用户名: 密码: 验证码:
微孔淀粉材料优化制备技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孔淀粉是一种有大量微孔的、来源天然、经济易得的物质,由于其具有较大的比表面积、比孔容而具有良好的吸附性能,可广泛应用于食品、医药、化妆品、农业等领域。它的制备方法主要有低于糊化温度酶解法、高温泡沫法、溶剂交换技术法等。
     本论文以玉米、木薯、甘薯、豌豆、小麦、马铃薯淀粉为材料,研究了微孔化淀粉和交联化微孔淀粉的工艺路线和参数、研究了微孔淀粉和交联微孔淀粉的显微结构和亲水亲脂吸附特性,研究了糊化冷冻溶剂交换新技术制备小麦微孔淀粉的工艺路线和参数,研究了以微孔淀粉为原料制备精细化工产品超微氧化锌的工艺路线和参数。
     1以玉米淀粉制备微孔淀粉的工艺为低于淀粉糊化温度酶解法。最佳工艺参数为:淀粉乳浓度为14.24%,酶用量4%,酶配比(α-淀粉酶:糖化酶)为1:4,缓冲溶液pH值4.4,反应时间13.15h,反应温度51.92℃。
     对比了微孔淀粉与原淀粉的理化性质,结果表明:淀粉微孔化后,比表面积、比孔容增大,吸附性能大幅度提高。获得的玉米微孔淀粉颗粒表面布满小孔,形成中空的显微结构特点。与原淀粉相比,吸水率达到143.01%,增长了134.15%。
     2微孔淀粉吸附的热力学、动力学研究表明:微孔淀粉对次甲基蓝的吸附符合准二级动力学方程。微孔淀粉对次甲基蓝的吸附符合Freundlich吸附等温方程。体系温度升高,微孔淀粉对次甲基蓝的吸附量逐渐减少说明此过程可能是一放热过程。吸附热力学参数为:△Gθ<0,△Hθ<0,△Sθ<0,吸附是自发的过程。
     3对比了6种淀粉微孔化的吸附性能,从大到小的是:玉米淀粉>木薯淀粉>甘薯淀粉>豌豆淀粉。马铃薯、小麦淀粉酶解基本上不能形成孔洞。
     小麦淀粉为难酶解和难微孔化淀粉。对小麦淀粉进行了物理预处理后酶解的探索,方法有超高压、紫外照射、超声波处理、退火、冷冻溶剂交换技术处理等,结果表明,这些处理对淀粉颗粒都有不同程度的作用,但是酶解后,仍然不能形成微孔。应用糊化冷冻溶剂交换工艺可制备微孔化小麦淀粉。其工艺技术为:糊化冷冻溶剂交换技术。其较佳工艺为:5g淀粉添加40-50mL水,水浴锅90℃糊化25-30min,降至室温后,放冰箱5℃冷藏48h,最易切块成型。再放入-10℃冷冻48h,以乙醇:水=10:0比例浸没3次,干燥后得到的小麦淀粉多孔材料。获得的微孔淀粉多孔材料模板具有孔径均匀的特点。与原淀粉相比,吸水率达到245.66%,增长了300.20%。
     4为提高微孔淀粉吸附性能,改变其亲水亲脂吸附特性,增强其抗剪切能力和热稳定性,可采用交联淀粉微孔化工艺。其工艺为先交联后微孔化技术。最佳工艺参数为淀粉乳浓度15%,交联剂用量0.04mL·100g-1,酶用量5%,酶配比(α-淀粉酶:糖化酶)为1:4,缓冲溶液pH值4.4,反应时间12h,反应温度50℃。获得的交联微孔淀粉与微孔淀粉相比,孔径由1.7μm增大到2.4μm,比孔容增大的显微结构特点。与微孔淀粉相比吸水率由143.01%增加到150.97%,吸油能力由1.4mL·g-1增加到1.5mL·g-1,吸附性能得到改善,亲水亲脂吸附特性得到增强。抗剪切能力,冷热稳定性增强,结构得到强化。
     5微孔淀粉和交联微孔淀粉具有强吸附性能,可应用于精细化工产品的制备。本研究以微孔化小麦淀粉为模板,制备了超微氧化锌。其工艺为液相法煅烧技术。成功制取了超微氧化锌粉。
Micro-porous starch is a kind of natural, economical and easily accessible material. On account of its large BET surface area, voluminous micro-pores and excellent adsorption capability, micro-porous starch has been widely applied in the field of food, pharmaceuticals, cosmetics, pulp and paper industries, as well as agriculture. The manufacturing methods of micro-porous starch include enzymatic hydrolysis at temperatures below the starch gelatinization temperature, foaming at high temperature and exchanging solvent.
     In this dissertation, starches of cassava, sweet potato, corn, peas, wheat and potato were employed as experimental materials, the process route, optimum parameters. micro structure, hydrophilic and lipophilic adsorption property of micro-porous starch and cross-linked starch were investigated. The technological route and optimum parameters of a new technology of processing wheat micro-porous, gelatinization starch by exchanging frozen solvent, were also investigated. The method of processing superfine zinc oxide with micro-porous starch as raw material was explored, and optimum parameters were studied.
     1. Corn micro-porous starch was prepared by the method of enzymatic hydrolysis at temperatures below the starch gelatinization temperature. Results indicated that the optimum conditions were starch concentration (V/V)15%, enzyme amount4%, glucoamylase-amylase ratio4:1, buffer pH4.4, reaction time12h and temperature50℃.
