用户名: 密码: 验证码:
微流控液滴单细胞分析系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着液滴微流控技术的迅速发展,其在单细胞分析中的应用引起了越来越多的关注。液滴作为单细胞微反应器,能够有效控制扩散,加速混合,提高检测灵敏度,已被成功应用于多种单细胞分析中。然而,受液滴操控能力所限,在液滴系统中在线对单细胞进行复杂操纵仍存在较大困难。本工作的目的就是发展多种液滴操纵技术,建立一个自动化多功能的微流控液滴单细胞分析平台。
     第一章综述了微流控单细胞分析系统的优势及发展现状,包括基于单相流的微流控单细胞分析系统以及基于液滴的微流控单细胞分析系统两部分。其中,在第二部分,系统介绍了液滴生成、试样引入、液滴融合及多步操纵技术,综述了液滴微流控系统在单细胞包裹、分选、培养和分析中的应用。
     第二章的工作中建立了一种基于毛细管取样探针和缺口管阵列的自动化微流控液滴单细胞分析系统。采用液滴组装的方式,通过顺序引入细胞悬液、分析试剂和油相间隔,完成单细胞包裹和单细胞液滴反应器的生成。实验考察了影响单细胞包裹概率的各种因素,在优化的液滴生成条件下,得到的单细胞包裹概率为46.7±2.0%,比常规系统高出约10%。将系统应用于大鼠嗜铬瘤细胞(PC12细胞)内的β-半乳糖苷酶活性分析,对单细胞内酶反应进行了长时间监测,并且实现了对两种不同细胞样品的同时分析。
     第三章在第二章工作的基础上,发展了一种简单新颖的液滴融合技术。充分利用系统具有的生成不同组分液滴的能力,通过改变液滴组成,调节液滴的界面张力,产生液滴流速的差异,进而实现毛细管中无需任何外部设备和处理的多液滴顺序融合。将液滴融合技术成功应用于短时间内单细胞酶反应动力学过程的监测中。
     第四章在前两章工作的基础上,改进了常用的磁力液滴操控系统,通过引入少量的磁粉粒子作为载体的方法,实现了皮升级液滴的分裂操作。进而通过液滴多步操纵技术,包括液滴产生、移动、混合和分裂,实现了基于皮升级液滴的固相萃取操作。将固相萃取技术应用于单细胞及少量细胞的DNA提取中,取得了初步结果。
In rescent years, droplet-based microfluidics has made great progress and its application in single cell analysis has attracted more and more attension. Droplets, which are used as single cell microreactors, have the advantages of limiting dispersion, accelerating mixing and improving detection sensitivity. Despite the great success of droplet-based systems in single cell analysis, a multifunctional microfluidic platform that could perform complex single cell analysis with multiple manipulations of droplets including generation, transport, combining and splitting still present challenges.
     In Chapter One, the recent progress of microfluidic single cell analysis systems are reviewed, including the single phase microfluidic single cell analysis system and the droplet-based microfluidic single cell analysis system. In the latter section, various droplet manipulation techniques are comprehensively described including droplet generation, reagent introduction, droplet fusion and multi-step manipulation. The application of droplet microfluidics in single cell encapsulation, sorting, culture and analysis are also introduced.
     In Chapter Two, an automated doplet-based microfluidic single cell anlysis system based on a capillary sampling probe and a slotted-vials array was developed. The single cell droplet was formed using droplet assembling technique by sequentially aspirating cell suspension, reagent solutions and oil carrier into the capillary. Various factors affecting single cell encapsulating efficiencies were investigated. Under optimized conditions, a high single cell encapsulation efficiency of 46.7±2.0% was obtained, which was 10% higher than those reported by other groups. The performance of the system was demonstrated in the intracellularβ-galactosidase activity assays of pheochromocytoma cells (PC 12 cells) at the single cell level. With the ability in generating droplets with different compositions, simultaneous analysis for different cell samples was also performed.
     In Chapter Three, a novel and simple droplet fusion method was developed with the single cell analysis system described in Chapter Two, based on the use of the difference of droplet interfacial tensions. By varying the droplet interfacial tension, the velocity differences between the droplets was generated, and droplet fusion in a capillary-based system without any external devices was achieved. The droplet fusion techinique was applied in on-line monitoring of enzymatic reaction dynamic process of single cells in a short period.
     In Chapter Four, multi-step magnetic droplet manipulation technique was developed with the single cell analysis system described in Chapter Two. By introducing ferromagnetic particles as carriers to assist the magnetic beads in passing through the phase interface, picoliter-scale droplet splitting was achieved. By employing multi-step droplet manipulations including droplet transferring, merging and splitting, solid phase extraction among picoliter-scale droplets was performed and applied in DNA purification for single cell or small numbers of cells.
引文
[1]翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社,2000.
    [2]Longo D, Hasty J. Dynamics of single-cell gene expression. Molecular Systems Biology,2006,2.
    [3]Peng X Y, Li P C H. A three-dimensional flow control concept for single-cell experiments on a microchip.2. Fluorescein diacetate metabolism and calcium mobilization in a single yeast cell as stimulated by glucose and pH changes. Analytical Chemistry,2004,76:5282-5292.
    [4]Spiller D G, Wood C D, Rand D A, White M R H. Measurement of single-cell dynamics. Nature,2010,465:736-745.
    [5]Rao C V, Wolf D M, Arkin A P. Control, exploitation and tolerance of intracellular noise. Nature,2002,420:231-237.
    [6]Tay S, Hughey J J, Lee T K, Lipniacki T, Quake S R, Covert M W. Single-cell NF-kappa B dynamics reveal digital activation and analogue information processing. Nature,2010,466:267-271.
    [7]Peixoto A, Monteiro M, Rocha B, Veiga-Fernandes H. Quantification of multiple gene expression in individual cells. Genome Research,2004,14:1938-1947.
    [8]Gautreau L, Boudil A, Pasqualetto V, Skhiri L, Grandin L, Monteiro M, Jais J P, Ezine S. Gene Coexpression Analysis in Single Cells Indicates Lymphomyeloid Copriming in Short-Term Hematopoietic Stem Cells and Multipotent Progenitors. Journal of Immunology,2010,184:4907-4917.
