用户名: 密码: 验证码:
现代黄河三角洲地区地面沉降特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前现代黄河三角洲地区普遍存在的地面沉降问题,本文以整个现代黄河三角洲平原地区为研究对象,通过收集的重复性水准测量数据、遥感影像、渤海海底及三角洲平原沉积物物理力学数据、长期验潮站数据以及前人文献数据等资料,综合运用雷达差分干涉测量技术(D-InSAR)、工程地质学、GIS和随机动态分析方法,探讨了现代黄河三角洲地区近期地面沉降的现状,并对其自然因素影响下的形成与发展过程进行了综合分析,最后探讨了地面沉降对三角洲发育演化的环境地质效应。
     研究结果表明:现代黄河三角洲在以宁海为顶点的河口扇形区域,近期均经历了不同程度的地表下沉过程,但是随区域地理位置和时间的不同,地表变化空间差异性比较明显;三角洲顶点附近区域的下沉速率自上世纪末开始逐渐减小,后期甚至出现轻微的抬升;滨海沿岸附近地区的地表形变特征相对比较复杂,各期叶瓣相互叠置及其各类沉积物的不均匀分配,使由沉积物自然固结压实引起的地表形变具有显著的空间差异;目前,除清水沟流路叶瓣表现为快速沉降以外,其它滨海沿岸区基本上都表现为微弱的下沉。自然状态下三角洲平原的地面沉降分布主要受中―高压缩性软土层和黏性土层固结沉降的控制,分别占沉积物总固结沉降量的40~95%和3~12%(或30~50%)。三角洲平原区沉积层的自重固结沉降已进入后期缓慢沉降阶段,软弱土层的性质及厚度是控制本区不均匀沉降的主导因素。黄河新近沉积物的自重应力对海底浅层沉积物和前三角洲沉积层的固结压缩影响较大,特别是海底淤泥和淤泥质土层在受压初期会发生快速固结压缩,足以引起明显的地表下沉。近几十年来,因区域构造运动和均衡运动引起的地表绝对下沉速率约为3.42 mm/a。该区地面沉降的时空差异性及其在相对海平面上升中的叠加作用,不仅关系到三角洲的垂向发育过程,且对黄河尾闾的摆动、下游河道的淤积、海岸侵蚀和潮滩冲刷等方面都有着重要的影响。
In allusion to land subsidence in the modern Yellow (Huanghe) River delta, this paper addresses the recent characteristic, the factors and its effects to delta of this problem, in light of leveling data, nearby tide gauge records, the soil mechanics parameters of the seafloor and the delta sediments, remote sensing interpretation, results published in literatures analyzed integrated with GIS tools and so on.
     The results of repeat leveling from 1964 to 2007 covering the whole delta and the SAR data covering southern of delta from 2007 to 2008 acquired by the ENVISAT calculated using Differential Interferometric Synthetic Aperture Radar(D-InSAR)show the variability of the surface depression in the study area. The rate of subsidence has been decreasing from area near vertex of delta to the coastal zone and some place is even rising, particularly in the early formed area. What is the different in the coastal is that the rate of subsidence is still high and can sustain a long time. This is because the land subsidence in the delta is mainly caused by the consolidation of sediments if there is no human activity. Especially in the newly formed area, Qingshuigou sub-delta, the rate of subsidence was more than 50 mm/a in the begining and now is still higher than 10 mm/a. When the newly sediments discharged by the Yellow (Huanghe) River landed on the subaquatic delta, its load can drive the concolidation of the silt, which is on the surface of the Bohai seafloor. The rate of consolidation of the silt will be decreasing quickly in the first years, but still a long time in the later time with a slow rate. Consolidation of soft soil, which is caused by its weight in the natural state, is the main proportion of the ground settlement in the plain area, account for 40-90 % of the total settlement, while that of the upside silt is only 3-12 % or 30-50 %. As a result, characteristic of distribution of the Land subsidence is controlled by the thickness and the depth. Calculation of the consolidation rate show that the consolidation maybe approach to complete recently, but it will be still the main factor if there is superfluity load by human activity.
     From the result of relative sea level change in the delta by a stochastic dynamical prediction model, the rates of land subsidence is about 3.42 mm/a, which is mostly resulted in diastrophism and will continue a long time. The rate caused by tectonic is about 2.0 mm/a, while the other is caused by isostasy as a result of burden of sediments after 1855.
