用户名: 密码: 验证码:
微流控液相色谱分析系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控学是在微米尺度通道中操纵微量流体的科学和技术。其目标是在只有几个平方厘米甚至更小的微流控芯片上集成化学生物分析所需要的样品预处理、反应、分离、检测等基本操作单元,最终建立微全分析系统。高分辨的化学分析技术在化学和生物医学分析中发挥着非常重要的作用,发展适用于微流控系统的液相色谱系统具有重要意义。
     第一章首先对基于微流控芯片的液相色谱系统的发展和现状进行综述。对其系统所使用的进样方式和色谱柱材料进行总结。同时,也对高分辨分离系统在多相微流控中的应用进展进行了介绍。
     第二章发展了一种基于微流控芯片的无阀液相色谱系统。该系统由加工了色谱分离柱和平衡柱的微流控芯片、注射泵和激光诱导荧光检测器组成。仅需通过切换注射泵的开关状态即可实现无阀的纳升级门式进样。在样品和分离通道中同时加工等长的整体柱,分别作为色谱分离柱和压力平衡柱。.平衡柱通过平衡充样通道和分离通道中的背压简化了门式进样过程。在门式进样模式下,可以实现进样量的范围为0.4-2.4nL。我们将该系统初步应用于荧光标记胺类分子的分离,表明了该系统在液相色谱分离中的可行性。该系统具有结构简单、操作方便、进样体积易于改变和柱容量大的优点。
     第三章发展了一种基于微流控液滴技术的液相色谱-质谱分析系统,为纳升级液滴中复杂组分的分析提供了有效的方法。发展了一种可灵活可控地进行液滴精确寻址的毛细管液相色谱和液滴阵列芯片的接口,实现了包括纳升级液滴内进行酶抑制反应、4nL的样品引入、毛细管液相色谱的快速分离、电喷雾质谱的非标记检测在内的多步操作。该系统初步应用于液滴中细胞色素P450(CYP1A2)的抑制剂的筛选和IC50值的测定。每次液滴测定的样品消耗量为100nL。与常规384孔板系统相比,样品消耗量降低了10-100倍。
Microfluidics is the science and technology that manipulate small (nL~fL scale) amounts of fluids, using channels with dimensions of tens to hundreds of micrometer. Its objective is to integrate all of the units in chemical and biological analysis, including sample preparation, reaction, separation, detection, on a microfluidic chip to build the micro total analysis system. High-resolution microanalytical technique plays a very important role in chemical and biological analysis. Currently, there is a growing demand for the development of liquid chromatography systems for microfluidic systems.
     In Chapter1, the applications of microfluidic chip-based liquid chromatography systems, as well as sample injection techniques and chromatography columns are reviewed. The recent progress in high-resolution separation approaches for droplet-based microfluidic systems is also reviewed.
     In Chapter2, a microfluidic chip-based liquid chromatography system with valveless gated sample injection method and monolithic columns was developed. The valveless LC system consisted of a microchip with a separation column and a balance column, two syringe pumps and a laser induced fluorescence detector. Two monolithic columns with the same length were fabricated in the sample and separation channel served as pressure-balance column and LC separation column, respectively. Nanoliter-scale sample injection was achieved by simply switching the ON and OFF states of the syringe pumps under gated injection mode, without the need of any mechanical valve. The balance column facilitated the gated injection process by balancing the back pressure in the sample channel with that in the separation channel. Under the gated injection mode, the sample injection volumes could be varied in the range of0.4-2.4nL. The present system was applied to the fast separation of two fluorescence-labeled amines.The advantages of the present system include simple system structure, ease of operation, convenience for varying injection volume, and high sample loading capacity.
     In Chapter3, the combination of droplet-based microfluidics with liquid chromatography-mass spectrometry was achieved, for providing a fast separation and high-information-content detection method for analysis of nanoliter-scale droplets with complex compositions. A novel interface method for capillary LC and droplet array chip with significant flexibility in accurate addressing and sampling of interesting droplets on demand was developed. With this method, multistep operations including parallel enzyme inhibition reactions in nanoliter droplets,4-nL sample injection, fast separation with capillary LC, and label-free detection with ESI-MS were successfully realized. The present system was further applied to the screening for inhibitors of cytochrome P450(CYPI A2) and the measurement of IC50value of the inhibitor. The sample consumption for each droplet assay was100nL, which is reduced10to100times compared with conventional384multi-well plate systems usually used in high-throughput drug screening.
引文
[1]Whitesides G M. The origins and the future of microfluidics. Nature,2006,442: 368-373.
    [2]方肇伦等编著.微流控分析芯片.科学出版社,北京,2003.
    [3]Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H, Sato K. Design of an open-tubular column liquid chromatograph using silicon chip technology. Sens. Actuators, B,1990,1:249-255.
    [4]Huh D, Matthews B D, Mammoto A, Montoya-Zavala M, Hsin H Y, Ingber D E. Reconstituting organ-level lung functions on a chip. Science,2010,328: 1662-1668.
    [5]Khetani S R, Bhatia S N. Microscale culture of human liver cells for drug development. Nat. Biotechnol.,2008,26:120-126.
    [6]Zheng B, Ismagilov R F. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew. Chem. Int. Ed.,2005,44: 2520-2523.
    [7]Li L, Mustafi D, Fu Q, Tereshko V, Chen D L L, Tice J D, Ismagilov R F. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA,2006,103:19243-19248.