    [9]Fink C C, Meyer T. Molecular mechanisms of CaMKII activation in neuronal plasticity. Current Opinion in Neurobiology,2002,12:293-299.
    [10]Berridge M J, Bootman M D, Roderick H L. Calcium signalling:Dynamics, homeostasis and remodelling. Nature Reviews Molecular Cell Biology,2003,4: 517-529.
    [11]Glanzer J G, Eberwine J H. Expression profiling of small cellular samples in cancer:less is more. British Journal of Cancer,2004,90:1111-1114.
    [12]Sun J, Masterman-Smith M D, Graham N A, Jiao J, Mottahedeh J, Laks D R, Ohashi M, DeJesus J, Kamei K, Lee K B, Wang H, Yu Z T F, Lu Y T, Hou S A, Li K Y, Liu M, Zhang N G, Wang S T, Angenieux B, Panosyan E, Samuels E R, Park J, Williams D, Konkankit V, Nathanson D, van Dam R M, Phelps M E, Wu H, Liau L M, Mischel P S, Lazareff J A, Kornblum H I, Yong W H, Graeber T G, Tseng H R. A Microfluidic Platform for Systems Pathology:Multiparameter Single-Cell Signaling Measurements of Clinical Brain Tumor Specimens. Cancer Research,2010,70: 6128-6138.
    [13]方肇伦.微流控分析芯片.北京:科学出版社,2003.
    [14]Di Carlo D, Aghdam N, Lee L P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Analytical Chemistry,2006,78:4925-4930.
    [15]Wlodkowic D, Faley S, Zagnoni M, Wikswo J P, Cooper J M. Microfluidic Single-Cell Array Cytometry for the Analysis of Tumor Apoptosis. Analytical Chemistry,2009,81:5517-5523.
    [16]Skelley A M, Kirak O, Suh H, Jaenisch R, Voldman J. Microfluidic control of cell pairing and fusion. Nature Methods,2009,6:147-152.
    [17]Deutsch M, Deutsch A, Shirihai O, Hurevich I, Afrimzon E, Shafran Y, Zurgil N. A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells. Lab on a Chip,2006,6:995-1000.
    [18]Boardman A K, McQuaide S C, Zhu C, Whitmore C D, Lidstrom M E, Dovichi N J. Interface of an array of five capillaries with an array of one-nanoliter wells for high-resolution electrophoretic analysis as an approach to high-throughput chemical cytometry. Analytical Chemistry,2008,80:7631-7634.
    [19]Sasuga Y, Iwasawa T, Terada K, Oe Y, Sorimachi H, Ohara O, Harada Y. Single-Cell Chemical Lysis Method for Analyses of Intracellular Molecules Using an Array of Picoliter-Scale Microwells. Analytical Chemistry,2008,80:9141-9149.
    [20]Voldman J. Electrical forces for microscale cell manipulation. Annual Review of Biomedical Engineering,2006,8:425-454.
    [21]Gao J, Yin X F, Fang Z L. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab on a Chip,2004,4:47-52.
    [22]Yasukawa T, Nagamine K, Horiguchi Y, Shiku H, Koide M, Itayama T, Shiraishi F, Matsue T. Electrophoretic cell manipulation and electrochemical gene-function analysis based on a yeast two-hybrid system in a microfluidic device. Analytical Chemistry,2008,80:3722-3727.
    [23]Thomas R S W, Mitchell P D, Oreffo R O C, Morgan H. Trapping single human osteoblast-like cells from a heterogeneous population using a dielectrophoretic microfluidic device. Biomicrofluidics,2010,4.
    [24]Taff B M, Voldman J. A scalable addressable positive-dielectrophoretic cell-sorting array. Analytical Chemistry,2005,77:7976-7983.
    [25]Hunt T P, Issadore D, Westervelt R M. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Lab on a Chip, 2008,8:81-87.
    [26]Toriello N M, Douglas E S, Mathies R A. Microfluidic device for electric field-driven single-cell capture and activation. Analytical Chemistry,2005,77: 6935-6941.
    [27]Ino K, Okochi M, Konishi N, Nakatochi M, Imai R, Shikida M, Ito A, Honda H. Cell culture arrays using magnetic force-based cell patterning for dynamic single cell analysis. Lab on a Chip,2008,8:134-142.
    [28]Liu W, Dechev N, Foulds I G, Burke R, Parameswaran A, Park E J. A novel permalloy based magnetic single cell micro array. Lab on a Chip,2009,9:2381-2390.
    [29]Okochi M, Takano S, Isaji Y, Senga T, Hamaguchi M, Honda H. Three-dimensional cell culture array using magnetic force-based cell patterning for analysis of invasive capacity of BALB/3T3/v-src. Lab on a Chip,2009,9:3378-3384.
    [30]Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goksor M, Hohmann S, Nystrom T, Hanstorp D. A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab on a Chip,2007,7:71-76.
    [31]Eriksson E, Sott K, Lundqvist F, Sveningsson M, Scrimgeour J, Hanstorp D, Goksor M, Graneli A. A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. Lab on a Chip,2010,10:617-625.
    [32]Olofsson J, Bridle H, Jesorka A, Isaksson I, Weber S, Orwar O. Direct Access and Control of the Intracellular Solution Environment in Single Cells. Analytical Chemistry,2009,81:1810-1818.
    [33]Thorsen T, Maerkl S J, Quake S R. Microfluidic large-scale integration. Science, 2002,298:580-584.
    [34]Hong J W, Studer V, Hang G, Anderson W F, Quake S R. A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnology,2004,22: 435-439.
    [35]Marcus J S, Anderson W F, Quake S R. Microfluidic single-cell mRNA isolation and analysis. Analytical Chemistry,2006,78:3084-3089.
    [36]Huang B, Wu H K, Bhaya D, Grossman A, Granier S, Kobilka B K, Zare R N. Counting low-copy number proteins in a single cell. Science,2007,315:81-84.
    [37]Toriello N M, Douglas E S, Thaitrong N, Hsiao S C, Francis M B, Bertozzi C R, Mathies R A. Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proceedings of the National Academy of Sciences of the United States of America,2008,105:20173-20178.