     With an accumulating land subsidence, it can change the surface slope, consequently influenced the riverbed and estuary evolution. Additionally it increased the rise of the relative sea level, as a result changed the models of coastal erosion and forced the coastline retreat landward or narrowed the tidal flats at an accelerating rate with the strengthened hydrodynamic action.
引文
[1] Alejano, L.R., P. Ram?r?ez-Oyanguren and J. Taboada. FDM predictive methodology for subsidence due to flat and inclined coal seam mining. International Journal of Rock Mechanics and Mining Sciences, 1999. 36(4): 475-491.
    [2] Alessandro, F., P. Claudio and R. Fabio. Permanent Scatterers in SAR Interferometry. IEEE Transactions on Geoscience Remote Sensing, 2001. 39(1): 8-20.
    [3] Allis, R., C. Bromley and S. Currie. Update on subsidence at the Wairakei–Tauhara geothermal system, New Zealand. Geothermics, 2009. 38(1): 169-180.
    [4] Allis, R.G. Review of subsidence at Wairakei field, New Zealand. Geothermics, 2000. 29(4-5): 455-478.
    [5] Bahadoran, B. and R. Ajalloeian. Groundwater drawdown and land subsidence in south of Esfahan area. Iran.In:Laura Carbognin,Giuseppe Gambolati &A.I van Johson.Proceedings of the Sixth International Symposium on the Land subsidence.Padova:La Garangola,Via Montona, 2000: 117-122.
    [6] Bitelli, G., G. Bonsignore and F.M. Unguendoli. Levelling and GPS networks to monitor ground subsidence in the Southern Po Valley. Journal of Geodynamics, 2000. 30(3): 355-369.
    [7] Bourman, R.P., et al. Rapid coastal geomorphic change in the River Murray Estuary of Australia. Marine Geology, 2000. 170: 141-168.
    [8] Carbognin, L., P. Teatini and L. Tosi. Eustacy and land subsidence in the Venice Lagoon at the beginning of the new millennium. Journal of Marine Systems, 2004. 51(1-4): 345-353.
    [9] Emery, K.O. and尤芳湖.太平洋西部中国沿海海平面的变化.海洋与湖沼, 1981. 12(4): 297-310.
    [10] Ferretti, A., C. Prati and F. Rocca. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR inteferometry. IEEE Transactions on Geoscienee and Remote Sensing, 2000. 38(5): 2202-2212.
    [11] Ferronato, M., et al. Stochastic poromechanical modeling of anthropogenic land subsidence. International Journal of Solids and Structures, 2006. 43(11-12):3324-3336.
    [12] Fielding,E.J., R.G. Blom and R.M.Goldstein. Rapid subsidence over oil fields measured by SAR interferometry. Geophysical Research Letters, 1998. 25(17): 3215-3218.
    [13] Gambolati, G., P. Teatini and M. Ferronato. Anthropogenic land subsidence. Earth Scinence Frontiers, 2006. 13(1): 160-178.
    [14] Hou, C.S., et al. Estimation of subsidence using GPS measurements, and related hazard: the Pingtung Plain, southwestern Taiwan. Comptes Rendus Geosciences, 2005. 337(13): 1184-1193.
    [15] Hua, R.L., et al. Review on current status and challenging issues of land subsidence in China. Engineering Geology, 2004. 76: 65-77.
    [16] Janssen, V., L.L. Ge and C. Rizos. Tropospheric corections to SAR inteferometry from GPS observations. GPS Solutions, 2004. 8: 140-151.
    [17] Jung, H.C., et al. Satellite observation of coal mining subsidence by persistent scatterer analysis. Engineering Geology, 2007. 92(1-2): 1-13.
    [18] Kaminski, E. and C. Jaupart. Lithosphere structure beneath the Phanerozoic intracratonic basins of North America. Earth and Planetary Science Letters 2000. 178(1-2): 139-149.
    [19] Kooi, H. Land subsidence due to compaction in the coastal area of The Netherlands: the role of lateral fluid flow and constraints from well-log data. Global and Planetary Change, 2000. 27(1-4): 207-222.
    [20] Lanari, R., et al. An Overview of the Small BAseline Subset Algorithm: A DInSAR Technique for Surface Deformation Analysis. Pure and Applied Geophysics, 2007. 164(4): 637-661.
    [21] Macini, P., et al. Casing influence while measuring in situ reservoir compaction. Journal of Petroleum Science and Engineering, 2006. 50(1): 40-54.