     By comparison physical and chemical characteristics of micro-porous starch with that of original one, the size and volume of aperture, specific surface area and adsorption capacity of micro-porous starches were greatly improved. The surface of micro-porous maize starch granule was riddled with holes, forming a hollow microstructure after enzymatic hydrolysis. The water-absorption capacity of porous starch amounted to143.01%, increasing by134.15%than original starch.
     2. The adsorption thermodynamics and kinetics of the micro-porous starch was studied, and result showed that the adsorption mode of methylene blue by micro-porous starch corresponded well with quasi two level dynamic equation. This adsorption fitted into Freundlich isothermal adsorption equation. When system temperature increased, the amount of adsorbed methylene blue decreased gradually. So it could be inferred that the adsorption process was an exothermic and spontaneous one, with thermodynamic parameters as:ΔGθ<0, ΔHθ<0, ΔSθ<0.
     3. The adsorption capacity of six types of starches was compared; the sequence was corn starch, tapioca starch, sweet potato starch, pea starch by descending order. Almost no aperture could form after potato and wheat starch were treated by enzymatic hydrolysis.
     Since wheat starch was difficult to be hydrolyzed by enzymes and form porous structure in starch granules, we added physical pretreatment before enzymatic hydrolysis. The pretreatment methods included ultra-high pressure, ultraviolet irradiation, ultrasonic treatment, annealing, cold solvent exchange processing. Results showed that these treatments had different effect on starch granules, but still could not form pores after enzymatic hydrolysis. The micro-porous wheat starch could be processed by gelatinizing, freezing starch, and exchanging solvent.
     The optimum process was adding5g starch into40~50mL water, keeping the mixture in a water bath at90℃for25~30min to gelatinize starch, cooling down it to room temperature, storing it in a refrigerator at5℃for48h, cutting it into cubes, freezing it at-10℃for48h, rinsing it with ethanol-water (ratio10:0) for3times, drying it, and the pores forming on the surface of wheat starch granules. So obtained micro-porous wheat starch granules had the merit of uniform pore size, which is desirable for multiple-purpose porous materials. Compared with the original starch, the water-absorbing capacity of porous starch approached to245.66%, increasing by300.20%.
     4. In order to improve the adsorption capacity of micro-porous starch, the hydrophilic and lipophilic adsorption was modified, its shear resistance capability and heat stability was improved, and a process of cross-linking and enzymatic hydrolyzing to make micro pores was employed to treat starch. Results indicated that the optimal preparation parameters were starch concentration (V/V)15%, epichlorohydrin dosage0.04mL/100g, enzyme amount5.0%, glucoamylase-amylase ratio4:1, buffer pH4.4, reaction time12h, temperature50℃. A systematic comparison of the physical and chemical characteristics was made between crosslinked micro-porous starch granule and microporous starch granule. The crosslinked micro-porous starch had larger pore size (2.4μm diameter) than that of micro-porous starch (1.7μm diameter), larger micro-pore volume, greater water-absorption capacity (150.97%) than that of micro-porous starch (143.01%), greater oil-absorption capacity (1.5mL·g-1) than that of micro-porous starch (1.4mL·g-1), so the absorption capacity was greatly improved. The hydrophilic and lipophilic adsorption, resistance to shear action, heat and cold stability, structure of micro pores were also improved.
     5. On account of their excellent adsorption capacity, the micro-porous starch and cross-linked porous corn starch could be applied to the preparation of fine chemical products. The paper used wheat starch with micro pores as a template in the preparation of ultrafine zinc oxide. The superfine zinc oxide was successfully processed by a calcination technique carried out in liquid phase, coupled with a powder process.
引文
[1]高海燕Fe-Al金属间化合物多孔材料的研究[D].中南大学.2009.
    [2]Gordon C.C. Yang, Chi-Ming.TsaiEffects of starch addition on characteristics of tubular porous ceramic membrane substrates[J]. Desalination,2008(233):129-136.
    [3]张佳楠.无机多孔材料的功能化、组装及应用[D].吉林大学.2010.
    [4]白青龙,张春花,王冀.多孔材料的研究进展[J].内蒙古民族大学学报(自然科学版),2004,19(5):528-531.
    [5]席本强.多孔材料的特性分析[J].科技信息,2007(23):316-329.
    [6]M.H. Talou, A.G. Tomba Martinez, M.A. Camerucci. Green mechanical evaluation of mullite porous compacts prepared by pre-gelling starch consolidation[J]. Materials Science and Engineering A.2012(549):30-37.
    [7]Gordon C.C. Yang, Chi-Ming.TsaiEffects of starch addition on characteristics of tubular porous ceramic membrane substrates[J]. Desalination,2008(233):129-136.
    [8]Talou M.H., Tomba Martinez A.G., M.A. Camerucci. Green mechanical evaluation of mullite porous compacts prepared by pre-gelling starch consolidation[J]. Materials Science and Engineering A.2012(549):30-37.
    [9]代启发.以淀粉为前驱体制备多孔碳材料的研究[D].广西师范大学,2008.
    [10]Zuzana Zivcova-V1 ckova, Janis Locs, Melanie Keuper, et al. Microstructural comparison of porous oxide ceramics from the system. Al2O3-ZrO2 prepared with starch as a pore-forming agent Journal of the European Ceramic Society.2012(32):2163-2172.