    [8]Lombardi D, Dittrich P S. Advances in microfluidics for drug discovery. Expert Opin. Drug Discov.,2010,5:1081-1094.
    [9]Kim J, Taylor D, Agrawal N, Wang H, Kim H, Han A, Rege K, Jayaraman A. A programmable microfluidic cell array for combinatorial drug screening. Lab Chip, 2012,12:1813-1822.
    [10]Huber D L, Manginell R P, Samara M A, Kim B I, Bunker B C. Programmed adsorption and release of proteins in a microfluidic device. Science,2003,301: 352-354.
    [11]Chao T-C, Hansmeier N. Micro fluidic devices for high-throughput proteome analyses. Proteomics,2013,13:467-479.
    [12]Zhu Y, Chen H, Du G-S, Fang Q. Microfluidic droplet-array liquid-liquid chromatography based on droplet trapping technique. Lab Chip,2012,12: 4350-4354.
    [13]Yin N F, Killeen K, Brennen R, Sobek D, Werlich M, van de Goor T V. Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal. Chem.,2005,77:527-533.
    [14]Borowsky J F, Giordano B C, Lu Q, Terray A, Collins G E. Electroosmotic flow-based pump for liquid chromatography on a planar microchip. Anal. Chem., 2008,80:8287-8292.
    [15]Fuentes H V, Woolley A T. Electrically actuated, pressure-driven liquid chromatography separations in microfabricated devices. Lab Chip,2007,7: 1524-1531.
    [16]Reichmuth D S, Shepodd T J, Kirby B J. Microchip HPLC of peptides and proteins. Anal. Chem.,2005,77:2997-3000.
    [17]Link A J, Eng J, Schieltz D M, Carmack E, Mize G J, Morris D R, Garvik B M, Yates J R. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol.,1999,17:676-682.
    [18]王新珏,祝莹,方群.基于微流控芯片的色谱技术的研究进展及其应用.色谱,2011,29:99-104.
    [19]Faure K. Liquid chromatography on chip. Electrophoresis,2010,31:2499-2511.
    [20]He Q H, Fang Q, Du W B, Fang Z L. Fabrication of a monolithic sampling probe system for automated and continuous sample introduction in microchip-based CE. Electrophoresis,2007,28:2912-2919.
    [21]Harrison D J, Manz A, Fan Z H, Ludi H, Widmer H M. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem., 1992,64:1926-1932.
    [22]Jacobson S C, Koutny L B, Hergenroder R, Moore A W, Ramsey J M. Microchip capillary electrophoresis with an integrated postcolumn reactor. Anal. Chem., 1994,66:3472-3476.
    [23]Wang M, Roman G T, Perry M L, Kennedy R T. Microfluidic chip for high efficiency electrophoretic analysis of segmented flow from a microdialysis probe and in vivo chemical monitoring. Anal. Chem.,2009,81:9072-9078.
    [24]Felhofer J L, Blanes L, Garcia C D. Recent developments in instrumentation for capillary electrophoresis and microchip-capillary electrophoresis. Electrophoresis, 2010,31:2469-2486.
    [25]McGuffin V L, Novotny M. Nanoliter injection system for microcolumn liquid chromatography. Anal. Chem.,1983,55:580-583.
    [26]Chervet J P, Ursem M, Salzmann J B. Instrumental requirements for nanoscale liquid chromatography. Anal. Chem.,1996,68:1507-1512.
    [27]Vissers J P C, Claessens H A, Cramers C A. Microcolumn liquid chromatography: Instrumentation, detection and applications. J. Chromatogr. A,1997,779:1-28.
    [28]Vissers J P C. Recent developments in microcolumn liquid chromatography. J. Chromatogr. A,1999,856:117-143.
    [29]Gluckman J C, Novotny M, Sources of extracolumn band-broadening in microcolumn liquid chromatography. Journal of Chromatography Library,1985, 30:57-72.
    [30]Ericson C, Holm J, Ericson T, Hjerten S. Electroosmosis- and pressure-driven chromatography in chips using continuous beds. Anal. Chem.,2000,72:81-87.
    [31]Ishida A, Natsume M, Kamidate T. Microchip reversed-phase liquid chromatography with packed column and electrochemical flow cell using polystyrene/poly(dimethylsiloxane). J. Chromatogr. A,2008,1213:209-217.
    [32]Yang X, Jenkins G, Franzke J, Manz A. Shear-driven pumping and Fourier transform detection for on chip circular chromatography applications. Lab Chip, 2005,5:764-771.
    [33]Bai X X, Lee H J, Rossier J S, Reymond F, Schafer H, Wossner M, Girault H H. Pressure pinched injection of nanolitre volumes in planar micro-analytical devices. Lab Chip,2002,2:45-49.
    [34]Harrison D J, Fluri K, Seiler K, Fan Z H, Effenhauser C S, Manz A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science,1993,261:895-897.
    [35]Chmela E, Blom M T, Gardeniers J G E, van den Berg A, Tijssen R. A pressure driven injection system for an ultra-flat chromatographic microchannel. Lab Chip, 2002,2:235-241.
    [36]Ishida A, Yoshikawa T, Natsume M, Kamidate T. Reversed-phase liquid chromatography on a microchip with sample injector and monolithic silica column. J. Chromatogr. A,2006,1132:90-98.
    [37]Allen P B, Doepker B R, Chiu D T. Fourier transform capillary electrophoresis with Laminar-Flow gated pressure injection. Anal. Chem.,2007,79:6807-6815.