    [22] Manzo, M., et al. Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry. Journal of Volcanology and Geothermal Research, 2006. 151(4): 399-416.
    [23] Meisina, C., et al. Ground deformation monitoring by using the Permanent Scatterers Technique: The example of the Oltrepo Pavese (Lombardia, Italy) Engineering Geology, 2006. 88(3-4): 240-259.
    [24] Murria, J. Subsidence due to oil production in western Venezuela: engineering problems and solutions.In:A.I.Johnson.Proceedings of the Fourth InternationalSymposium on the Land Subsidence.The Netherlands:IAHS Pub,Hague,. 1995: 187-196.
    [25] Saxena, N.C. Subsidence management in Jharia coalfield, India-a concept. In:A.I.Johnson. Proceedings of the fourth International Symposium on the Land Subsidence. The USA:IAHS Pub,Houston, 1991: 181-194.
    [26] Nichol, S.L., et al. Lagoon subsidence and tsunami on the West Coast of New Zealand. Sedimentary Geology, 2007. in press.
    [27] Pacheco, J., et al. Delimitation of ground failure zones due to land subsidence using gravity data and finite element modeling in the Querétaro valley, México. Engineering Geology, 2006. 84(3-4): 143-160.
    [28] Peltier, A., B. Scott and T. Hurst. Ground deformation patterns at White Island volcano (New Zealand) between 1967 and 2008 deduced from levelling data. Journal of Volcanology and Geothermal Research, 2009. 181(3-4): 207-218.
    [29] Phien-wej, N., P.H. Giao and P. Nutalaya. Land subsidence in Bangkok, Thailand. Engineering Geology, 2006. 82(4): 187-201.
    [30] Psimoulis, P., et al. Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data. Engineering Geology, 2007. 90(1-2): 55-70.
    [31] Raucoules, D., C. Colesanti and C. Carnec. Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus Geosciences, 2007. 339(5): 289-302.
    [32] Raucoules, D., C. Maisons and C. Camec. Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France) Comparison with ground-based measurement. Remote Sensing of Environment, 2003. 88(4): 468-478.
    [33] Singh, R.P. and R.N. Yadav. Prediction of subsidence due to coal mining in Raniganj coalfield, West Bengal, India. Engineering Geology, 1995. 39(1-2): 103-111.
    [34] Stanley, D.J. Recent subsidence and northeast tilting of the Nile delta, Egypt Marine Geology 1990. 94(1-2): 147-154.
    [35] Tait, M., B. Moorman and S. Li. The long-term stability of survey monuments in permafrost. Engineering Geology 2005. 79: 61-79.
    [36] Tang, J., et al. Geological emission of methane from the Yakela condensed oil/gas field in Talimu Basin, Xinjiang, China. Journal of EnvironmentalSciences, 2008. 20(9): 1055-1062.
    [37] Teatini, P., L. Tosi and T. Strozzi. Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sensing of Environment, 2005. 98(4): 403-413.
    [38] Tizzani, P., et al. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sensing of Environment, 2007. 108(3): 277-289.
    [39] Tomás, R., et al. Mapping ground subsidence induced by aquifer overexploitation using advanced Differential SAR Interferometry: Vega Media of the Segura River (SE Spain) case study. Remote Sensing of Environment, 2005. 98(2-3): 269-283.
    [40] Wang, X., Y. Wang and T. Huang. Extracting mining subsidence land from remote sensing images based on domain knowledge. Journal of China University of Mining and Technology, 2008. 18(2): 168-171,181.
    [41] Xue, Y.Q., et al. Land subsidence in China. Environ Geol 2005. 48: 713-720.
    [42] Yao, G. and J. Mu. D-InSAR Technique for Land Subsidence Monitoring. Earth Science Frontiers, 2008. 15(4): 239-243.
    [43] Zheng, T., L. Zhao and L. Chen. A detailed receiver function image of the sedimentary structure in the Bohai Bay Basin. Physics of the Earth and Planetary Interiors, 2005. 152(3): 129-143.
    [44]别君,黄海军,樊辉等.现代黄河三角洲地面沉降及其原因分析.海洋地质与第四纪地质, 2006. 26(4): 29-35.
    [45]陈基炜. InSAR―GPS―GIS数据整合在地面沉降研究中的应用.大地测量与地球动力学, 2004. 24(3): 87-91.