    [38]Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters,2001,86: 4163-4166.
    [39]Nisisako T, Torii T, Higuchi T. Droplet formation in a microchannel network. Lab on a Chip,2002,2:24-26.
    [40]Tice J D, Lyon A D, Ismagilov R F. Effects of viscosity on droplet formation and mixing in microfluidic channels. Analytica Chimica Acta,2004,507:73-77.
    [41]Zheng B, Tice J D, Roach L S, Ismagilov R F. A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angewandte Chemie-International Edition,2004,43:2508-2511.
    [42]Anna S L, Bontoux N, Stone H A. Formation of dispersions using "flow focusing" in microchannels. Applied Physics Letters,2003,82:364-366.
    [43]Tan Y C, Cristini V, Lee A P. Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sensors and Actuators B-Chemical,2006,114: 350-356.
    [44]Yobas L, Martens S, Ong W L, Ranganathan N. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab on a Chip,2006, 6:1073-1079.
    [45]Zheng B, Ismagilov R F. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angewandte Chemie-International Edition,2005, 44:2520-2523.
    [46]Li L, Mustafi D, Fu Q, Tereshko V, Chen D L L, Tice J D, Ismagilov R F. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proceedings of the National Academy of Sciences of the United States of America,2006,103:19243-19248.
    [47]Linder V, Sia S K, Whitesides G M. Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices. Analytical Chemistry,2005,77: 64-71.
    [48]Zeng S J, Li B W, Su X O, Qin J H, Lin B C. Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab on a Chip,2009,9:1340-1343.
    [49]Du W B, Sun M, Gu S Q, Zhu Y, Fang Q. Automated Microfluidic Screening Assay Platform Based on Drop Lab. Analytical Chemistry,2010,82:9941-9947.
    [50]Sun M, Fang Q. High-throughput sample introduction for droplet-based screening with an on-chip integrated sampling probe and slotted-vial array. Lab on a Chip,2010,10:2864-2868.
    [51]Tice J D, Song H, Lyon A D, Ismagilov R F. Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir,2003,19:9127-9133.
    [52]Zheng B, Gerdts C J, Ismagilov R F. Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. Current Opinion in Structural Biology, 2005,15:548-555.
    [53]Song H, Li H W, Munson M S, Van Ha T G, Ismagilov R F. On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system. Analytical Chemistry,2006,78: 4839-4849.
    [54]Kohler J M, Henkel T, Grodrian A, Kirner T, Roth M, Martin K, Metze J. Digital reaction technology by micro segmented flow-components, concepts and applications. Chemical Engineering Journal,2004,101:201-216.
    [55]Hung L H, Choi K M, Tseng W Y, Tan Y C, Shea K J, Lee A P. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab on a Chip,2006,6:174-178.
    [56]Tan Y C, Ho Y L, Lee A P. Droplet coalescence by geometrically mediated flow in microfluidic channels. Microfluidics and Nanofluidics,2007,3:495-499.
    [57]Mazutis L, Baret J C, Griffiths A D. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion. Lab on a Chip,2009,9:2665-2672.
    [58]Niu X, Gulati S, Edel J B, deMello A J. Pillar-induced droplet merging in microfluidic circuits. Lab on a Chip,2008,8:1837-1841.
    [59]Priest C, Herminghaus S, Seemann R. Controlled electrocoalescence in microfluidics:Targeting a single lamella. Applied Physics Letters,2006,89:134101.
    [60]Ahn K, Agresti J, Chong H, Marquez M, Weitz D A. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Applied Physics Letters,2006,88:264105.
    [61]Thiam A R, Bremond N, Bibette J. Breaking of an Emulsion under an ac Electric Field. Physical Review Letters,2009,102:188304.
    [62]Link D R, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z D, Cristobal G, Marquez M, Weitz D A. Electric control of droplets in microfluidic devices. Angewandte Chemie-International Edition,2006,45:2556-2560.
    [63]Tan W H, Takeuchi S. Timing controllable electro fusion device for aqueous droplet-based microreactors. Lab on a Chip,2006,6:757-763.
    [64]Frenz L, El Harrak A, Pauly M, Begin-Colin S, Griffiths A D, Baret J C. Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angewandte Chemie-International Edition,2008,47:6817-6820.
    [65]Mazutis L, Araghi A F, Miller O J, Baret J C, Frenz L, Janoshazi A, Taly V, Miller B J, Hutchison J B, Link D, Griffiths A D, Ryckelynck M. Droplet-Based Microfluidic Systems for High-Throughput Single DNA Molecule Isothermal Amplification and Analysis. Analytical Chemistry,2009,81:4813-4821.
    [66]Lorenz R M, Edgar J S, Jeffries G D M, Zhao Y Q, McGloin D, Chiu D T. Vortex-trap-induced fusion of femtoliter-volume aqueous droplets. Analytical Chemistry,2007,79:224-228.
    [67]Lorenz R M, Edgar J S, Jeffries G D M, Chiu D T. Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets. Analytical Chemistry,2006,78:6433-6439.
    [68]Kotz K T, Gu Y, Faris G W. Optically addressed droplet-based protein assay. Journal of the American Chemical Society,2005,127:5736-5737.
    [69]Baroud C N, de Saint Vincent M R, Delville J P. An optical toolbox for total control of droplet microfluidics. Lab on a Chip,2007,7:1029-1033.
    [70]Fidalgo L M, Abell C, Huck W T S. Surface-induced droplet fusion in microfluidic devices. Lab on a Chip,2007,7:984-986.
    [71]Malic L, Brassard D, Veres T, Tabrizian M. Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab on a Chip,2010,10: 418-431.
    [72]Luk V N, Wheeler A R. A Digital Microfluidic Approach to Proteomic Sample Processing. Analytical Chemistry,2009,81:4524-4530.
    [73]Jebrail M J, Wheeler A R. Digital Microfluidic Method for Protein Extraction by Precipitation. Analytical Chemistry,2009,81:330-335.