    [11]Yumin Zhang, Luyang Hu, Jiecai, Han,et. al. Soluble starch scfafolds with uniaxial aligned channel structure for in situ synthesis of hierarchically porous silica ceramics[J]. Microporous and Mesoporous Materials.2010(130):327-332.
    [12]K. Milkowski, J.H. Clark, S. Doi, New materials based on renewable resources:chemically modified highly porous starches and their composites with synthetic monomers [J]. Green Chem.2004:189-190.
    [13]Swinkeles J. J. M. composition and properties of commercial native starches[J]. Starch. Starke,1985(37):1-5.
    [14]LiLi.Starch biogenesis:relationship between starch structures and starch biosynthetic enzymes[D].Iowa State University,2006.
    [15]Z. Miao, K. Ding, T. Wu, et. al. Micropor. Mesopor[J]. Mat.2008(111):104-109.
    [16]B. Zhang, S.A. Davis, S. Mann, Chem. Mater[J].2002(14):1369-1375.
    [17]V. Budarin, J.H. Clark, J.J.E. Hardy, et. al. Chem. Int. Ed[J].2006(45):3782-3786.
    [18]王后生,生物可降解高吸附性多孔淀粉的研究[D].南京航空航天大学,2011.
    [19]Rupendra Mukerjea, Daniel J. Falconer, Seung-Heon Yoon et al.Large-scale isolation, fractionation, and purification of soluble starch-synthesizing enzymes:starch synthase and branching enzyme from potato tubers[J]. Carbohydrate Research.2010(345):1555-1563.
    [20]邱礼平.磁性淀粉微球形成机理及其应用动力学研究[D].华南理工大学,2004.
    [21]许珍.不同类型玉米籽粒淀粉形成机理极其钾肥调控[D].山东农业大学,2007.
    [22]耿凤英.预处理对淀粉结构及化学反应活性的影响[D].天津大学.2010.,
    [23]Munzing, K.. DSC studies of starch in cereal and cereal products[J]. Thermo chtmica Acta.1991(193):441-448.
    [24]Maribel Ovando-Martinez, Luis A. Bello-Perez, Kristin Whitney,et al. Starch characteristics of bean(Phaseolus vulgaris L.) grown in different localities Carbohydrate Polymers.2011(85):54-64.
    [25]李玥.大米淀粉的制备方法及物理化学特性研究[D].江南大学,2008.
    [26]Wurzburg, O. B. Introduction. In:Wurzburg O. B. Modified starches:propertiesand uses [M] Boca Raton:CRC Press, Inc.1986:3-16.
    [27]戴忠民.小麦籽粒淀粉的粒度分布、积累特征极其与加工品质的关系[D].山东农业大学.2007.
    [28]Van der Burgt Y E M, Bergsma J, Bleeker I P, et al. Distribution of methyl substituents over crystalline and amorphous domains in methylated starches [J]. Carbohydrate Research, 1999(320):100-107.
    [29]Van der Burgt Y E M, Bergsma J, Bleeker I P, et al. Distribution of methyl substituents in amylose and amylopectin from methytated potato starches[J]. Carbohydrate Research.2000(325):183-19.
    [30]S. Doi, J.H. Clark, D.J. Macquarrie, et al. New materials based on renewable resources: chemically modified expanded corn starches as catalysts for liquid phase organic reactions Chem[J]. Commun.2002:2632-2633.
    [31]Monika Sujka, Jerzy Jamroz. Characteristics of pores in native and hydrolyzed starch granules[J]. Starch/Starke,2010(62):229-235.
    [32]HAGENIMANA Anastase大米淀粉混合物和挤压大米颗粒料的回生机理[D].江南大学.2005.
    [33]http://www.starch308.com/Specials/meeting/456/1236/111970.htm我国变性淀粉发展现状及发展趋势.2009.8.
    [34]刘星,林亲录,阳仲秋等.大米变性淀粉制备研究进展[J].中国食物与营养.2009(04):13-15.
    [35]章毅鹏,廖建和,桂红星.浅析我国变性淀粉的应用现状[J].中国粮油学报.2007(06):179-184.
    [36]彭雅丽,吴卫国.国内外变性淀粉发展概况及国内研究趋势分析[J].粮食科技与经济.2010.35(3):51-53.
    [37]Yanjie Bai, Yong-Cheng Shi.Structure and preparation of octenyl succinic esters of granular starch, Carbohydrate Polymers.2011(83):520-527.
    [38]赵妍嫣.甘薯淀粉基高吸水树脂的合成及性质研究[D].合肥工业大学.2007.
    [39]缪铭,徐大庆,段善海.糖酶对淀粉生物改性的研究进展[J].食品科学.2008,29(2):256-260.
    [40]黄祖强.淀粉的机械活化极其性能研究[D].广西大学.2006.
    [41]张燕萍.变性淀粉制造与应用[D].北京:化学工业出版社.2001.
    [42]章毅鹏,廖建和,桂红星.浅析我国变性淀粉的应用现状[J].中国粮油学报2007,(6):179-184.
    [43]孙晓莉,郭丽,杜先锋,等.响应面法优化大米多孔磷酸酯淀粉的制备工艺[J].中国粮油学报,2011,26(12):49-54.