    [38]Huang Y Z, Du W B, Pan J Z, Fang Q. Microfluidic chip-based valveless flow injection analysis system with gravity-driven flows. Analyst,2008,133: 1237-1241.
    [39]Vahey P G, Smith S A, Costin C D, Xia Y N, Brodsky A, Burgess L W, Synovec R E. Toward a fully integrated positive-pressure driven microfabricated liquid analyzer. Anal. Chem.,2002,74:177-184.
    [40]Schlund M, Gilbert S E, Schnydrig S, Renaud P. Continuous sampling and analysis by on-chip liquid/solid chromatography. Sens. Actuators, B,2007,123: 1133-1141.
    [41]Fortier M H, Bonneil E, Goodley P, Thibault P. Integrated microfluidic device for mass spectrometry-based proteomics and its application to biomarker discovery programs. Anal. Chem.,2005,77:1631-1640.
    [42]Reichmuth D S, Shepodd T J, Kirby B J. On-chip high-pressure picoliter injector for pressure-driven flow through porous media. Anal. Chem.,2004,76: 5063-5068.
    [43]Rice C L, Whitehea.R. Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem.,1965,69:4017-4024.
    [44]Dasgupta P K, Liu S. Electroosmosis:a reliable fluid propulsion system for flow injection analysis. Anal. Chem.,1994,66:1792-1798.
    [45]Oleschuk R D, Shultz-Lockyear L L, Ning Y B, Harrison D J. Trapping of bead-based reagents within microfluidic systems:On-chip solid-phase extraction and electrochromatography. Anal. Chem.,2000,72:585-590.
    [46]Chen L X, Ma J P, Tan F, Guan Y F. Generating high-pressure sub-microliter flow rate in packed microchannel by electroosmotic force:potential application in microfluidic systems. Sens. Actuators, B,2003,88:260-265.
    [47]Zeng S L, Chen C H, Mikkelsen J C, Santiago J G. Fabrication and characterization of electroosmotic micropumps. Sens. Actuators, B,2001,79: 107-114.
    [48]Lazar I M, Karger B L. Multiple open-channel electroosmotic pumping system for microfluidic sample handling. Anal. Chem.,2002,74:6259-6268.
    [49]Lazar I M, Trisiripisal P, Sarvaiya H A. Microfluidic liquid chromatography system for proteomic applications and biomarker screening. Anal. Chem.,2006, 78:5513-5524.
    [50]Tripp J A, Svec F, Frechet J M J, Zeng S L, Mikkelsen J C, Santiago J G. High-pressure electroosmotic pumps based on porous polymer monoliths. Sens. Actuators, B,2004,99:66-73.
    [51]Brask A, Kutter J P, Bruus H. Long-term stable electroosmotic pump with ion exchange membranes. Lab Chip,2005,5:730-738.
    [52]Evans C E, Noble R D, Koval C A. A nonmechanical, membrane-based liquid pressurization system. Ind. Eng. Chem. Res.,2006,45:472-475.
    [53]Xie J, Shih J, He Q, Pang C L, Tai Y C, Miao Y, Lee T D, Ieee, An integrated LC-ESI chip with electrochemical-based gradient generation.17th Ieee International Conference on Micro Electro Mechanical Systems,2004,334-337.
    [54]Xie J, Miao Y N, Shih J, Tai Y C, Lee T D. Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures. Anal. Chem.,2005,77:6947-6953.
    [55]Murrihy J P, Breadmore M C, Tan A M, McEnery M, Alderman J, O'Mathuna C, O'Neill A P, O'Brien P, Advoldvic N, Haddad P R, Glennon J D. Ion chromatography on-chip. J. Chromatogr. A,2001,924:233-238.
    [56]Jemere A B, Oleschuk R D, Ouchen F, Fajuyigbe F, Harrison D J. An integrated solid-phase extraction system for sub-picomolar detection. Electrophoresis,2002, 23:3537-3544.
    [57]Jacobson S C, Hergenroder R, Koutny L B, Ramsey J M. Open-channel electrochromatography on a microchip. Anal. Chem.,1994,66:2369-2373.
    [58]Gottschlich N, Jacobson S C, Culbertson C T, Ramsey J M. Two-dimensional electrochromatography/capillary electrophoresis on a microchip. Anal. Chem., 2001,73:2669-2674.
    [59]Desmet G, Vervoort N, Clicq D, Baron G V. Experimental demonstration of the possibility to perform shear-driven chromatographic separations in micro-channels. J. Chromatogr. A,2001,924:111-122.
    [60]Li H F, Zeng H L, Chen Z F, Lin J M. Chip-based enantioselective open-tubular capillary electrochromatography using bovine serum albumin-gold nanoparticle conjugates as the stationary phase. Electrophoresis,2009,30:1022-1029.
    [61]Eijkel J. Chip-based HPLC:the quest for the perfect column. Lab Chip,2007,7: 815-817.
    [62]He B, Tait N, Regnier F. Fabrication of nanocolumns for liquid chromatography. Anal. Chem.,1998,70:3790-3797.
    [63]He B, Regnier F. Microfabricated liquid chromatography columns based on collocated monolith support structures. J. Pharm. Biomed. Anal.,1998,17: 925-932.
    [64]Slentz B E, Penner N A, Lugowska E, Regnier F. Nanoliter capillary electrochromatography columns based on collocated monolithic support structures molded in poly(dimethyl siloxane). Electrophoresis,2001,22: 3736-3743.
    [65]Slentz B E, Penner N A, Regnier F E. Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. J. Chromatogr. A,2002,948:225-233.