    [74]Barbulovic-Nad I, Yang H, Park P S, Wheeler A R. Digital microfluidics for cell-based assays. Lab on a Chip,2008,8:519-526.
    [75]Watson M W L, Jebrail M J, Wheeler A R. Multilayer Hybrid Microfluidics:A Digital-to-Channel Interface for Sample Processing and Separations. Analytical Chemistry,2010,82:6680-6686.
    [76]Cho S K, Zhao Y J, Kim C J. Concentration and binary separation of micro particles for droplet-based digital microfluidics. Lab on a Chip,2007,7:490-498.
    [77]Sista R S, Eckhardt A E, Srinivasan V, Pollack M G, Palanki S, Pamula V K. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab on a Chip,2008,8:2188-2196.
    [78]Hua Z S, Rouse J L, Eckhardt A E, Srinivasan V, Pamula V K, Schell W A, Benton J L, Mitchell T G, Pollack M G. Multiplexed Real-Time Polymerase Chain Reaction on a Digital Microfluidic Platform. Analytical Chemistry,2010,82: 2310-2316.
    [79]Fan S K, Hsieh T H, Lin D Y. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting. Lab on a Chip,2009,9:1236-1242.
    [80]Lehmann U, Vandevyver C, Parashar V K, Gijs M A M. Droplet-based DNA purification in a magnetic lab-on-a-chip. Angewandte Chemie-International Edition, 2006,45:3062-3067.
    [81]Pipper J, Inoue M, Ng L F P, Neuzil P, Zhang Y, Novak L. Catching bird flu in a droplet. Nature Medicine,2007,13:1259-1263.
    [82]Pipper J, Zhang Y, Neuzil P, Hsieh T M. Clockwork PCR including sample preparation. Angewandte Chemie-International Edition,2008,47:3900-3904.
    [83]Shikida M, Takayanagi K, Honda H, Ito H, Sato K. Development of an enzymatic reaction device using magnetic bead-cluster handling. Journal of Micromechanics and Microengineering,2006,16:1875-1883.
    [84]Tsuchiya H, Okochi M, Nagao N, Shikida M, Honda H. On-chip polymerase chain reaction microdevice employing a magnetic droplet-manipulation system. Sensors and Actuators B-Chemical,2008,130:583-588.
    [85]Okochi M, Tsuchiya H, Kumazawa F, Shikida M, Honda H. Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system. Journal of Bioscience and Bioengineering,2010,109:193-197.
    [86]Beyssen D, Le Brizoual L, Elmazria O, Alnot P. Microfluidic device based on surface acoustic wave. Sensors and Actuators B-Chemical,2006,118:380-385.
    [87]Langelier S M, Chang D S, Zeitoun R I, Burns M A. Acoustically driven programmable liquid motion using resonance cavities. Proceedings of the National Academy of Sciences of the United States of America,2009,106:12617-12622.
    [88]Guttenberg Z, Muller H, Habermuller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A. Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab on a Chip,2005,5:308-317.
    [89]Wang F, Burns M A. Droplet-based microsystem for multi-step bioreactions. Biomedical Microdevices,2010,12:533-541.
    [90]Lee D H, Hwang H, Park J K. Generation and manipulation of droplets in an optoelectrofluidic device integrated with microfluidic channels. Applied Physics Letters,2009,95:164102.
    [91]He M Y, Edgar J S, Jeffries G D M, Lorenz R M, Shelby J P, Chiu D T. Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets. Analytical Chemistry,2005,77:1539-1544.
    [92]Demirci U, Montesano G Single cell epitaxy by acoustic picolitre droplets. Lab on a Chip,2007,7:1139-1145.
    [93]Demirci U, Montesano G. Cell encapsulating droplet vitrification. Lab on a Chip, 2007,7:1428-1433.
    [94]Sgro A E, Allen P B, Chiu D T. Thermoelectric manipulation of aqueous droplets in microfluidic devices. Analytical Chemistry,2007,79:4845-4851.
    [95]Koster S, Angile F E, Duan H, Agresti J J, Wintner A, Schmitz C, Rowat A C, Merten C A, Pisignano D, Griffiths A D, Weitz D A. Drop-based microfluidic devices for encapsulation of single cells. Lab on a Chip,2008,8:1110-1115.
    [96]Chabert M, Viovy J L. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proceedings of the National Academy of Sciences of the United States of America,2008,105:3191-3196.
    [97]Guo F, Ji X H, Liu K, He R X, Zhao L B, Guo Z X, Liu W, Guo S S, Zhao X Z. Droplet electric separator microfluidic device for cell sorting. Applied Physics Letters, 2010,96:193701.
    [98]Edd J F, Di Carlo D, Humphry K J, Koster S, Irimia D, Weitz D A, Toner M. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on a Chip,2008,8:1262-1264.
    [99]Clausell-Tormos J, Lieber D, Baret J C, El-Harrak A, Miller O J, Frenz L, Blouwolff J, Humphry K J, Koster S, Duan H, Holtze C, Weitz D A, Griffiths A D, Merten C A. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chemistry & Biology, 2008,15:427-437.
    [100]Le Gac S, van den Berg A. Single cells as experimentation units in lab-on-a-chip devices. Trends in Biotechnology,2010,28:55-62.
    [101]Lindstrom S, Andersson-Svahn H. Overview of single-cell analyses: microdevices and applications. Lab on a Chip,2010,10:3363-3372.
    [102]Joensson H N, Samuels M L, Brouzes E R, Medkova M, Uhlen M, Link D R, Andersson-Svahn H. Detection and Analysis of Low-Abundance Cell-Surface Biomarkers Using Enzymatic Amplification in Microfluidic Droplets. Angewandte Chemie-International Edition,2009,48:2518-2521.
    [103]Zhan Y H, Wang J, Bao N, Lu C. Electroporation of Cells in Microfluidic Droplets. Analytical Chemistry,2009,81:2027-2031.
    [104]Shim J U, Olguin L F, Whyte G, Scott D, Babtie A, Abell C, Huck W T S, Hollfelder F. Simultaneous Determination of Gene Expression and Enzymatic Activity in Individual Bacterial Cells in Microdroplet Compartments. Journal of the American Chemical Society,2009,131:15251-15256.