    [44]Valentina I. Kiseleva, Alexei V. Krivandin,Jozef Fornal,et,al. Annealing of normal and mutant wheat starches. LM, SEM, DSC and SAXS studies[J]. Carbohydrate Research.2005(340):75-83.
    [45]Rupendra, M. Daniel, J. F. Seung-Heon,Y. et al. Large-scale isolation, fractionation, and purification of soluble starch synthesizing enzymes:starch synthase and branching enzyme from potato tubers.2010(345):1555-1563.
    [46]崔大鹏.微孔淀粉、交联微孔淀粉以及交联微孔淀粉的制备及应用研究[D].兰州大学.2010.
    [47]张友松.变性淀粉的生产与应用手册[M].中国轻工业出版社.2009.
    [48]二国二郎.淀粉科学手册[M].食品工业出版社.1977:89-92.
    [49]王良东,顾正彪DSC、EM、NMR及X-射线衍射在淀粉研究中的应用[J].西部粮油科技,2003(4):39-44.
    [50]Hongsheng Liu, Long Yu,Katherine Dean.et al. Starch gelatinization under pressure studied by high pressure DSC[J]. Carbohydrate Polymers.2009(75):395-400.
    [51]Shujun Wang, Jinglin Yu, Jiugao Yu. Conformation and location of amorphous and semi-crystalline regions in C-type starch granules revealed by SEM, NMR and XRD[J]. Food Chemistry.2008(110):39-46.
    [52]XinyuWang, Hongqiang Wang Qifa Dai, et al. Preparation of novel porous carbon spheres from corn starch. Colloids and Surfaces A:Physicochem. Eng. Aspects.2009(346):213-215.
    [53]Whistler P L.Microporous granular starch matrix compositions [P].US:4 985 082,1991.
    [54]林江涛,刘国琴,钟洁明等.微孔性变性淀粉的研究[J].郑州粮食学院学报,1999,20(4):45-50.
    [55]H.M. Alves, G. Tari, A.T. Fonseca, J.M.F. Ferreira, Effects of starch addition on characteristics of tubular porous ceramic membrane substrates [J]. Mater. Res. Bull.1998(33):1439-1448.
    [56]Lyckfeldt O and Ferreira JMF. Processing of porous ceramics by starch consolidation [J]. Journal of the European Ceramic Society.1998(18):131-140.
    [57]Yumin Zhang, Luyang Hu, Jiecai Han. Soluble starch scaffolds with uniaxial aligned channel structure for in situ synthesis of hierarchically porous silica ceramics[D]. Microporous and mesoporous materals.2010(130):327-332.
    [58]Dayan Qian, Peter R. Chang, Xiaofei Ma. Preparation of controllable porous starch with different starch concentrations by the single or dual freezing process[J]. Carbohydrate Polymers.2011(86):1181-1186.
    [59]Bing Zhang, Dapeng Cui, Mingzhu Liu, et al. Corn porous starch:Preparation, characterization and adsorption property[J]. International Journal of Biological Macromolecules.2012(50):250-256.
    [60]J. E. Fannon, J. M. Shull, J. N. BeMiller.Interior channels of starch granules[J]. Cereal Chem.1993(70):611-613.
    [61]Baldwin, P. M., Adler, J., Davies, M. C., Melia, C. D. Holes in starch granules:confocal, SEM and light microscopy studiesof starch granule structure[J]. Starch/Starke.1994(46):341-346.
    [62]Monika Sujka and Jerzy Jamroz.Characteristics of pores in native and hydrolyzed starch granules[J]. Starch/Starke.2010(63):229-235.
    [63]Yun Wu, Xianfeng Du, Honghua Ge, etal. Preparation of microporous starch by glucoamylase and ultrasound.2011(63):217-225.
    [64]J.Zhao, M.A. Madson, R.L. Whistler, Cavities in porous corn starch provide a large storage space[J].Cereal Chem.1996(73):379-380.
    [65]P.R. Chang, J. Yu, X. Ma, Preparation of porous starch and its use as a structure-directing agent for production of porous zinc oxide[J].Carbohydr. Polym.2011(83):1016-1019.
    [66]J. Qian, X. Chen, X. Ying, B. Lv, Int. J. Optimisation of porous starch preparation by ultrasonic pretreatment followed by enzymatic hydrolysis [J].Food Sci. Technol.2011)(46):179-185.
    [67]C. Niemann, R.L. Whistler, Effect of Acid Hydrolysis and Ball Milling on Porous Corn Starch/Starke.1992(44):409-414.
    [68]Shinji,T.Makoto,H.Katsunori,T.et al.Structural change of potato starch granules by ball-mill treatment, Starch,1997,11:431-438/Shinji,T,.Makoto,H,.Katsunori,T,.et al Structural change of maize starch granules by ball-mill treatment, Starch/Starke.1998)(50):342-348.
    [69]张力田.变性淀粉[M].华南理工大学出版社.1999.
    [70]Kerr R. W. Degradation of corn starch in the granule state by acid. Starch/Starke,1952)(4):39-41.
    [71]Kang K, Kim J. K, Kim S. K. Three stage hydrolysis pattern of rice starch by acid treatment[J]. J. Appl. Glycosci.1994(4):201-204.
    [72]李梅,刘可志,徐雅雯等.酸法制备多孔淀粉及其特性研究[J].食品工业科技.2012(06):197-200.
    [73]Whistler R L. Microporous granule starch matrix composition. US 4985082.
