang, C. P. Liu, "Evidence of the internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12," Chem. Mater.17 (20), 5167-5171(2005).
    [120]W. Li, R. W. Schwartz, "ac conductivity relaxation processes in CaCu3Ti4O12 ceramics:Grain boundary and domain boundary effects," Appl. Phys. Lett.89 (24),242906 (2006).
    [121]W. Li, R. W. Schwartz, "Maxwell-Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics," Phys. Rev. B 75 (1),012104(2007).
    [122]L. Ni, X. M. Chen, "Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics," Appl. Phys. Lett.91 (12), 122905 (2007).
    [123]S. V. Kalinin, J. Shin, G. M. Veith, A. P. Baddorf, M. V. Lobanov, H. Runge, and M. Greenblatt, "Real space imaging of the microscopic origins of the ultrahigh dielectric constant in polycrystalline CaCu3Ti4O12," Appl. Phys. Lett. 86(10),102902(2005).
    [124]Dibyendu Chakravarty, Prakash Singh, Sindhu Singh, Devendra Kumar, and Om Parkash, "Electrical conduction behavior of high dielectric constant perovskite oxide LaxCa1-3x/2Cu3Ti4O12," J. Alloy. Compd 438 (1-2),253-257 (2007).
    [125]Parkash Om, Kumar Devendra, Goyal Anubha, Agrawal Anupriya, Mukherjee Ankita, Singh Sindhu, and Singh Prakash, "Electrical behaviour of zirconium doped calcium copper titanium oxide," J. Phys. D:Appl. Phys.41 (3),035401 (2008).
    [126]T. B. Adams, D. C. Sinclair, A. R. West, "Influence of Processing Conditions on the Electrical Properties of CaCu3Ti4O12 Ceramics," J. Am. Ceram. Soc.89 (10),3129-3135(2006).
    [127]M. Li, A. Feteira, D. C. Sinclair, and A. R. West, "Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics," Appl. Phys. Lett.88 (23),232903 (2006).
    [128]J. Li, M. A. Subramanian, H. D. Rosenfeld, C. Y. Jones, B. H. Toby, and A. W. Sleight, "Clues to the giant dielectric constant of CaCu3Ti4O12 in the defect structure of "SrCu3Ti4O12"," Chem. Mater.16 (25),5223-5225 (2004).
    [129]J. Li, A. W. Sleight, M. A. Subramanian, "Evidence for internal resistive barriers in a crystal of the giant dielectric constant material:CaCu3Ti4O12," Solid. State. Commun.135 (4),260-262 (2005).
    [130]T. T. Fang, L. T. Mei, H. F. Ho, "Effects of Cu stoichiometry on the micro structures, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12,"Acta. Mater:54 (10),2867-2875 (2006).
    [131]L. Chen, C. L. Chen, Y. Lin, Y. B. Chen, X. H. Chen, R. P. Bontchev, C. Y. Park, and A. J. Jacobson, "High temperature electrical properties of highly epitaxial CaCu3Ti4O12 thin films on (001) LaAlO3," Appl. Phys. Lett.82 (14), 2317-2319(2003).
    [132]李远,秦自楷,周志刚,压电与铁电材料的测量,科学出版社,北京(1984).
    [133]Walter J. Merz, "The Electric and Optical Behavior of BaTiO3 Single-Domain Crystals," Phys. Rev.76 (8),1221-1125 (1949).
    [134]Howard Diamond, "Variation of Permittivity with Electric Field in Perovskite-Like Ferroelectrics," J. Appl. Phys.32 (5),909-915 (1961).
    [135]A. V. Turik, "Contribution to the theory of the dielectric constant of ferroelectric ceramics " Bull. Acad. Sci. Ussr. Phys. Ser. 29,91 (1965).
    [136]A. V. Turik, E. I. Bondarenko, "Effect of domain structure on physical properties of ferroelectrics," Ferroelectrics 7(1),303-305 (1974).
    [137]G. Arlt, H. Peusens, "The dielectric constant of coarse grained BaTiO3 ceramics," Ferroelectrics 48 (1),213-224 (1983).
    [138]Buessem W. R, Cross L. E, Goswami A. K, "Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate," J. Am. Ceram. Soc.49 (1),33-36(1966).