    [105]Kumaresan P, Yang C J, Cronier S A, Blazei R G, Mathies R A. High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Analytical Chemistry,2008,80:3522-3529.
    [106]Zeng Y, Novak R, Shuga J, Smith M T, Mathies R A. High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays. Analytical Chemistry,2010,82:3183-3190.
    [107]Novak R, Zeng Y, Shuga J, Venugopalan G, Fletcher D A, Mathies R A. Single-Cell Multiplex Gene Detection and Sequencing with Microfluidically Generated Agarose Emulsions. Angewandte Chemie-International Edition,2010,49: 1-6.
    [108]Srisa-Art M, Bonzani I C, Williams A, Stevens M M, deMello A J, Edel J B. Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst,2009,134:2239-2245.
    [109]Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, Demello A J, Edel J B. Quantitative detection of protein expression in single cells using droplet microfluidics. Chemical Communications,2007:1218-1220.
    [110]Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison J B, Rothberg J M, Link D R, Perrimon N, Samuels M L. Droplet microfluidic technology for single-cell high-throughput screening. Proceedings of the National Academy of Sciences of the United States of America,2009,106:14195-14200.
    [1]Irish J M, Kotecha N, Nolan G P. Innovation-Mapping normal and cancer cell signalling networks:towards single-cell proteomics. Nature Reviews Cancer,2006,6: 146-155.
    [2]Graf T, Stadtfeld M. Heterogeneity of Embryonic and Adult Stem Cells. Cell Stem Cell,2008,3:480-483.
    [3]Zare R N, Kim S. Microfluidic Platforms for Single-Cell Analysis. Annual Review of Biomedical Engineering, Vol 12,2010,12:187-201.
    [4]Wang Y, Chen Z Z, Li Q L. Microfluidic techniques for dynamic single-cell analysis. Microchimica Acta,2010,168:177-195.
    [5]El-Ali J, Sorger P K, Jensen K F. Cells on chips. Nature,2006,442:403-411.
    [6]Sims C E, Allbritton N L. Analysis of single mammalian cells on-chip. Lab on a Chip,2007,7:423-440.
    [7]Le Gac S, van den Berg A. Single cells as experimentation units in lab-on-a-chip devices. Trends in Biotechnology,2009,28:55-62.
    [8]Toriello N M, Douglas E S, Mathies R A. Microfluidic device for electric field-driven single-cell capture and activation. Analytical Chemistry,2005,77: 6935-6941.
    [9]Taff B M, Voldman J. A scalable addressable positive-dielectrophoretic cell-sorting array. Analytical Chemistry,2005,77:7976-7983.
    [10]Khine M, Lau A, Ionescu-Zanetti C, Seo J, Lee L P. A single cell electroporation chip. Lab on a Chip,2005,5:38-43.
    [11]Valero A, Post J N, van Nieuwkasteele J W, ter Braak P M, Kruijer W, van den Berg A. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. Lab on a Chip,2008,8:62-67.
    [12]Cheng W, Klauke N, Sedgwick H, Smith G L, Cooper J M. Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab on a Chip,2006,6:1424-1431.
    [13]Gao J, Yin X F, Fang Z L. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab on a Chip,2004,4:47-52.
    [14]Yasukawa T, Nagamine K, Horiguchi Y, Shiku H, Koide M, Itayama T, Shiraishi F, Matsue T. Electrophoretic cell manipulation and electrochemical gene-function analysis based on a yeast two-hybrid system in a microfluidic device. Analytical Chemistry,2008,80:3722-3727.
    [15]Di Carlo D, Aghdam N, Lee L P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Analytical Chemistry,2006,78:4925-4930.
    [16]Li X J, Li P C H. Microfluidic selection and retention of a single cardiac myocyte, on-chip dye loading, cell contraction by chemical stimulation, and quantitative fluorescent analysis of intracellular calcium. Analytical Chemistry,2005,77: 4315-4322.
    [17]Wlodkowic D, Faley S, Zagnoni M, Wikswo J P, Cooper J M. Microfluidic Single-Cell Array Cytometry for the Analysis of Tumor Apoptosis. Analytical Chemistry,2009,81:5517-5523.
    [18]Yamamura S, Kishi H, Tokimitsu Y, Kondo S, Honda R, Rao S R, Omori M, Tamiya E, Muraguchi A. Single-cell microarray for analyzing cellular response. Analytical Chemistry,2005,77:8050-8056.
    [19]Skelley A M, Kirak O, Suh H, Jaenisch R, Voldman J. Microfluidic control of cell pairing and fusion. Nature Methods,2009,6:147-152.
    [20]Song H, Chen D L, Ismagilov R F. Reactions in droplets in microflulidic channels. Angewandte Chemie-International Edition,2006,45:7336-7356.
    [21]Teh S Y, Lin R, Hung L H, Lee A P. Droplet microfluidics. Lab on a Chip,2008, 8:198-220.
    [22]Chiu D T, Lorenz R M, Jeffries G D M. Droplets for Ultrasmall-Volume Analysis. Analytical Chemistry,2009,81:5111-5118.
    [23]Stone Z B, Stone H A. Imaging and quantifying mixing in a model droplet micromixer. Physics of Fluids,2005,17:063103.
    [24]Kinoshita H, Kaneda S, Fujii T, Oshima M. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab on a Chip,2007,7:338-346.
    [25]Zheng B, Roach L S, Ismagilov R F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. Journal of the American Chemical Society,2003,125:11170-11171.
    [26]Zheng B, Ismagilov R F. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angewandte Chemie-International Edition,2005, 44:2520-2523.
    [27]He M Y, Edgar J S, Jeffries G D M, Lorenz R M, Shelby J P, Chiu D T. Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets. Analytical Chemistry,2005,77:1539-1544.
    [28]Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, Demello A J, Edel J B. Quantitative detection of protein expression in single cells using droplet microfluidics. Chemical Communications,2007:1218-1220.
    [29]Joensson H N, Samuels M L, Brouzes E R, Medkova M, Uhlen M, Link D R, Andersson-Svahn H. Detection and Analysis of Low-Abundance Cell-Surface Biomarkers Using Enzymatic Amplification in Microfluidic Droplets. Angewandte Chemie-International Edition,2009,48:2518-2521.