    [66]Gustafsson O, Mogensen K B, Kutter J P. Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography. Electrophoresis,2008,29:3145-3152.
    [67]Illa X, De Malsche W, Bomer J, Gardeniers H, Eijkel J, Morante J R, Romano-Rodriguez A, Desmet G. An array of ordered pillars with retentive properties for pressure-driven liquid chromatography fabricated directly from an unmodified cyclo olefin polymer. Lab Chip,2009,9:1511-1516.
    [68]Fonverne A, Ricoul F, Demesmay C, Delattre C, Fournier A, Dijon J, Vinet E. In situ synthesized carbon nanotubes as a new nanostructured stationary phase for microfabricated liquid chromatographic column. Sens. Actuators, B,2008,129: 510-517.
    [69]Goswami S, Bajwa N, Asuri P, Ci L J, Ajayan P M, Cramer S M. Aligned carbon nanotube stationary phases for electrochromatographic chip separations. Chromatographia,2009,69:473-480.
    [70]Wu R G, Yang C S, Wang P C, Tseng F G. Nanostructured pillars based on vertically aligned carbon nanotubes as the stationary phase in micro-CEC. Electrophoresis,2009,30:2025-2031.
    [71]Jemere A B, Oleschuk R D, Harrison D J. Microchip-based capillary electrochromatography using packed beds. Electrophoresis,2003,24:3018-3025.
    [72]Yin H F, Killeen K. The fundamental aspects and applications of Agilent HPLC-Chip. J. Sep. Sci.,2007,30:1427-1434.
    [73]Ehlert S, Kraiczek K, Mora J A, Dittmann M, Rozing G P, Tallarek U. Separation efficiency of particle-packed HPLC microchips. Anal. Chem.,2008,80: 5945-5950.
    [74]Ceriotti L, de Rooij N F, Verpoorte E. An integrated fritless column for on-chip capillary electrochromatography with conventional stationary phases. Anal. Chem.,2002,74:639-647.
    [75]Gaspar A, Piyasena M E, Gomez F A. Fabrication of fritless chromatographic microchips packed with conventional reversed-phase silica particles. Anal. Chem., 2007,79:7906-7909.
    [76]Gaspar A, Hernandez L, Stevens S, Gomez F A. Electrochromatography in microchips packed with conventional reversed-phase silica particles. Electrophoresis,2008,29:1638-1642.
    [77]Zheng S, Ross E, Legg M A, Wirth M J. High-speed electroseparations inside silica colloidal crystals. J. Am. Chem. Soc.,2006,128:9016-9017.
    [78]Vazquez M, Paull B. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices. Anal. Chim. Acta,2010, 668:100-113.
    [79]Faure K, Bias M, Yassine O, Delaunay N, Cretier G, Albert M, Rocca J-L. Electrochromatography in poly(dimethyl)siloxane microchips using organic monolithic stationary phases. Electrophoresis,2007,28:1668-1673.
    [80]Zeng H L, Li H F, Lin J M. Chiral separation of dansyl amino acids by PDMS microchip gel monolithic column electrochromatography with gamma-cyclodextrin bonded in polyacrylamide. Anal. Chim. Acta,2005,551: 1-8.
    [81]Levkin P A, Eeltink S, Stratton T R, Brennen R, Robotti K, Yin H, Killeen K, Svec F, Frechet J M J. Monolithic porous polymer stationary phases in polyimide chips for the fast high-performance liquid chromatography separation of proteins and peptides. J. Chromatogr. A,2008,1200:55-61.
    [82]Ladner Y, Cretier G, Faure K. Electrochromatography in cyclic olefin copolymer microchips:A step towards field portable analysis. J. Chromatogr. A,2010,1217: 8001-8008.
    [83]Liu J, Ro K W, Nayak R, Knapp D R. Monolithic column plastic microfluidic device for peptide analysis using electrospray from a channel opening on the edge of the device. Int. J. Mass spectrom.,2007,259:65-72.
    [84]Liu J K, Chen C F, Tsao C W, Chang C C, Chu C C, Devoe D L. Polymer microchips integrating solid-phase extraction and high-performance liquid chromatography using reversed-phase polymethacrylate monoliths. Anal. Chem., 2009,81:2545-2554.
    [85]Morishima K, Bennett B D, Dulay M T, Quirino J P, Zare R N. Toward sol-gel electrochromatographic separations on a chip. J. Sep. Sci.,2002,25:1226-1230.
    [86]Song H, Tice J D, Ismagilov R F. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Ed.,2003,42:768-772.
    [87]Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett.,2001,86:4163-4166.
    [88]Sun S, Slaney T R, Kennedy R T. Label free screening of enzyme inhibitors at femtomole scale using segmented flow electrospray ionization mass spectrometry. Anal. Chem.,2012,84:5794-5800.
    [89]He M Y, Edgar J S, Jeffries G D M, Lorenz R M, Shelby J P, Chiu D T. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal. Chem.,2005,77:1539-1544.
    [90]Zheng B, Ismagilov R F. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew. Chem., Int. Ed.,2005,44: 2520-2523.
    [91]Li L, Mustafi D, Fu Q, Tereshko V, Chen D L L, Tice J D, Ismagilov R F. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc. Natl. Acad. Sci. U. S. A.,2006,103:19243-19248.
    [92]Du W B, Sun M, Gu S Q, Zhu Y, Fang Q. Automated microfluidic screening assay platform based on DropLab. Anal. Chem.,2010,82:9941-9947.