    [46]陈基炜.新技术在城市地面沉降研究中的应用―遥感卫星雷达干涉测量(InSAR).上海地质, 2001(2): 45-50.
    [47]陈杰和朱国荣. Biot固结理论在地面沉降计算中的应用.水文地质工程地质技术方法动态, 2003(2): 28-31.
    [48]陈清华,刘池阳,鹿洪友等.黄河三角洲地区浅层沉积序列及构造沉降特征.大地构造与成矿学, 2002. 26(4): 386-389.
    [49]陈沈良,张国安,陈小英等.黄河三角洲飞雁滩海岸的侵蚀及机理.海洋地质与第四纪地质, 2005. 25(3): 9-14.
    [50]陈占成,魏加华,王金凯等.济宁市地面沉降初步分析.中国地质灾害与防治学报, 1998. 9(2): 167-172.
    [51]成国栋和薛春汀.黄河三角洲沉积地质学.地质出版社, 1997.
    [52]成国栋.黄河三角洲现代沉积作用及模式.地质出版社, 1991.
    [53]成英燕,贾有良,党亚民等.用InSAR技术进行形变监测的研究.测绘科学, 2006. 31(3): 56-58.
    [54]崔小东. MODFLOW和IDP在天津地面沉降数值计算中的应用于开发.中国地质灾害与防治学报, 1998. 9(2): 122-128.
    [55]戴福贵,刘宝睿,杨克绳.华北盆地地震剖面地质解释及其构造演化.中国地质, 2008. 35(5): 820-840.
    [56]单新建,马瑾,宋晓宇.利用星载D-INSAR技术获取的地表形变场研究张北―尚义地震震源破裂特征.中国地震, 2002. 18(2): 119-126.
    [57]董鸿闻.利用平均海面推定青岛水准原点地区的地壳垂直运动.黄渤海海洋, 2000. 18(2): 25-28.
    [58]董太禄.渤海现代沉积作用与模式的研究.海洋地质与第四纪地质, 1996. 16(4): 43-53.
    [59]杜瑞芝,刘国贤,杨松林.渤海湾现代沉积速率和沉积过程.海洋地质与第四纪地质, 1990. 10(3): 15-22.
    [60]冯浩鉴,顾旦生和张莉.中国东部地区地壳垂直运动规律及机制研究.测绘学报, 1998. 27(1): 16-23.
    [61]傅文学,田庆久,郭小方. PS技术及其在地表形变监测中的应用现状与发展.地球科学进展, 2006. 21(11): 1193-1198.
    [62]工程地质手册.北京:中国建筑工业出版社, 1975.
    [63]弓福和关强.基于分层观测法的冻土路基竖向沉降分析.公路交通科技(应用技术版), 2006(11): 61-63.
    [64]龚利霞and C. Colesanti.用PS技术监测滑坡和构造运动. Eng. Geolog, 2003. 68(1-2): 18-26.
    [65]龚士良.上海地面沉降影响因素综合分析与地面沉降系统调控对策研究.博士学位论文, 2008
    [66] .谷延群和孟昆.雷达InSAR数据在矿山地表形变监测中的应用研究.河北遥感, 2006(4): 11-13.
    [67]郭娇.黄河三角洲植被―土壤水分―地下水位遥感监测研究.硕士学位论文, 2006.
    [68]郭占荣,曲焕林,崔小东.天津市地面沉降数值模拟研究.地球学报, 1998. 19(4): 415-422.
    [69]海洋潮汐学.海军第一水面舰艇学校, 1982.
    [70]何秀凤,桑文刚,贾东振.基于GPS的高边坡形变监测方法.水利学报, 2006. 37(6): 746-750.
    [71]胡惠民,黄立人,杨国华.长江三角洲及其邻近地区的现代地壳垂直运动.地理学报, 1992. 47(1): 22-30.
    [72]黄海军和樊辉. 1976年黄河改道以来三角洲近岸区变化遥感监测.海洋与湖沼, 2004. 35(4): 306-314.
    [73]黄海军,李凡,庞家珍等.黄河三角洲与渤、黄海陆海相互作用研究.科学出版社, 2005.
    [74]黄立人,胡惠民,杨国华.渤海西、南岸的海面变化及邻近地区的现代地壳垂直运动.地壳形变与地震, 1991a. 11(1): 1-9.
    [75]黄立人,杨国华,安振声.统一均衡基准下中国沿岸的海面变化.海洋学报, 1992. 14(2): 20-25.