    [30]Shim J U, Olguin L F, Whyte G, Scott D, Babtie A, Abell C, Huck W T S, Hollfelder F. Simultaneous Determination of Gene Expression and Enzymatic Activity in Individual Bacterial Cells in Microdroplet Compartments. Journal of the American Chemical Society,2009,131:15251-15256.
    [31]Zhan Y H, Wang J, Bao N, Lu C. Electroporation of Cells in Microfluidic Droplets. Analytical Chemistry,2009,81:2027-2031.
    [32]Mazutis L, Araghi A F, Miller O J, Baret J C, Frenz L, Janoshazi A, Taly V, Miller B J, Hutchison J B, Link D, Griffiths A D, Ryckelynck M. Droplet-Based Microfluidic Systems for High-Throughput Single DNA Molecule Isothermal Amplification and Analysis. Analytical Chemistry,2009,81:4813-4821.
    [33]Kim H, Vishniakou S, Faris G W. Petri dish PCR:laser-heated reactions in nanoliter droplet arrays. Lab on a Chip,2009,9:1230-1235.
    [34]Chan E M, Alivisatos A P, Mathies R A. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. Journal of the American Chemical Society, 2005,127:13854-13861.
    [35]Ota S, Yoshizawa S, Takeuchi S. Microfluidic Formation of Monodisperse, Cell-Sized, and Unilamellar Vesicles. Angewandte Chemie-International Edition, 2009,48:6533-6537.
    [36]Kumaresan P, Yang C J, Cronier S A, Blazei R G, Mathies R A. High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Analytical Chemistry,2008,80:3522-3529.
    [37]Zeng Y, Novak R, Shuga J, Smith M T, Mathies R A. High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays. Analytical Chemistry,2010,82:3183-3190.
    [38]Du W B, Sun M, Gu S Q, Zhu Y, Fang Q. Automated Microfluidic Screening Assay Platform Based on DropLab. Analytical Chemistry,2010,82:9941-9947.
    [39]Clausell-Tormos J, Lieber D, Baret J C, E1-Harrak A, Miller O J, Frenz L, Blouwolff J, Humphry K J, Koster S, Duan H, Holtze C, Weitz D A, Griffiths A D, Merten C A. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chemistry & Biology,2008,15: 427-437.
    [40]Chabert M, Viovy J L. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proceedings of the National Academy of Sciences of the United States of America,2008,105:3191-3196.
    [41]Koster S, Angile F E, Duan H, Agresti J J, Wintner A, Schmitz C, Rowat A C, Merten C A, Pisignano D, Griffiths A D, Weitz D A. Drop-based microfluidic devices for encapsulation of single cells. Lab on a Chip,2008,8:1110-1115.
    [42]Mortensen N A, Okkels F, Bruus H. Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels. Phys. Rev. E,2005, 71:057301.
    [43]Ocvirk G, Salimi-Moosavi H, Szarka R J, Arriaga E A, Andersson P E, Smith R, Dovichi N J, Harrison D J. beta-galactosidase assays of single-cell lysates on a microchip:A complementary method for enzymatic analysis of single cells. Proceedings of the IEEE,2004,92:115-125.
    [44]Frenz L, El Harrak A, Pauly M, Begin-Colin S, Griffiths A D, Baret J C. Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angewandte Chemie-International Edition,2008,47:6817-6820.
    [1]Millman J R, Bhatt K H, Prevo B G, Velev O D. Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nature Materials,2005,4: 98-102.
    [2]Kumaresan P, Yang C J, Cronier S A, Blazei R G, Mathies R A. High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Analytical Chemistry,2008,80:3522-3529.
    [3]Zheng B, Roach L S, Ismagilov R F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. Journal of the American Chemical Society,2003,125:11170-11171.
    [4]Gerdts C J, Sharoyan D E, Ismagilov R F. A synthetic reaction network:Chemical amplification using nonequilibrium autocatalytic reactions coupled in time. Journal of the American Chemical Society,2004,126:6327-6331.
    [5]Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, Demello A J, Edel J B. Quantitative detection of protein expression in single cells using droplet microfluidics. Chemical Communications,2007:1218-1220.
    [6]Huebner A, Olguin L F, Bratton D, Whyte G, Huck W T S, de Mello A J, Edel J B, Abell C, Hollfelder F. Development of quantitative cell-based enzyme assays in microdroplets. Analytical Chemistry,2008,80:3890-3896.
    [7]Clausell-Tormos J, Lieber D, Baret J C, El-Harrak A, Miller O J, Frenz L, Blouwolff J, Humphry K J, Koster S, Duan H, Holtze C, Weitz D A, Griffiths A D, Merten C A. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chemistry & Biology,2008,15: 427-437.
    [8]Joensson H N, Samuels M L, Brouzes E R, Medkova M, Uhlen M, Link D R, Andersson-Svahn H. Detection and Analysis of Low-Abundance Cell-Surface Biomarkers Using Enzymatic Amplification in Microfluidic Droplets. Angewandte Chemie-International Edition,2009,48:2518-2521.
    [9]Chabert M, Dorfman K D, Viovy J L. Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis,2005,26:3706-3715.
    [10]Tan W H, Takeuchi S. Timing controllable electrofusion device for aqueous droplet-based microreactors. Lab on a Chip,2006,6:757-763.
    [11]Link D R, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z D, Cristobal G, Marquez M, Weitz D A. Electric control of droplets in microfluidic devices. Angewandte Chemie-International Edition,2006,45:2556-2560.
    [12]Frenz L, El Harrak A, Pauly M, Begin-Colin S, Griffiths A D, Baret J C. Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angewandte Chemie-International Edition,2008,47:6817-6820.
    [13]Mazutis L, Araghi A F, Miller O J, Baret J C, Frenz L, Janoshazi A, Taly V, Miller B J, Hutchison J B, Link D, Griffiths A D, Ryckelynck M. Droplet-Based Microfluidic Systems for High-Throughput Single DNA Molecule Isothermal Amplification and Analysis. Analytical Chemistry,2009,81:4813-4821.