    [93]Han Z Y, Li W T, Huang Y Y, Zheng B. Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves. Anal. Chem.,2009,81:5840-5845
    [94]Edgar J S, Pabbati C P, Lorenz R M, He M Y, Fiorini G S, Chiu D T. Capillary electrophoresis separation in the presence of an immiscible boundary for droplet analysis. Anal. Chem.,2006,78:6948-6954.
    [95]Roman G T, Wang M, Shultz K N, Jennings C, Kennedy R T. Sampling and electrophoretic analysis of segmented flow streams using virtual walls in a microfluidic device. Anal. Chem.,2008,80:8231-8238.
    [96]Gorbatsova J, Jaanus M, Kaljurand M. Digital microfluidic sampler for a portable capillary electropherograph. Anal. Chem.,2009,81:8590-8595.
    [97]Abdelgawad M, Watson M W L, Wheeler A R. Hybrid microfluidics:A digital-to-channel interface for in-line sample processing and chemical separations. Lab Chip,2009,9:1046-1051.
    [98]Watson M W L, Jebrail M J, Wheeler A R. Multilayer hybrid microfluidics:A digital-to-channel interface for sample processing and separations. Anal. Chem., 2010,82:6680-6686.
    [99]Fidalgo L M, Whyte G, Ruotolo B T, Benesch J L P, Stengel F, Abell C, Robinson C V, Huck W T S. Coupling microdroplet microreactors with mass spectrometry: reading the contents of single droplets online. Angew. Chem. Int. Ed.,2009,48: 3665-3668.
    [100]Fidalgo L M, Whyte G, Bratton D, Kaminski C F, Abell C, Huck W T S. From microdroplets to microfluidics:Selective emulsion separation in microfluidic devices. Angew. Chem. Int. Ed,2008,47:2042-2045.
    [101]Kelly R T, Page J S, Marginean I, Tang K Q, Smith R D. Dilution-free analysis from picoliter droplets by nano-electrospray ionization mass spectrometry. Angew. Chem. Int. Ed.,2009,48:6832-6835.
    [102]Zhu Y, Fang Q. Integrated droplet analysis system with electrospray ionization-mass spectrometry using a hydrophilic tongue-based droplet extraction interface. Anal. Chem.,2010,82:8361-8366.
    [103]Pei J, Li Q, Lee M S, Valaskovic G A, Kennedy R T. Analysis of samples stored as individual plugs in a capillary by electrospray ionization mass spectrometry. Anal. Chem.,2009,81:6558-6561.
    [104]Pei J A, Li Q A, Kennedy R T. Rapid and label-free screening of enzyme inhibitors using segmented flow electrospray ionization mass spectrometry. J. Am. Soc. Mass. Spectrom.,2010,21:1107-1113.
    [105]Li Q, Pei J, Song P, Kennedy R T. Fraction collection from capillary liquid chromatography and off-line electrospray ionization mass spectrometry using oil segmented flow. Anal. Chem.,2010,82:5260-5267.
    [106]Baker C A, Roper M G. Online coupling of digital microfluidic devices with mass spectrometry detection using an eductor with electrospray ionization. Anal. Chem.,2012,84:2955-2960.
    [107]Shih S C C, Yang H, Jebrail M J, Fobel R, McIntosh N, Al-Dirbashi O Y, Chakraborty P, Wheeler A R. Dried blood spot analysis by digital microfluidics coupled to nanoelectrospray ionization mass spectrometry. Anal. Chem.,2012,84: 3731-3738.
    [108]Ek P, Stjernstrom M, Emmer A, Roeraade J. Electrospray ionization mass spectrometry from discrete nanoliter-sized sample volumes. Rapid Commun. Mass Spectrom.,2010,24:2561-2568.
    [109]Su Y, Zhu Y, Fang Q. A multifunctional microfluidic droplet-array chip for analysis by electrospray ionization mass spectrometry. Lab Chip,2013,13: 1876-1882.
    [110]Manz A, Harrison D J, Verpoorte E M J, Fettinger J C, Paulus A, Ludi H, Widmer H M. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems-capillary electrophoresis on a chip. J. Chromatogr. A,1992,593:253-258.
    [111]Zeng Y, Chen H, Pang D W, Wang Z L, Cheng J K. Microchip capillary electrophoresis with electrochemical detection. Anal. Chem.,2002,74: 2441-2445.
    [1]Ehlert S, Tallarek U. High-pressure liquid chromatography in lab-on-a-chip devices. Anal. Bioanal. Chem.,2007,388:517-520.
    [2]Liu J K, Chen C F, Tsao C W, Chang C C, Chu C C, Devoe D L. Polymer microchips integrating solid-phase extraction and high-performance liquid chromatography using reversed-hhase polymethacrylate monoliths. Anal. Chem., 2009,81:2545-2554.
    [3]Liang Y, Tao D Y, Ma J F, Sun L L, Liang Z, Zhang L H, Zhang Y K. Hydrophilic monolith based immobilized enzyme reactors in capillary and on microchip for high-throughput proteomic analysis. J. Chromatogr. A,2011,1218:2898-2905.
    [4]Yang X H, Zhang X M, Li A Z, Zhu S Y, Huang Y P. Comprehensive two-dimensional separations based on capillary high-performance liquid chromatography and microchip electrophoresis. Electrophoresis,2003,24: 1451-1457.