    [76]黄立人,杨国华,胡惠民.中国沿海海面变化的均衡基准.地震地质, 1991b. 13(1): 1-14.
    [77]黄立人.海面变化趋势的动态预测.海洋通报, 1991. 10(1): 1-6.
    [78]季子修和施雅风.海平面上升、海岸带灾害与海岸防护问题.自然灾害学报, 1996. 5(2): 56-64.
    [79]金江军和潘懋.我国地面沉降灾害现状与防灾减灾对策.灾害学, 2007. 22(1): 117-120.
    [80]金双根和朱文耀. GPS观测数据提高InSAR干涉测量精度的分析.遥感信息, 2001. 70(4): 8-11.
    [81]李德仁,廖明生,王艳.永久散射体雷达干涉测量技术.武汉大学学报?信息科学版, 2004. 29(8): 664-668.
    [82]李福林,庞家珍,姜明星等.黄河清水沟流路水沙组合和河口三角洲发育的宏观特性.海洋学报, 2001. 23(1): 52-59.
    [83]李广雪,庄克琳,姜玉池.黄河三角洲沉积体的工程不稳定性.海洋地质与第四纪地质, 2000. 20(2): 21-26.
    [84]李金平.青藏高原东北缘地壳形变GPS监测网的建立和精度分析.测绘通报, 2006(5): 11-13.
    [85]李勤奋,王寒梅,陆衍.上海地面沉降模型研究及存在问题.上海地质, 2002(4): 11-15.
    [86]梁军.雷达干涉测量及其在青藏铁路沿线地面形变监测中的应用研究.硕士学位论文, 2007.
    [87]林跃忠.地面沉降量的灰色预测方法.山东科技大学学报(自然科学版),2000. 19(3): 108-110.
    [88]刘飞.上海市地面沉降变形特征研究.博士学位论文, 2002.
    [89]刘桂仪和张兴乐.黄河三角州油气资源开发的环境地质问题与经济可持续发展上海地质, 2001. 2001年增刊: 36-38.
    [90]刘国祥,丁晓利,陈永奇等.极具潜力的空间对地观测新技术-合成孔径雷达干涉.地球科学进展, 2000. 15(6): 734-740.
    [91]刘国祥.合成孔径雷达遥感新技术―InSAR介绍.四川测绘, 2004. 27(2): 92-95.
    [92]刘锡清.我国海岸带主要灾害地质因素及其影响.海洋地质动态, 2005. 21(5): 23-42.
    [93]刘锡清等.中国海洋环境地质学.北京:海洋出版社, 2006.
    [94]刘毅和龚士良.上海市地面沉降泊松旋回长期预测.中国地质灾害与防治学报, 1998. 9(2): 75-80.
    [95]刘毅.地面沉降研究的新进展与面临的新问题.地学前缘, 2001. 8(2): 273-278.
    [96]刘岳峰,韩慕康,邬伦.海平面上升对我国主要三角洲平原影响的综合评估.第四纪研究, 1999(3).
    [97]欧素英和陈子燊.小波变换在相对海平面变化研究中的应用.地理科学, 2004. 24(3): 358-364.
    [98]庞家珍和姜明星.黄河河口演变(一)河口水文特征.海洋湖沼通报, 2003(3): 1-13.
    [99]庞家珍和司书亭.黄河河口演变Ⅰ.近代历史变迁.海洋与湖沼, 1979. 10(2): 136-141.
    [100]亓军强,施斌,蔡奕等.美国的地面沉降及其对策.西安工程学院学报, 2002. 24(4): 58-62.
    [101]钱意颖,叶青超,周文浩.黄河流域环境演变与水沙运行规律研究.中国建材工业出版社, 1993: 53-76.
    [102]乔新.基于卫星高度计的1992-2004年中国海海平面变化研究.硕士学位论文, 2005.
    [103]秦蕴珊,徐善民,李凡等.渤海西部海底沉积物土工学性质研究.海洋与湖沼, 1983. 14(4): 305-313.
    [104]冉崇宪,邹进贵,王新洲等.基于GPS天线阵列技术的变形监测系统研制.测绘通报, 2006(8): 28-30.
    [105]冉启全和顾小芸.考虑流变特性的流固耦合地面沉降计算模型中国地质灾害与防治学报, 1998. 9(2): 99-104.
    [106]任美锷.海平面上升与地面沉降对黄河三角洲影响初步研究.地理科学, 1990. 10(1): 48-57.