    [14]Kotz K T, Gu Y, Faris G W. Optically addressed droplet-based protein assay. Journal of the American Chemical Society,2005,127:5736-5737.
    [15]Lorenz R M, Edgar J S, Jeffries G D M, Zhao Y Q, McGloin D, Chiu D T. Vortex-trap-induced fusion of femtoliter-volume aqueous droplets. Analytical Chemistry,2007,79:224-228.
    [16]Baroud C N, de Saint Vincent M R, Delville J P. An optical toolbox for total control of droplet microfluidics. Lab on a Chip,2007,7:1029-1033.
    [17]Lorenz R M, Edgar J S, Jeffries G D M, Chiu D T. Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets. Analytical Chemistry,2006,78:6433-6439.
    [18]Christopher G F, Bergstein J, End N B, Poon M, Nguyen C, Anna S L. Coalescence and splitting of confined droplets at microfluidic junctions. Lab on a Chip,2009,9:1102-1109.
    [19]Hung L H, Choi K M, Tseng W Y, Tan Y C, Shea K J, Lee A P. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab on a Chip,2006,6:174-178.
    [20]Niu X, Gulati S, Edel J B, deMello A J. Pillar-induced droplet merging in microfluidic circuits. Lab on a Chip,2008,8:1837-1841.
    [21]Wang W, Yang C, Li C M. On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab on a Chip,2009,9:1504-1506.
    [22]Koster S, Angile F E, Duan H, Agresti J J, Wintner A, Schmitz C, Rowat A C, Merten C A, Pisignano D, Griffiths A D, Weitz D A. Drop-based microfluidic devices for encapsulation of single cells. Lab on a Chip,2008,8:1110-1115.
    [23]Shim J U, Olguin L F, Whyte G, Scott D, Babtie A, Abell C, Huck W T S, Hollfelder F. Simultaneous Determination of Gene Expression and Enzymatic Activity in Individual Bacterial Cells in Microdroplet Compartments. Journal of the American Chemical Society,2009,131:15251-15256.
    [24]Zeng Y, Novak R, Shuga J, Smith M T, Mathies R A. High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays. Analytical Chemistry,2010,82:3183-3190.
    [25]Srisa-Art M, Bonzani I C, Williams A, Stevens M M, deMello A J, Edel J B. Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst,2009,134:2239-2245.
    [26]Zhan Y H, Wang J, Bao N, Lu C. Electroporation of Cells in Microfluidic Droplets. Analytical Chemistry,2009,81:2027-2031. [27] Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison J B, Rothberg J M, Link D R, Perrimon N, Samuels M L. Droplet microfluidic technology for single-cell high-throughput screening. Proceedings of the National Academy of Sciences of the United States of America,2009,106:14195-14200.
    [28]Fairbrother F, Stubbs A E. Studies in electro-endosmosis Part VI The "bubble-tube" method of measurement. Journal of the Chemical Society,1935: 527-529.
    [29]Martinez M J, Udell K S. Axisymmetric Creeping Motion of Drops through Circular Tubes. Journal of Fluid Mechanics,1990,210:565-591.
    [30]Urbant P, Leshansky A, Halupovich Y. On the forced convective heat transport in a droplet-laden flow in microchannels. Microfluidics and Nanofluidics,2008,4: 533-542.
    [31]Concus P. On Liquid Film Remaining in a Draining Circular Cylindrical Vessel. Journal of Physical Chemistry,1970,74:1818-1819.
    [32]Kashid M N, Gerlach I, Goetz S, Franzke J, Acker J F, Platte F, Agar D W, Turek S. Internal circulation within the liquid slugs of a liquid-liquid slug-flow capillary microreactor. Industrial & Engineering Chemistry Research,2005,44:5003-5010.
    [33]Kashid M N, Agar D W. Hydrodynamics of liquid-liquid slug flow capillary microreactor:Flow regimes, slug size and pressure drop. Chemical Engineering Journal,2007,131:1-13.
    [34]Ahmad W R, DeJesus J M, Kawaji M. Falling film hydrodynamics in slug flow. Chemical Engineering Science,1998,53:123-130.
    [35]Bico J, Quere D. Liquid trains in a tube. Europhysics Letters,2000,51:546-550.
    [1]El-Ali J, Sorger P K, Jensen K F. Cells on chips. Nature,2006,442:403-411.
    [2]Fair R B. Digital microfluidics:is a true lab-on-a-chip possible? Microfluidics and Nanofluidics,2007,3:245-281.
    [3]Barbulovic-Nad I, Yang H, Park P S, Wheeler A R. Digital microfluidics for cell-based assays. Lab on a Chip,2008,8:519-526.
    [4]Malic L, Brassard D, Veres T, Tabrizian M. Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab on a Chip,2009,10: 418-431.
    [5]Haeberle S, Zengerle R. Microfluidic platforms for lab-on-a-chip applications. Lab on a Chip,2007,7:1094-1110.
    [6]Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms:requirements, characteristics and applications. Chemical Society Reviews,2010,39:1153-1182.
    [7]Jensen E C, Bhat B P, Mathies R A. A digital microfluidic platform for the automation of quantitative biomolecular assays. Lab on a Chip,2009,10:685-691.
    [8]Thorsen T, Maerkl S J, Quake S R. Microfluidic large-scale integration. Science, 2002,298:580-584.
    [9]Melin J, Quake S R. Microfluidic large-scale integration:The evolution of design rules for biological automation. Annual Review of Biophysics and Biomolecular Structure,2007,36:213-231.
    [10]Tanaka K, Motomatsu S, Koyama K, Tanaka S I, Fukase K. Large-scale synthesis of immunoactivating natural product, pristane, by continuous microfluidic dehydration as the key step. Organic Letters,2007,9:299-302.
    [11]Wang Y, Lin W-Y, Liu K, Lin R J, Selke M, Kolb H C, Zhang N, Zhao X-Z, Phelps M E, Shen C K F, Faull K F, Tseng H-R. An integrated microfluidic device for large-scale in situ click chemistry screening. Lab on a Chip,2009,9,2281-2285.