    [74]Takahiro N, Yasuhiro T, Tadahiro N. Factors Relating to Digestibility of Raw Starch by Amylase[J]. Starch science.1993(40):271-276.
    [75]Celia M L, Franco S, Preto J R, Cesar F C. Factors that Affect the Enzymatic Degradation of Natural Starch Granules-Effect of the Size of the Granules[J].Starch/Starke 44 (1992) 422-426.
    [76]Franco C M L, Ciacco C F, Tavares D Q. Studies on the susceptibility ofgranular cassava and corn starches to enzymatic attack[J]. Ⅱ Study of the granular structure of starch. Starch/Starke.1988(40):29-32.
    [77]Bing Zhang, Dapeng Cui, Mingzhu Liua, et al.Corn porous starch:Preparation, characterization and adsorption property[J]. International Journal of Biological Macromolecules.2012(50):250-256.
    [78]杨景峰,罗志刚,罗发兴.淀粉预处理方法对多孔淀粉的影响[J].食品科技,2007(7):50-53.
    [79]张永和.超声波降解作用对淀粉性质之影响[J].食品工业(台),2001,33(6):19-31.
    [80]雷娜.超声波对淀粉超分子结构及反应性能的影响[D].华南理工大学硕士论文,2001.
    [81]K.M. Chung, T.W. Moon, H. Kim, J.K. Chun, Physicochemical properties of sonicated mung bean potato, and rice starches.Cereal Chem.2002(79):631-633.
    [82]Grazyna Lewandowicz, Jozef Fornal, Aleksander Walkowski, Effect of microwave radiation on physico-chemical properties and structure of potato and tapioca starch, Carbohydrate Polymer.1997(34):213-220.
    [83]T. Emilia Abraham, Trivandrum, Stabilization of paste viscosity of cassava starch by heat moisture treatment, Starch/Starke.1993(45):131-138.
    [84]陆冬梅.微波处理及双酶协同微孔木薯淀粉的制备与机理[D].华南理工大学.2004.
    [85]刘成程.高吸水性玉米多孔淀粉的制备及其生物相容性和止血效果的研究[D].西北大 学,2010.
    [86]刘雄,周琼,周才琼等.高吸油微孔淀粉制备技术的研究[J].中国粮油学报,2005(3):22-25.
    [87]Peiling Liu,Benshan Zhang,Qun Shen,ea al. Prearation and structure analysis of noncrystalline granular starch, International Journal of Food Engineering.2010(6):1-14.
    [88]Cunxu Wei, Fengling Qin, Weidong Zhou, et al. Granule structure and distribution of allomorphs in C-type high-amylose rice starch granule modified by antisense RNA inhibition of starch branching enzyme[J]. J.Agric. Food Chem.2010(58):11946-11954.
    [89]Dayan Qian, Peter R. Chang, Xiaofei Ma. Preparation of controllable porous starch with different starch concentrations by the single or dual freezing process[J]. Carbohydrate Polymers 2011(86):1181-1186.
    [90]Peter.R. Chang, Jiugao. Yu, Xiaofei. Ma, Preparation of porous starch and its use as a structure-directing agent for production of porous zinc oxide[J].Carbohydr. Polym.2011(83):1016-1019.
    [91]Jong-Yea Kim, Kerry C. Huber.Corn starch granules with enhanced load-carrying capacity via citric acid Treatment[J]. Carbohydrate Polymers.2013(91):39-47.
    [92]王红强,蔡敏,李庆余等.真空冷冻干燥法在微孔淀粉制备过程中的应用[J].食品工业科技.2008(10):192-193,6.
    [93]许丽娜,董海洲,张绪霞.多孔淀粉制备及开发前景[J]粮食与油脂.2007(2):18-20.
    [1]赵锴,陆天健,全学军等.多孔淀粉制备与应用的研究进展.[J].重庆工学院学报,2005(5):130-132.
    [2]Ann-Charlotte Eliasson编.赵凯等译.食品淀粉的结构、功能及应用[M].北京:中国轻工业出版社,2009.
    [3]林江涛,刘国琴,钟洁明等.微孔性变性淀粉的研究[J].郑州粮食学院学报,1999,20(4):45-50.
    [4]GB8276-2006食品添加剂糖化酶制剂.
    [5]GB 8275-2009食品添加剂α-淀粉酶.
    [6]Hauber R.J. Swelling and reactivity of maize starch granules.Starch/Staerke.1992(3): 284-288.
    [7]姚卫蓉,姚惠源.多孔淀粉的研究Ⅰ:酶和原料粒度对形成多孔淀粉的影响[J].中国粮油学.2001(1):36-38.
    [8]刘军海,黄宝旭,蒋德超.响应面分析法优化艾叶多糖提取工艺研究[J]食品科学.2009,30(2):114-118.
    [9]E.Aghaiea,M.Pazoukib, MR Hosseinia. Response surface methodology (RSM) analysis of organic acid production for Kaolin beneficiation by Aspergillus niger. Chemical Engineering Journal.2009,8(7):245-251.
    [10]Stephen O'Brien, Ya-Jane Wang. Susceptibility of annealed starches to hydrolysis by a-amylase and glucoamylase[J]. Carbohydrate Polymers.2008(72):597-607.
    [11]杨德.试验设计与分析[M].北京:中国农业出版社,2002:256-274.
    [12]吴有炜.试验设计与数据处理[M].苏州:苏州大学出版社,2002:115-154.