    [139]Buessem W. R, Cross L. E, Goswami A. K, "Effect of Two-Dimensional Pressure on the Permittivity of Fine- and Coarse-Grained Barium Titanate," J. Am. Ceram. Soc.49 (1),36-39 (1966).
    [140]A. J. Bell, A. J. Moulson, L. E. Cross, "The effect of grain size on the permittivity of BaTiO3," Ferroelectrics 54 (1),147-150 (1984).
    [141]H. Kniekamp, W. Heywang, "Depolarisationseffekte in polykristallin gesintertem BaTiO3," Naturwissenschaften 41 (3),61-61 (1954).
    [142]G. H. Jonker, W. Noorlander, Science of Ceramics, Academic, London (1962).
    [143]N C Sharma, E R McCartney, "Dielectric properties of pure barium titanate as a function of grain size " Journal of the Australian Ceramic Society 10 (1), 16-20(1974).
    [144]R. J. Brandmayr, A. E. Brown, A. M. Dunlap, "U.S. Technical Report No. ECOM-2614, May 1965 (unpublished)," (1965).
    [145]Elizabeth A. Little, "Dynamic Behavior of Domain Walls in Barium Titanate,' Phys. Rev.98 (4),978 (1955).
    [146]Baorang Li, Xiaohui Wang, Longtu Li, Hui Zhou, Xingtao Liu, Xiuquan Han, Yingchun Zhang, Xiwei Qi, and Xiangyun Deng, "Dielectric properties of fine-grained BaTiO3 prepared by spark-plasma-sintering," Mater. Chem. Phys. 83(1),23-28(2004).
    [147]A. S. Shaikh, R. W. Vest, G. M. Vest, "Dielectric properties of ultrafine grained BaTiO3," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 36 (4),407-412 (1989).
    [148]A. K. Goswami, "Dielectric Properties of Unsintered Barium Titanate," J. Appl. Phys.40 (2),619-624 (1969).
    [149]M. H. Frey, Z. Xu, P. Han, and D. A. Payne, "The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics," Ferroelectrics 206 (1),337-353 (1998).
    [150]Zhe Zhao, Vincenzo Buscaglia, Massimo Viviani, Maria Teresa Buscaglia, Liliana Mitoseriu, Andrea Testino, Mats Nygren, Mats Johnsson. and Paolo Nanni, "Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics," Phys. Rev. B 70 (2),024107 (2004).
    [151]Hoshina Takuya, Wada Satoshi, Kuroiwa Yoshihiro, and Tsurumi Takaaki, "Composite structure and size effect of barium titanate nanoparticles," Appl. Phys. Lett.93 (19),192914 (2008).
    [152]E. C. Subbarao, M. C. McQuarrie, W. R. Buessem, "Domain Effects in Polycrystalline Barium Titanate," J. Appl. Phys.28 (10),1194-1200 (1957).
    [153]Kinoshita Kyoichi, Yamaji Akihiko, "Grain-size effects on dielectric properties in barium titanate ceramics," J. Appl. Phys.47 (1),371-373 (1976).
    [154]D. Berlincourt, in Ultrasonic Transducer Materials:Piezoelectric Crystals and Ceramics, edited by O. E. Mattiat (Plennum, London), p.103. (1971)
    [155]M. H. Frey, D. A. Payne, "Grain-size effect on structure and phase transformations for barium titanate," Phys. Rev. B 54 (5),3158-3168 (1996).
    [156]Yoshihiro Hirata, Akihiko Nitta, Soichiro Sameshima, and Yoshitaka Kamino, "Dielectric properties of barium titanate prepared by hot isostatic pressing," Mater. Lett.29 (4-6),229-234 (1996).
    [157]A. Berlincourt Don, Kulcsar Frank, "Electromechanical Properties of BaTiO3 Compositions Showing Substantial Shifts in Phase Transition Points," J. Acoust. Soc. Am.24 (6),709-713 (1952).
    [158]W. Rehrig Paul, Park Seung-Eek, Trolier-McKinstry Susan, L. Messing Gary, Jones Beth, and R. Shrout Thomas, "Piezoelectric properties of zirconium-doped barium titanate single crystals grown by templated grain growth," J. Appl. Phys.86 (3),1657-1661 (1999).