    [12]Zeng Y, He M, Harrison D J. Microfluidic self-patterning of large-scale crystalline nanoarrays for high-throughput continuous DNA fractionation. Angewandte Chemie-International Edition,2008,47:6388-6391.
    [13]Diercks A H, Ozinsky A, Hansen C L, Spotts J M, Rodriguez D J, Aderem A. A microfluidic device for multiplexed protein detection in nano-liter volumes. Analytical Biochemistry,2009,386:30-35.
    [14]Ridgeway W K, Seitaridou E, Phillips R, Williamson J R. RNA-protein binding kinetics in an automated microfluidic reactor. Nucleic Acids Research,2009,37.
    [15]Li G, Chen Q, Li J J, Hu X J, Zhao J L. A Compact Disk-Like Centrifugal Microfluidic System for High-Throughput Nanoliter-Scale Protein Crystallization Screening. Analytical Chemistry,2010,82:4362-4369.
    [16]Chiu D T, Lorenz R M, Jeffries G D M. Droplets for Ultrasmall-Volume Analysis. Analytical Chemistry,2009,81:5111-5118.
    [17]Song H, Chen D L, Ismagilov R F. Reactions in droplets in microflulidic channels. Angewandte Chemie-International Edition,2006,45:7336-7356.
    [18]Teh S Y, Lin R, Hung L H, Lee A P. Droplet microfluidics. Lab on a Chip,2008, 8:198-220.
    [19]Moon H, Wheeler A R, Garrell R L, Loo J A, Kim C J. An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab on a Chip,2006,6:1213-1219.
    [20]Srinivasan V, Pamula V K, Fair R B. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip, 2004,4:310-315.
    [21]Liu Y J, Yao D J, Lin H C, Chang W Y, Chang H Y. DNA ligation of ultramicro volume using an EWOD microfluidic system with coplanar electrodes. Journal of Micromechanics and Microengineering,2008,18,045017.
    [22]Hua Z S, Rouse J L, Eckhardt A E, Srinivasan V, Pamula V K, Schell W A, Benton J L, Mitchell T G, Pollack M G. Multiplexed Real-Time Polymerase Chain Reaction on a Digital Microfluidic Platform. Analytical Chemistry,2010,82: 2310-2316.
    [23]Barbulovic-Nad I, Au S H, Wheeler A R. A microfluidic platform for complete mammalian cell culture. Lab on a Chip,2010,10:1536-1542.
    [24]Watson M W L, Jebrail M J, Wheeler A R. Multilayer Hybrid Microfluidics:A Digital-to-Channel Interface for Sample Processing and Separations. Analytical Chemistry,2010,82:6680-6686.
    [25]Luk V N, Wheeler A R. A Digital Microfluidic Approach to Proteomic Sample Processing. Analytical Chemistry,2009,81:4524-4530.
    [26]Velev O D, Prevo B G, Bhatt K H. On-chip manipulation of free droplets. Nature, 2003,426:515-516.
    [27]Millman J R, Bhatt K H, Prevo B G, Velev O D. Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nature Materials,2005,4: 98-102.
    [28]Hunt T P, Issadore D, Westervelt R M. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Lab on a Chip, 2008,8:81-87.
    [29]Guttenberg Z, Muller H, Habermuller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A. Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab on a Chip,2005,5:308-317.
    [30]Beyssen D, Le Brizoual L, Elmazria O, Alnot P. Microfluidic device based on surface acoustic wave. Sensors and Actuators B-Chemical,2006,118:380-385.
    [31]Pipper J, Zhang Y, Neuzil P, Hsieh T M. Clockwork PCR including sample preparation. Angewandte Chemie-International Edition,2008,47:3900-3904.
    [32]Lindsay S, Vazquez T, Egatz-Gomez A, Loyprasert S, Garcia A A, Wang J. Discrete microfluidics with electrochemical detection. Analyst,2007,132:412-416.
    [33]Pipper J, Inoue M, Ng L F P, Neuzil P, Zhang Y, Novak L. Catching bird flu in a droplet. Nature Medicine,2007,13:1259-1263.
    [34]Ohashi T, Kuyama H, Hanafusa N, Togawa Y. A simple device using magnetic transportation for droplet-based PCR. Biomedical Microdevices,2007,9:695-702.
    [35]Tsuchiya H, Okochi M, Nagao N, Shikida M, Honda H. On-chip polymerase chain reaction microdevice employing. a magnetic droplet-manipulation system. Sensors and Actuators B-Chemical,2008,130:583-588.
    [36]Lehmann U, de Courten D, Vandevyver C, Parashar V K, Gijs M A M. On-chip antibody handling and colorimetric detection in a magnetic droplet manipulation system. Microelectronic Engineering,2007,84:1669-1672.
    [37]Lehmann U, Vandevyver C, Parashar V K, Gijs M A M. Droplet-based DNA purification in a magnetic lab-on-a-chip. Angewandte Chemie-International Edition, 2006,45:3062-3067.
    [38]Cho S K, Moon H J, Kim C J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems,2003,12:70-80.
    [39]Pollack M G, Shenderov A D, Fair R B. Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip,2002,2:96-101.
    [40]Wheeler A R. Chemistry-Putting electro wetting to work. Science,2008,322: 539-540.
    [41]Chatterjee D, Hetayothin B, Wheeler A R, King D J, Garrell R L. Droplet-based microfluidics with nonaqueous solvents and solutions. Lab on a Chip,2006,6: 199-206.
    [42]Long Z C, Shetty A M, Solomon M J, Larson R G Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface. Lab on a Chip, 2009,9:1567-1575.
    [43]Jun B H, Noh M S, Kim G, Kang H, Kim J H, Chung W J, Kim M S, Kim Y K, Cho M H, Jeong D H, Lee Y S. Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy. Analytical Biochemistry, 2009,391:24-30.
    [44]Hong J W, Studer V, Hang G, Anderson W F, Quake S R. A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnology,2004,22: 435-439.
    [45]Sista R S, Eckhardt A E, Srinivasan V, Pollack M G, Palanki S, Pamula V K. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab on a Chip,2008,8:2188-2196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700