    [13]许焕卫.稳健设计建模及优化方法的研究[D].辽宁:大连理工大学,2009.
    [14]SJoshi, S.Yadav, AJ Desai. Application of response-surface methodology to evaluate the optimum medium components for the enhanced production of lichenysin by.Bacillus licheniformis R2.Biochemical Engineering Journal,2008,41(2):122-127.
    [15]A.Dwevedi, M.Arvind, Kayastha. Optimal immobilization of (3-galactosidase from Pea (PsBGAL) onto sephadex and chitosan beads using response surface methodology and its applications.Bioresource Technology.2009,100(10):2667-2675.
    [16]Rangonese R, Macka M, Hughes J, Petocz P., et al. The Use of Box-BeHnken Expermental Design in the Optimisation and Robustness Testing of a Capillary Electrophoresis Method for the Analysis of Ethambutol Hydrochloride in a Pharmaceutical Formulation Journal of pharmaceutical and biomedical analysis,2006,27(6):995-1007.
    [17]孔勤.丁酸梭菌培养与发酵动力学以及调节腹泻小鼠肠道菌群平衡的研究[D].浙江:浙江大学,2006.
    [18]Monika Sujka, Jerzy Jamroz. a-Amylolysis of native potato and corn starches-SEM, AFM, nitrogen andiodine sorption investigations. LWT-Food Science and Technology.2009(42): 1219-1224.
    [19]M. Sujka, J. Jamroz. Starch granule porosity and its changes by means of amylolysi. Int. Agrophysics.2007(21):107-113.
    [20]Planchot V., Colonna P., Gallant D J.,et,al.Extensive degradation of native starch granules by a-amylase from Aspergillus fumigatus. J. Cereal Sci.,1995(21):163-171.
    [21]Jingan Zhao, Michael, A. Madson, Roy L. Whistler. Cavities in porous corn starch provide a large storage space. Cereal Chem.73(3):379-380.
    [1]Shogren R L. Modification of maize starch by thermal processing in glacial acetic acid. Carbohydrate Polymers,2000,43(4):309-315.
    [2]Cao Y M, Qing X S, Sun J, et al. Graft copolymerization of acrylamide on to carboxymethyl starch. European Polymer Journal,2002,38 (9):1921-1924.
    [3]Achremowicz B, Gumul D, Piasek A B, et al. Air oxidation of potato starch over Cu(Ⅱ) catalyst[J].Carbohydrate Polymers,2000,42(1):45-50.
    [4]Fortuna, T., Januszewska, R., Juszczak, L., Kielski, A.,Palasin'ski, M., The influence of starch pore characteristic on pasting behaviour[J]. Int. J. Food Sci. Technol.2000(35):285-291.
    [5]Kong, B. W., Kim, J. I., Kim, M. J., Kim, J. C., Porcine pancreatic a-amylase hydrolysis of native starch granules as a function of granule surface area[J]. Biotechnol. Prog. 2003(19):1162-1166.
    [6]Fannon, J. E., Gray, J. A., Gunawan, N., Huber, K. C., BeMiller, J. N., Heterogeneity of starch granules and the effect of granule channelization on starch modification. Cellulose 2004,11, 247-254.
    [7]李维杰,杨光,刘灿召等.微波前处理酶法制备微孔淀粉研究[J].安徽农业科学2009(33):16221-16223.
    [8]姚卫蓉,姚惠源.淀粉性质及预处理对多孔淀粉形成的影响[J].中国粮油学报.2005(05):55-60.
    [9]杨景峰,罗志刚,罗发兴等.淀粉预处理方法对多孔淀粉的影响[J].食品科技.2007(07):50-53.
    [10]徐忠,刘明丽,张海华.交联改性对多孔淀粉的性质影响研究[J].食品科学.2007(11):47-50.
    [11]周坚,沈汪洋,万楚筠.微孔淀粉制备的预处理工艺研究[J].食品科学.2005(11):134-136.
    [12]杨永美,刘钟栋,毕礼政等.超声波微波协同组合酶法制备玉米多孔淀粉[J].中国食品添加剂.2012(01):76-81.
    [13]徐忠,王鹏,缪铭等.多孔淀粉的生物法制备、改性及应用[J].现代化工.2005(S1):77-80.
    [14]武赟,吕真,杜先锋.超声波辅助酶解制备多孔淀粉的研究[J].食品与发酵工业.2008(04):25-30.
    [15]Ya-Jane Wang,Van-Den Truong, Linfeng Wanga. Structures and rheological properties of corn starch as affected by acid hydrolysis.Carbohydrate Polymers.2003(52):327-333.
    [16]Kawaljit Singh Sandhu, Narpinder Singh, Seung-Taik Lim. A comparison of native and acid thinned normal and waxy corn starches:Physicochemical, thermal, morphological and pasting properties.LWT2007(04):1527-1536.
    [17]刘延奇,毛自荐.超高压处理对淀粉结晶结构的影响研究进展.食品科技.2006(8):13-16.
    [18]Jacobs H, Delcour A. Hydrothermal modifications of granular starch, with retention of the granular structure:a review. Journal of Agricultural and Food Chemistry.1998,46(8): 2895-2905.
    [19]Tuangporn Tukomane. preparation and characterization of annealed enzymatic hydrolyzend tapioca starch and the utilization in tableting and studies on the retrogradation of succinate rice starch and rice starches of various cultivars through the rheological property characterization[D].mahidol university.2008.