    [159]Yu Zhi, Guo Ruyan, A. S. Bhalla, "Dielectric behavior of Ba(Ti1-xZrx)O3 single crystals," J. Appl. Phys.88 (1),410-415 (2000).
    [160]Yu Zhi, Ang Chen, Guo Ruyan, and A. S. Bhalla, "Piezoelectric and strain properties of Ba(Ti1-xZrx)O3 ceramics," J. Appl. Phys.92 (3),1489-1493 (2002).
    [161]Cheng-Fu Yang, Long Wu, Tien-Shou Wu, "Effect of CuO on the sintering and dielectric characteristics of (Ba1-xSrx) (Ti0.9Zr0.1)O3 ceramics," J. Mater. Sci. 27(24),6573-6578(1992).
    [162]B. Renner, P. Lunkenheimer, M. Schetter, A. Loidl, A. Reller, and S. G. Ebbinghaus, "Dielectric behavior of copper tantalum oxide," J. Appl. Phys 96 (8),4400-4404 (2004).
    [163]I. P. Raevski, S. A. Prosandeev, A. S. Bogatin, M. A. Malitskaya, and L. Jastrabik, "High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A=Ba, Sr, Ca; B=Nb, Ta, Sb)," J. Appl. Phys 93 (7), 4130-4136(2003).
    [164]M. S. Guo, T. S. Wu, T. Liu, S. X. Wang, and X. Z. Zhao, "Characterization of CaCu3Ti4O12 varistor-capacitor ceramics by impedance spectroscopy," J. Appl. Phys 99 (12),124113(2006).
    [165]P. R. Bueno, M. A. Ramirez, J. A. Varela, and E. Longo, "Dielectric spectroscopy analysis of CaCu3Ti4O12 polycrystalline systems," Appl. Phys. Lett.89(19),191117(2006).
    [166]T. T. Fang, H. K. Shiau, "Mechanism for developing the boundary barrier layers of CaCu3Ti4O12," J. Am. Ceram. Soc.87 (11),2072-2079 (2004).
    [167]B. A. Bender, M. J. Pan, "The effect of processing on the giant dielectric properties of CaCu3Ti4O12," Mat. Sci. Eng. B-Solid 117 (3),339-347 (2005).
    [168]S.R. Elliott, "A.c. conduction in amorphous chalcogenide and pnictide semiconductors,Adv. Phys.36 (2),135-218 (1987).
    [169]P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov, and A. Loidl, "Origin of apparent colossal dielectric constants," Phys. Rev. B 66 (5), 052105(2002).
    [170]Zang Guozhong, Zhang Jialiang, Zheng Peng, Wang Jinfeng, and Wang Chunlei, "Grain boundary effect on the dielectric properties of CaCu3Ti4O12 ceramics," J. Phys. D:Appl. Phys.38 (11),1824-1827 (2005).
    [171]G. D. Mahan, Lionel M. Levinson, H. R. Philipp, "Theory of conduction in ZnO varistors," J. Appl. Phys 50 (4),2799-2812 (1979).
    [172]C. Wang, H. J. Zhang, P. M. He, and G. H. Cao, "Ti-rich and Cu-poor grain-boundary layers of CaCu3Ti4O12 detected by x-ray photoelectron spectroscopy," Appl. Phys. Lett.91 (5),052910 (2007).
    [173]T. T. Fang, L. T. Mei, "Evidence of Cu deficiency:A key point for the understanding of the mystery of the giant dielectric constant in CaCu3Ti4O12," J. Am. Ceram. Soc.90 (2),638-640 (2007).
    [174]M. Matos, L. Walmsley, "Cation-oxygen interaction and oxygen stability in CaCu3Ti4O12 and CdCu3Ti4O12 lattices," J. Phys.:Condens. Matter (5), 1793-1803 (2006).
    [175]Solange B. Fagan, A. G. Souza Filho, A. P. Ayala, and J. Mendes Filho, "Ab initio calculations of CaCu3Ti4O12 under high pressure:Structural and electronic properties," Phys. Rev. B 72 (1),014106 (2005).
    [176]Sudipta Sarkar, Pradip Kumar Jana, B. K. Chaudhuri, "Origin of electrically heterogeneous microstructure in CuO from scanning tunneling spectroscopy study," Appl. Phys. Lett.92 (14),142901 (2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700