    [5]Zhao C X, Wu Z M, Xue G, Wang J, Zhao Y N, Xu Z X, Lin D Y, Herbert G, Chang Y W, Cai K Y, Xu G W. Ultra-high capacity liquid chromatography chip/quadrupole time-of-flight mass spectrometry for pharmaceutical analysis. J. Chromatogr. A,2011,1218:3669-3674.
    [6]Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H, Sato K. Design of an open-tubular column liquid chromatograph using silicon chip technology. Sens. Actuators, B,1990,1:249-255.
    [7]Ericson C, Holm J, Ericson T, Hjerten S. Electroosmosis- and pressure-driven chromatography in chips using continuous beds. Anal. Chem.,2000,72:81-87.
    [8]Yin N F, Killeen K, Brennen R, Sobek D, Werlich M, van de Goor T V. Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal. Chem.,2005,77:527-533.
    [9]De Malsche W, Eghbali H, Clicq D, Vangelooven J, Gardeniers H, Desmet G. Pressure-driven reverse-phase liquid chromatography separations in ordered nonporous pillar array columns. Anal. Chem.,2007,79:5915-5926.
    [10]Ishida A, Natsume M, Kamidate T. Microchip reversed-phase liquid chromatography with packed column and electrochemical flow cell using polystyrene/poly(dimethylsiloxane). J. Chromatogr. A,2008,1213:209-217.
    [11]Ishida A, Yoshikawa T, Natsume M, Kamidate T. Reversed-phase liquid chromatography on a microchip with sample injector and monolithic silica column. J. Chromatogr. A,2006,1132:90-98.
    [12]Murrihy J P, Breadmore M C, Tan A M, McEnery M, Alderman J, O'Mathuna C, O'Neill A P, O'Brien P, Advoldvic N, Haddad P R, Glennon J D. Ion chromatography on-chip. J. Chromatogr. A,2001,924:233-238.
    [13]Lazar I M, Trisiripisal P, Sarvaiya H A. Microfluidic liquid chromatography system for proteomic applications and biomarker screening. Anal. Chem.,2006, 78:5513-5524.
    [14]Borowsky J F, Giordano B C, Lu Q, Terray A, Collins G E. Electroosmotic flow-based pump for liquid chromatography on a planar microchip. Anal. Chem., 2008,80:8287-8292.
    [15]Fuentes H V, Woolley A T. Electrically actuated, pressure-driven liquid chromatography separations in microfabricated devices. Lab Chip,2007,7: 1524-1531.
    [16]Xie J, Miao Y N, Shih J, Tai Y C, Lee T D. Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures. Anal. Chem.,2005,77:6947-6953.
    [17]Chmela E, Blom M T, Gardeniers J G E, van den Berg A, Tijssen R. A pressure driven injection system for an ultra-flat chromatographic microchannel. Lab Chip,2002,2:235-241.
    [18]Yang X, Jenkins G, Franzke J, Manz A. Shear-driven pumping and Fourier transform detection for on chip circular chromatography applications. Lab Chip, 2005,5:764-771.
    [19]Vangelooven J, De Malsche W, Detobel F, Gardeniers H, Desmet G. High-speed shear-driven flows through microstructured 1D-nanochannels. Anal. Chem., 2009,81:943-952.
    [20]Penrose A, Myers P, Bartle K, McCrossen S. Development and assessment of a miniaturised centrifugal chromatograph for reversed-phase separations in micro-channels. Analyst,2004,129:704-709.
    [21]Vahey P G, Smith S A, Costin C D, Xia Y N, Brodsky A, Burgess L W, Synovec R E. Toward a fully integrated positive-pressure driven microfabricated liquid analyzer. Anal. Chem.,2002,74:177-184.
    [22]Schlund M, Gilbert S E, Schnydrig S, Renaud P. Continuous sampling and analysis by on-chip liquid/solid chromatography. Sens. Actuators, B,2007,123: 1133-1141.
    [23]Reichmuth D S, Shepodd T J, Kirby B J. On-chip high-pressure picoliter injector for pressure-driven flow through porous media. Anal. Chem.,2004,76: 5063-5068.
    [24]Reichmuth D S, Shepodd T J, Kirby B J. Microchip HPLC of peptides and proteins. Anal. Chem.,2005,77:2997-3000.
    [25]Jia Z J, Fang Q, Fang Z L. Bonding of glass microfluidic chips at room temperatures. Anal. Chem.,2004,76:5597-5602.
    [26]Yu C, Davey M H, Svec F, Frechet J M J. Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal. Chem.,2001,73:5088-5096.
    [27]Ericson C, Liao J L, Nakazato K, Hjerten S. Preparation of continuous beds for electrochromatography and reversed-phase liquid chromatography of low-molecular-mass compounds. J. Chromatogr. A,1997,767:33-41.
    [28]Le Gac S, Carlier J, Camart J C, Cren-Olive C, Rolando C. Monoliths for microfluidic devices in proteomics. J. Chromatogr. B,2004,808:3-14.
    [29]Yu C, Svec F, Frechet J M J. Towards stationary phases for chromatography on a microchip:Molded porous polymer monoliths prepared in capillaries by photoinitiated in situ polymerization as separation media for electrochromatography. Electrophoresis,2000,21:120-127.
    [30]Jacobson S C, Koutny L B, Hergenroder R, Moore A W, Ramsey J M. Microchip capillary electrophoresis with an integrated postcolumn reactor. Anal. Chem., 1994,66:3472-3476.
    [31]Huang Y Z, Du W B, Pan J Z, Fang Q. Microfluidic chip-based valveless flow injection analysis system with gravity-driven flows. Analyst,2008,133: 1237-1241.