    [107]任美锷.海平面研究的最近进展.南京大学学报(自然科学), 2000. 36(3): 269-279.
    [108]任美锷.黄河长江珠江三角洲近30年海平面上升趋势及2030年上升量预测.地理学报, 1993a. 48(5): 385-393.
    [109]任美锷.最近80年来中国的相对海平面变化.海洋学报, 1993b. 15(5): 87-97.
    [110]商婷婷.天津市塘沽区城市建设引发地面沉降数值模拟研究.硕士学位论文, 2007.
    [111]师长兴,尤联元,李炳元等.黄河三角洲沉积物的自然固结压实过程及其影响.地理科学, 2003. 23 (2): 175-181.
    [112]师长兴.黄河河口延伸与下游淤积关系研究中的问题分析.地理科学, 2005. 25 (2): 183-189.
    [113]师长兴.黄河下游持续淤积原因地质历史分析.人民黄河, 1997(2): 57-60.
    [114]舒宁.雷达影像干涉测量原理.武汉大学出版社, 2003.
    [115]舒宁.微波遥感原理.武汉:武汉测绘科技大学出版社, 2000.
    [116]宋波,王德生和王锦丽.东营地面沉降监测.地矿测绘, 2004. 20(1): 34-36.
    [117]宋云香,战秀文,王玉广.辽东湾北部河口区现代沉积特征.海洋学报, 1997. 19(5): 145-149.
    [118]陶志刚.唐山沿海地区地面沉降灾害及对策研究.硕士学位论文, 2007.
    [119]滕俊常,林弘,孙志鸿.分层沉降观测技术的应用.黑龙江交通科技, 2001(2): 13-14.
    [120]田洪水,肖俊华,赵淑慧等.黄河三角洲软土的特征及地基处理方法.山东建筑工程学院学报, 2003. 18(4): 24-27.
    [121]田晖,周天华,陈宗镛.平均海面变化的一种随机动态预测模型.青岛海洋大学学报, 1993. 23(1): 33-42.
    [122]田素珍,杜碧兰,禹军.海平面上升对渤集沿岸地区的影响及对策.海洋通报, 1997. 16(1): 1-9
    [123]王超,张红,刘智等.基于D―InSAR的1993―1995年苏州市地面沉降监测.地球物理学报, 2002. 45(增刊): 244-253.
    [124]王琦,曹立华,杨作升.黄河水下三角洲的动力沉积特征.中国科学(B辑), 1991. 21(6): 659-665.
    [125]王小刚,陈松,王秀芹等.德州市地面沉降成因及防治对策浅析.地质灾害与环境保护, 2006b. 17(3): 62-66.
    [126]王小刚,邹祖光,王秀芹等.东营市城区地面沉降影响因素.山东国土资源, 2006a. 22(5): 50-53.
    [127]王艳红.江苏沿海相对海面变化及其对辐射沙洲的影响.硕士学位论文, 2003.
    [128]王志勇.星载雷达干涉测量技术在地面沉降监测中的应用.博士学位论文, 2007.
    [129]魏合龙,李广雪,周永青.侵蚀基准面变化对河流体系的影响.海洋地质动态, 1995(5): 4-6.
    [130]文援兰和杨元喜.我国近海平均海面及其变化的研究.武汉大学学报?信息科学版, 2001. 26( 2): 127-132.
    [131]文援兰,熊介,杨元喜.几种平均海面模型的数字实现与比较.解放军测绘学院学报, 1994. 11(3): 167-170.
    [132]吴建政.山东全新世滨海软土与工程地质灾害的研究.海洋地质与第四纪地质, 1995. 15(3): 43-54.
    [133]吴立新,高均海,葛大庆等.基于D―InSAR的煤矿区开采沉陷遥感监测技术分析.地理与地理信息科学, 2004. 20(2): 22-25.
    [134]吴晓梅.回填土软土地基蠕变问题的有限元分析.硕士学位论文, 2006.
    [135]肖笃宁,韩慕康,李晓文等.环渤海海平面上升与三角洲湿地保护.第四纪研究, 2003. 23(3): 237-246.
    [136]徐曙光.美国地面沉降调查研究.国土资源情报, 2001(12): 15-21.
    [137]薛禹群,张云,叶淑君等.中国地面沉降及其需要解决的几个问题.第四纪研究, 2003. 23(6): 585-593.