    [20]Dayan Qian, Peter R. Chang, Xiaofei Ma. Preparation of controllable porous starch with different starch concentrations by the single or dual freezing process. Carbohydrate Polymers.2011(86):1181-1186.
    [21]谢涛,李英.交联微孔甘薯淀粉理化特性研究[J]食品科学2008,29(12):153-155.
    [22]Zobel H.F. X-ray analysis of starch granules [J].Methods in Carbohydrate Chemistry,1964(5):109.
    [23]徐忠,王鹏,缪铭.复合酶水解生淀粉形成微孔的机理研究[J].哈尔滨商业大学学报(自然科学版).2007(1):49-52,57.
    [24]Jone E F, Richard J H, James N B. Surface pores of starch granules. Cereal Chemistry, 1992,69 (3):284-288.
    [25]Stephen O'Brien, Ya-Jane Wang. Susceptibility of annealed starches to hydrolysis by α-amylase and glucoamylase. Carbohydrate Polymers.2008(72):597-607.
    [26]赵妍嫣.甘薯淀粉基高吸水树脂的合成及性质研究[D].合肥工业大学.2007.
    [27]Dayan Qian, Peter R. Chang, Xiaofei Ma. Preparation of controllable porous starch with different starch concentrations by the single or dual freezing process. Carbohydrate Polymers.2011(86):1181-1186.
    [28]Monika Sujka, Jerzy Jamroz. Characteristics of pores in native and hydrolyzed starch granules Starch/Starke 2010(62):229-235.
    [1]黄婷.纳米材料固相萃取分离环境样品中的铊[D].辽宁大学,2008.
    [2]傅献彩,沈文霞,姚天扬等.物理化学(第五版)北京:高等教育出版社,2005:63-66.
    [3]Runping Han, Lijun Zhang, Chen Song,et al. Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. Carbohydrate Polymers.2010(79):1140-1149.
    [4]Hongsheng Liu, Long Yu,Katherine Dean.et al. Starch gelatinization under pressure studied by high pressure DSC[J]. Carbohydrate Polymers.2009(75):395-400.
    [5]江美都,顾振宇,王强林等.板栗淀粉加工特性的研究[J].中国粮油学报.2001,16(6):55-58.
    [6]黄立新,高群玉,周俊侠,等.酯化交联淀粉及性质的研究(Ⅲ)--糊性质和应用[J].食品与发酵工业2001,27(6):1-5.
    [7]Mazurs E.GGraphical analysis of the Brabender viscosity curve of various starches.Cereal Chemistry,1964(5):240.
    [8]陈福泉,张本山.菠萝蜜种子淀粉颗粒的物化特性研究[J].食品工业科技.2009(10):124-127.
    [9]计道珺,汪亚琴,李轩科等.碳纳米管的制备和吸附特性研究[J].化学新型材料.2009,37(12):87-89.
    [10]王后生.生物可降解高吸附性多孔淀粉的研究[D].南京航空航天大学,2011.
    [11]Selvaraj Rengaraj, Younghun Kim, Cheol Kyun Joo, et al. Removal of copper from aqueous solution by aminated and protonated mesoporous aluminas:kinetics and equilibrium Journal of Colloid and Interface Science.2004(273):14-21.
    [12]Ayben Kilislioglu.The effect of various cations and pH on the adsorption of U(VI) on Amberlite IR-118H resin. Applied Radiation and Isotopes.2003(58):713-717.
    [13]B.H. Hameed, A.T.M. Din, A.L. Ahmad. Adsorption of methylene blue onto bamboo-based activated carbon:Kinetics and equilibrium studies. Journal of Hazardous Materials.2007(141):819-825.
    [14]二国二郎.淀粉科学手册[M].北京:中国轻工业出版社,1990.
    [15]姚卫蓉,姚惠源.多孔淀粉的研究Ⅰ:酶和原料粒度对形成多孔淀粉的影响[J].中国粮油学报.2001(1):36-38.
    [16]李永平.微孔淀粉制备特性的研究[D].东北农业大学,2008.
    [17]Monika Sujka, Jerzy Jamroz. α-Amylolysis of native potato and corn starches-SFM, AFM, nitrogen and iodine sorption investigations. LWT-Food Science and Technology.2009(42):1219-1224.
    [18]Zhang LM, Xie WG, Zhao X,et al. Study on the morphology, crystalline structure and thermal properties of yellow ginger starch acetates with different degrees of substitution. Thermochim Acta.2009(49):57-62.
    [19]Christa K, Soral-Smietana M, Lewandowicz G. Buckwheat starch:structure, functionality and enzyme in vitro susceptibility upon the roasting process Int J Food Sci Nutr.2009(60):140-154.
    [20]陆冬梅,杨连生.微孔木薯淀粉吸附特性研究[J].应用化工.2005,34(4):205-208.
    [1]林江涛,刘国琴,钟洁明,等.微孔性变性淀粉的研究[J].郑州粮食学院学报,1999,20(4):45-50.
    [2]X Morelon, S Battu, C Salesse, et al. Sedimentation field flow fractionation monitoring of rice starch amylolysis [J].Journal of Chromatography A.2005(109):147-155.
    [3]R F Tester, X Qi, J Karkalas. Hydrolysis of native starches with amylases[J]. Animal Feed Science and Technology.2006(130):39-54.