    [32]Gusev I, Huang X, Horvath C. Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography. J. Chromatogr. A,1999,855:273-290.
    [33]Peterson D S, Rohr T, Svec F, Frechet J M J. Dual-function microanalytical device by in situ photolithographic grafting of porous polymer monolith: Integrating solid-phase extraction and enzymatic digestion for peptide mass mapping. Anal. Chem.,2003,75:5328-5335.
    [34]Ma J F, Hou C Y, Sun L L, Tao D Y, Zhang Y Y, Shan Y C, Liang Z, Zhang L H, Yang L, Zhang Y K. Coupling formic acid assisted solubilization and online immobilized pepsin digestion with strong cation exchange and microflow reversed-phase liquid chromatography with electrospray ionization tandem mass spectrometry for integral membrane proteome analysis. Anal. Chem.,2010,82: 9622-9625.
    [35]Rocklin R D, Ramsey R S, Ramsey J M. A microfabricated fluidic device for performing two-dimensional liquid-phase separations. Anal. Chem.,2000,72: 5244-5249.
    [36]Yang S, Liu J K, Lee C S, Devoe D L. Microfluidic 2-D PAGE using multifunctional in situ polyacrylamide gels and discontinuous buffers. Lab Chip, 2009,9:592-599.
    [37]Zhu Y, Fang Q. Integrated droplet analysis system with electrospray ionization-mass spectrometry using a hydrophilic tongue-based droplet extraction interface. Anal. Chem.,2010,82:8361-8366.
    [38]Zhu Y, Pan J Z, Su Y, He Q H, Fang Q. Fabrication of low-melting-point alloy microelectrode and monolithic spray tip for integration of glass chip with electrospray ionization mass spectrometry. Talanta,2010,81:1069-1075.
    [1]Link A J, Eng J, Schieltz D M, Carmack E, Mize G J, Morris D R, Garvik B M, Yates J R. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol.,1999,17:676-682.
    [2]Lutz U, Lutz R W, Lutz W K. Metabolic profiling of glucuronides in human urine by LC-MS/MS and partial least-squares discriminant analysis for classification and prediction of gender. Anal. Chem.,2006,78:4564-4571.
    [3]Choi Y, Jermihov K, Nam S-J, Sturdy M, Maloney K, Qiu X, Chadwick L R, Main M, Chen S-N, Mesecar A D, Farnsworth N R, Pauli G F, Fenical W, Pezzuto J M, van Breemen R R. Screening natural products for inhibitors of quinone reductase-2 using ultrafiltration LC-MS. Anal. Chem.,2011,83: 1048-1052.
    [4]Tong X C S, Wang J Y, Zheng S, Pivnichny J V, Griffin P R, Shen X L, Donnelly M, Vakerich K, Nunes C, Fenyk-Melody J. Effect of signal interference from dosing excipients on pharmacokinetic screening of drug candidates by liquid chromatography/mass spectrometry. Anal. Chem.,2002,74:6305-6313.
    [5]Xie J, Miao Y N, Shih J, Tai Y C, Lee T D. Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures. Anal. Chem.,2005,77:6947-6953.
    [6]Tomer K B, Moseley M A, Deterding L J, Parker C E. Capillary liquid-chromatography mass-spectrometry. Mass Spectrom. Rev.,1994,13: 431-457.
    [7]Sauer S, Lange B M H, Gobom J, Nyarsik L, Seitz H, Lehrach H. Miniaturization in functional genomics and proteomics. Nat. Rev. Genet.,2005,6:465-476.
    [8]Desmet G, Eeltink S. Fundamentals for LC miniaturization. Anal. Chem.,2013, 85:543-556.
    [9]Wang N, Xu M, Wang P, Li L. Development of mass spectrometry-based shotgun method for proteome analysis of 500 to 5000 cancer cells. Anal. Chem.,2010,82: 2262-2271.
    [10]Mao P, Gomez-Sjoberg R, Wang D. Multinozzle emitter array chips for small-volume proteomics. Anal. Chem.,2013,85:816-819.
    [11]Holste A, Tholey A, Hung C-W, Schaumloffel D. Nano-high-performance liquid chromatography with online precleaning coupled to inductively coupled plasma mass spectrometry for the analysis of lanthanide-labeled peptides in tryptic protein digests. Anal. Chem.,2013,85:3064-3070.
    [12]Ni W, Bones J, Karger B L. In-depth characterization of N-linked oligosaccharides using fluoride-mediated negative ion microfluidic chip LC-MS. Anal. Chem.,2013,85:3127-3135.
    [13]Kelly R T, Page J S, Marginean I, Tang K Q, Smith R D. Dilution-free analysis from picoliter droplets by nano-electrospray ionization mass spectrometry. Angew. Chem., Int. Ed.,2009,48:6832-6835.
    [14]Song H, Chen D L, Ismagilov R F. Reactions in droplets in microflulidic channels. Angew. Chem., Int. Ed.,2006,45:7336-7356.
    [15]Chiu D T, Lorenz R M, Jeffries G D M. Droplets for ultrasmall-volume analysis. Anal. Chem.,2009,81:5111-5118.
    [16]Sun S, Slaney T R, Kennedy R T. Label free screening of enzyme inhibitors at femtomole scale using segmented flow electrospray ionization mass spectrometry. Anal. Chem.,2012,84:5794-5800.
    [17]He M Y, Edgar J S, Jeffries G D M, Lorenz R M, Shelby J P, Chiu D T. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal. Chem.,2005,77:1539-1544.