    [138]阎世骏和刘长礼.城市地面沉降研究现状与展望.地学前缘, 1996. 3(1): 93-97.
    [139]晏明星,苗放,汪宝存等.以Doris进行雷达干涉研究生成数字高程模型(DEM). 2007(4): 36-40.
    [140]晏明星.雷达差分干涉测量在唐山市地面沉降监测中的应用研究.硕士学位论文, 2008.
    [141]晏同珍.地面沉降规律预测新模式.地球科学, 1989(2): 181-188.
    [142]晏同珍.滑坡及地面沉降单旋回阶段预测.地质灾害与防治, 1990. 1(2): 9-19.
    [143]姚荣江和杨劲松.黄河三角洲典型地区地下水位与土壤盐分空间分布的指示克立格评价.农业环境科学学报, 2007. 26(6): 2118-2124.
    [144]姚迎和吴高林.考虑含水层组粘弹性特征的地面沉降计算.工程勘察, 1995(4): 1-5.
    [145]叶刚,陈华远,朱志军.基于两期水准成果的城区沉降分析.河南水利与南水北调, 2007(6): 32-33.
    [146]殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究.中国地质灾害与防治学报, 2005. 16(2): 1-8.
    [147]尹明泉和韩淑萍.黄河三角洲地区软土的初步研究.山东地质, 1993. 9(2): 2-19.
    [148]尹学良和陈金荣.黄河下游河道纵剖面形成概论及持续淤积的原因(人民黄河, 1993(2): 1-4.
    [149]尹延鸿,周永青和丁东.现代黄河三角洲海岸演化研究.海洋通报, 2004. 23(2): 32-40.
    [150]于道永.近二十年来中国海平面变化趋势初步分析北京:海洋出版社1986.
    [151]于晶涛.星载SAR干涉技术的理论与方法研究.测绘学报, 2004(4): 368-369.
    [152]张阿根,刘毅,龚士良.国际地面沉降研究综述.上海地质, 2000(4): 1-7.
    [153]张波,刘桂仪,范立芹等.黄河三角洲南部地下水环境问题与对策.山东国土资源, 2004. 20(5): 51-54.
    [154]张惠,颜世强,刘桂仪.黄河三角洲的形成和演变.山东国土资源, 2003. 19(6): 44-47.
    [155]张景发,龚利霞,姜文亮. PS InSAR技术在地壳长期缓慢形变监测中的应用.国际地震动态, 2006(6): 1-6.
    [156]张先林.上海地面沉降动态分析与灰色预测.上海地质, 1991(1): 42-46.
    [157]张先伟,王常明,王钢城等.黄石淤泥质土的剪切蠕变特性及模型研究.吉林大学学报(地球科学版), , 2009. 39(1): 119-125.
    [158]张艳梅.基于雷达差分干涉技术的地震形变场测量研究.硕士学位论文, 2005.
    [159]张云.一维地面沉降模型及其求解.工程地质学报, 2002. 10(4): 434-437.
    [160]赵明才和何嘉重.中国近海海平面的上升及其预测.测绘科技动态, 1995(1): 32-34.
    [161]赵明才和吴中鼎.中国近海平均海面变化研究.水科学进展, 1991. 2(2): 92-98.
    [162]郑文振,吴乃华,金承钟等.世界和中国的海平面变化.海洋通报, 1993. 12(4): 95-99.
    [163]郑文振.我国海平面年速率的分布和长周期分潮的变化.海洋通报, 1999. 18(4): 1-10.
    [164]郑铣鑫.沿海地区城市发展与地面沉降的系统控制.海洋地质与第四纪地质, 1992. 12(1): 57-65.
    [165]中国科学院海洋研究所海洋地质研究窒.渤海地质.北京:科学出版社, 1985.
    [166]周建民和何秀凤. SAR差分干涉测量技术及其在地表形变监测中的应用现状.河海大学学报(自然科学版), 2005. 33(4): 463-465.
    [167]周建伟,李菊凤,周爱国等.济宁市城区地面沉降的成因和规律性探讨.湖南科技大学学报(自然科学版), 2005. 20(1): 6-9.
    [168]周天华,陈宗镛,田晖等.近几十年来中国沿岸海面变化趋势的研究.海洋学报, 1992. 14(2): 1-8.
    [169]庄振业,许卫东和李学伦.渤海南岸6000年来的岸线演变.青岛海洋大学学报, 1991. 21(2): 100-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700