    [4]Ann-Charlotte Eliasson编,赵凯等译.食品淀粉的结构、功能及应用[M].北京:中国轻工出版社,2009.
    [5]GB8276-2006食品添加剂糖化酶制剂.
    [6]GB 8275-2009食品添加剂α-淀粉酶.
    [7]胡飞.微孔淀粉吸附性能研究[J].食品工业科技,2007(2):120-122.
    [8]孙政.活性炭对有机气体的选择性吸附研究[D].中南大学.2011.
    [9]王桂芳.基于吸附势理论的煤对N2吸附特性的研究[D].山东科技大学.2010.
    [10]Peiling Liu,Benshan Zhang,Qun Shen,ea al. Prearation and structure analysis of noncrystalline granular starch, International Journal of Food Engineering.2010,6(4):1-14.
    [11]Ming Miao, Tao Zhang, Wanmeng Mu, et al. Structural characterizations of waxy maize starch residue following in vitro pancreatin and amyloglucosidase synergistic hydrolysis [J]. Food Hydrocolloids.2011(25):214-220.
    [12]刘军海,黄宝旭,蒋德超.响应面分析法优化艾叶多糖提取工艺研究[J]食品科学.2009,30(2):114-118.
    [13]孔勤.丁酸梭菌培养与发酵动力学以及调节腹泻小鼠肠道菌群平衡的研究[D].浙江:浙江大学,2006.
    [14]C. Bernal, I. Diaz, and N. CoelloResponse surface methodology for the optimization of keratinase production in culture medium containing feathers produced by Kocuria roseaCan. J. Microbiol.2006(52):445-450.
    [15]S.K. Psomas, M. Liakopoulou-Kyriakides, D.A. Kyriakidis.Optimization study of xanthan gum production using response surface methodology Biochemical Engineering Journal.2007(35):273-280.
    [16]E.Aghaiea, M. Pazoukib, MR Hosseinia. Response surface methodology (RSM) analysis of organic acid production for Kaolin beneficiation by Aspergillus niger.Chemical Engineering Journal.2009,8 (7):245-251.
    [17]杨德.试验设计与分析[M].北京:中国农业出版社,2002,256-274.
    [18]吴有炜.试验设计与数据处理[M].苏州:苏州大学出版社,2002:115-154.
    [19]A.Dwevedi, M.Arvind, Kayastha. Optimal immobilization of β-galactosidase from Pea (PsBGAL) onto sephadex and chitosan beads using response surface methodology and its applications.Bioresource Technology,2009,100 (10):2667-2675.
    [20]Rangonese R, Macka M, Hughes J, Petocz P., et al. The Use of Box-BeHnken Expermental Design in the Optimisation and Robustness Testing of a Capillary Electrophoresis Method for the Analysis of Ethambutol Hydrochloride in a Pharmaceutical Formulation [J].Journal of pharmaceutical and biomedical analysis.2006,27(6):995-1007.
    [21]王慧.交联多孔淀粉的制备及其应用研究[D].哈尔滨商业大学,2010.
    [1]吕玮,谢珍珍,林爱琴等.氧化锌纳米材料的制备及应用研究进展[J].福建师范大学学报.2009,(2):1-6.
    [2]刘敏娜,王桂清,罗成,等.纳米氧化锌的制备与表征.[J]精细化工中间体,2002,32(2):34-38.
    [3]付三玲,蔡淑珍,张晓军等.水热法制备ZnO晶体及纳米材料研究进展.[J]人工晶体学报,2006,35(5):1016-1021.
    [4]吕伟,吴莉莉,朱红梅等.水热法制备氧化锌纳米棒[J].山东大学学报(工学版).2005,35(6):1-4,28.
    [5]杨秀培.纳米氧化锌的制备及其研究进展[J].西华师范大学学报,2003,24(3):347-351.
    [6]杜媛媛,丘克强.纳米氧化锌的制备和应用研究[J].材料导报,2007,21(5):104-107.
    [7]Peter R.Chang, Dayan Qian,Debbie P. Anderson,et al.Preparation of the succinic ester of porous. Carbohydrate Polymers.2012(88):604-608.
    [8]Peter.R. Chang, Jiugao. Yu, Xiaofei. Ma, Preparation of porous starch and its use as a structure-directing agent for production of porous zinc oxide.Carbohydr. Polym.2011(83):1016-1019.
    [9]Peiling Liu,Benshan Zhang,Qun Shen,ea al. Prearation and structure analysis of noncrystalline granular starch, International Journal of Food Engineering.2010,6(4):1-14.
    [10]Cunxu Wei, Fengling Qin, Weidong Zhou, et al. Granule structure and distribution of allomorphs in C-type high-amylose rice starch granule modified by antisense RNA inhibition of starch branching enzyme. J.Agric. Food Chem.2010(58):11946-11954.
    [11]Dayan Qian, Peter R. Chang, Xiaofei Ma. Preparation of controllable porous starch with different starch concentrations by the single or dual freezing process. Carbohydrate Polymers 2011(86):1181-1186.
    [12]L.Z. Pei, H.S.Zhao W.Tan,.et al.Hydrothermal oxidization preparation of ZnO nanorods on zinc substrate.Physica E.2010(42):1333-1337.
    [13]徐超,曹立新,苏革等.氧化锌粉体的制备、表征及其光催化性能的研究[J].材料导报(研究篇).2010,24(3):98-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700