    [18]Zheng B, Ismagilov R F. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew. Chem., Int. Ed.,2005,44: 2520-2523.
    [19]Li L, Mustafi D, Fu Q, Tereshko V, Chen D L L, Tice J D, Ismagilov R F. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc. Natl. Acad. Sci. U. S. A.,2006,103:19243-19248.
    [20]Du W B, Sun M, Gu S Q, Zhu Y, Fang Q. Automated microfluidic screening assay platform based on drop lab. Anal. Chem.,2010,82:9941-9947.
    [21]Han Z Y, Li W T, Huang Y Y, Zheng B. Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves. Anal. Chem.,2006,81:5840-5845.
    [22]Edgar J S, Pabbati C P, Lorenz R M, He M Y, Fiorini G S, Chiu D T. Capillary electrophoresis separation in the presence of an immiscible boundary for droplet analysis. Anal. Chem.,2006,78:6948-6954.
    [23]Roman G T, Wang M, Shultz K N, Jennings C, Kennedy R T. Sampling and electrophoretic analysis of segmented flow streams using virtual walls in a microfluidic device. Anal. Chem.,2008,80:8231-8238.
    [24]Wang M, Roman G T, Perry M L, Kennedy R T. Microfluidic chip for high efficiency electrophoretic analysis of segmented flow from a microdialysis probe and in vivo chemical monitoring. Anal. Chem.,2009,81:9072-9078.
    [25]Niu X Z, Zhang B, Marszalek R T, Ces O, Edel J B, Klug D R, Demello A J. Droplet-based compartmentalization of chemically separated components in two-dimensional separations. Chem. Commun.,2009:6159-6161.
    [26]Fidalgo L M, Whyte G, Ruotolo B T, Benesch J L P, Stengel F, Abell C, Robinson C V, Huck W T S. Coupling microdroplet microreactors with mass spectrometry: reading the contents of single droplets online. Angew. Chem., Int. Ed,2009,48: 3665-3668.
    [27]Zhu Y, Fang Q. Integrated droplet analysis system with electrospray ionization-mass spectrometry using a hydrophilic tongue-based droplet extraction interface. Anal. Chem.,2010,82:8361-8366.
    [28]Pei J, Li Q, Lee M S, Valaskovic G A, Kennedy R T. Analysis of samples stored as individual plugs in a capillary by electrospray ionization mass spectrometry. Anal. Chem.,2009,81:6558-6561.
    [29]Pei J A, Li Q A, Kennedy R T. Rapid and label-free screening of enzyme inhibitors using segmented flow electrospray ionization mass spectrometry. J. Am. Soc. Mass. Spectrom.,2010,21:1107-1113.
    [30]Su Y, Zhu Y, Fang Q. A multifunctional microfluidic droplet-array chip for analysis by electrospray ionization mass spectrometry. Lab Chip,2013,13: 1876-1882.
    [31]Shih S C C, Yang H, Jebrail M J, Fobel R, McIntosh N, Al-Dirbashi O Y, Chakraborty P, Wheeler A R. Dried blood spot analysis by digital microfluidics coupled to nanoelectrospray ionization mass spectrometry. Anal. Chem.,2012,84: 3731-3738.
    [32]Zhu Y, Zhang Y X, Cai L F, Fang Q. Sequential operation droplet array:an automated microfluidic platform for picoliter-scale liquid handling, analysis, and screening. Anal. Chem.,2013,85:6723-6731.
    [33]Wu J, Hughes C S, Picard P, Letarte S, Gaudreault M, Levesque J-F, Nicoll-Griffith D A, Bateman K P. High-throughput cytochrome P450 inhibition assays using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry. Anal. Chem.,2007,79:4657-4665.
    [34]Peters E C, Petro M, Svec F, Frechet J M J. Molded rigid polymer monoliths as separation media for capillary electrochromatography. Anal. Chem.,1997,69: 3646-3649.
    [35]Musteata F M, Walles M, Pawliszyn J. Fast assay of angiotensin I from whole blood by cation-exchange restricted-access solid-phase microextraction. Anal. Chim. Acta,2005,537:231-237.
    [36]Cai L F, Zhu Y, Du G S, Fang Q. Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay. Anal. Chem.,2012,84:446-452.
    [37]Sohl C D, Cheng Q, Guengerich F P. Chromatographic assays of drug oxidation by human cytochrome P450 3A4. Nat. Protoc.,2009,4:1252-1257.
    [38]Gangl E T, Annan M, Spooner N, Vouros P. Reduction of signal suppression effects in ESI-MS using a nanosplitting device. Anal. Chem.,2001,73: 5635-5644.
    [39]Jeong S, Nguyen P D, Desta Z. Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes:major effect on CYPs 2B6, 2C9,2C19, and 3A. Antimicrob. Agents Chemother.,2009,53:541-551.
    [40]Zhang J H, Chung T D Y, Oldenburg K R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen.,1999,4:67-73.
    [41]Ji J, Nie L, Qiao L, Li Y X, Guo L P, Liu B H, Yang P Y, Girault H H. Proteolysis in microfluidic droplets:an approach to interface protein separation and peptide mass spectrometry. Lab Chip,2012,12:2625-2629.
    [42]Edgar J S, Milne G, Zhao Y Q, Pabbati C P, Lim D S W, Chiu D T. Compartmentalization of chemically separated components into droplets. Angew. Chem., Int. Ed.,2009,48:2719-2722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700