用户名: 密码: 验证码:
基于取样探针的微流控试样引入系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控学是在微米级通道中操控微升至飞升级流体的技术与科学,自从二十世纪九十年代提出以来,已经在分析化学中得到广泛的应用。其目的是将在常规实验室中进行的试样引入、预处理、混合、反应、分离和检测等分析操作集成到微型化、自动化的微流控系统中,最终目标是实现分析系统的便携化。微流控分析系统可以分为均相的流动分析系统和基于液滴的间隔相分析系统,也可将其分为基于芯片的和基于毛细管的微流控系统。目前,微流控系统发展的主要瓶颈之一是宏观体系与微流控系统的衔接问题,发展针对不同试样的高通量试样引入技术,对于微流控分析的发展和应用至关重要。本文对基于取样探针的微流控试样引入技术进行了研究,分别建立了基于芯片和基于毛细管的液滴分析筛选系统,以及毛细管薄层色谱系统。
     第一章首先综述了基于取样探针的微流控试样引入技术的研究现状,包括耦合式及一体式的取样探针的加工方法及其应用。同时,对于目前正在兴起的微流控液滴分析系统的研究进展也进行了相应介绍,包括液滴的生成及操控、液滴的检测,以及系统的应用。
     第二章搭建了基于毛细管和缺口管阵列的微流控液滴分析系统。系统由缺口型试样管阵列、毛细管和微量注射泵组成,不需要复杂的微加工技术和设备,操作完全自动化,可以通过调节进样顺序、进样组分、进样时间和流速等参数,灵活而又精确地控制每个液滴的大小和组成。将该系统初步应用于液滴内多种反应和液滴间的相间传质研究,展示了该系统在化学、生物学和医学等领域所具有的广泛的应用前景。
     第三章首次建立了基于一体化取样探针和缺口管阵列的微流控芯片液滴分析系统。将试样引入、试剂加入和液滴生成等单元集成于一体化取样探针内,实现对不同试样的高通量试样引入及液滴生成。该系统集成度高,自动化程度高,可达到很高的换样通量,为目前微流控液滴分析系统提供了一种新的试样引入方法。该系统被成功应用于蛋白结晶实验中沉淀剂的筛选以及酶抑制分析中的抑制剂筛选。
     第四章提出了一种基于玻璃毛细管的薄层色谱分离方法。在拉尖的毛细管内填充薄层色谱硅胶固定相,利用手工点样和缺口管技术完成进样,采用简易和缺口管阵列两种展开模式。系统具有点样方法简单,操作方便,展开剂消耗少的特点。该系统被初步应用于混合染料和中药大青叶的分离。
Microfluidics is the science and technology that manipulate small (nL~fL scale) amounts of fluids in channels with dimensions of tens to hundreds of micrometer, which have been widely applied in analytical chemistry. Its objective is to integrate all of the modules performed in routine laboratories, including sample introduction, pretreatment, transportation, mixing, reaction, separation and detection, into a compact device to achieve the miniaturization, automatization and integration of the whole analytical systems, providing advantages of high throughput, low samples and reagents consumption and low cost. Nevertheless, one of the major bottleneck in the development of microfluidic analytical systems lies in world-to-chip interface, which means sample introduction from external systems (μL~mL scale) into microfluidic systems (below nL scale) is of great significance to microfluidics.
     This dissertation is dedicated to relate the development of microfluidic sample introduction techniques based on sampling probes and their applications in chip-based and capillary-based droplet analysis, as well as in thin layer chromatography (TLC).
     In chapter one, the development of sample introduction techniques based on sampling probes, and the recent progress in microfluidic droplet analytical systems were detailedly reviewed.
     In chapter two, a capillary-based droplet analytical system based on a capillary and a slotted-vial array (SVA) sample presenting device was built, which capable of producing multi-component droplets in the nanoliter range. The present system was applied in various droplet microreactors, to demonstrate its application potentials in chemistry, biology and medicine.
     In chapter three, a microchip-based droplet analysis system with a monolithic sampling probe was developed for the first time, to achieve high-throughput sample introduction for different samples in droplet-based analysis. The sampling probe integrating functions of sample introduction, merging with reagents and generating droplet, was employed to produce diverse droplet microreactors automatically and continuously by coupling with a SVA system. The performance of the system was demonstrated in evaluating protein crystallization conditions and screening inhibitors for enzyme reaction. A possible highest sampling throughput of 10,000 samples/h for different screening reagents could be achieved by using this sample introduction technique.
     In chapter four, a simple capillary based TLC system was developed. A tapered glass capillary packed with silica gel was used as sampling probe and chromatographic column for TLC. The performance of the system was demonstrated in the separation of Camag test dye mixture I and a traditional Chinese medicine-Folium Isatidis.
引文
(1) Whitesides,G.M.The origins and the future of microfluidics Nature 2006,442,368-373.
    (2) 方肇伦等编著,微流控分析芯片,科学出版社,北京,2003.
    (3) Manz,A.;Harrison,D.J.;Verpoorte,E.M.J.;Fettinger,J.C.;Paulus,A.;Ludi,H.;Widmer,H.M.Planar chips technology for miniaturization and integration of separation techniques into monitoring systems - capillary electrophoresis on a chip J.Chromatogr.1992,593,253-258.
    (4) Harrison,D.J.;Manz,A.;Fan,Z.H.;Ludi,H.;Widmer,H.M.Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip Anal.Chem.1992,64,1926-1932.
    (5) Belder,D.Towards an Integrated Chemical Circuit Angew.Chem.Int.Ed.2009,48,3736-3737.
    (6) Fang,Q.;Shi,X.T.;Du,W.B.;He,Q.H.;Shen,H.;Fang,Z.L.High-throughput microfluidic sample-introduction systems TrAC,Trends Anal.Chem.2008,27,521-532.
    (7) Fang,Q.Sample introduction for microfluidic systems Anal.Bioanal.Chem.2004,378,49-51.
    (8) Felton,M.J.Lab on a chip:Poised on the brink Anal.Chem.2003,75, 505A-508A.
    (9) Fredrickson, C. K.; Fan, Z. H. Macro-to-micro interfaces for microfluidic devices Lab Chip 2004, 4, 526-533.
    (10) Liu, J.; Hansen, C.; Quake, S. R. Solving the "world-to-chip" interface problem with a microfluidic matrix Anal. Chem. 2003, 75, 4718-4723.
    (11) Thorsen, T.; Maerkl, S. J.; Quake, S. R. Microfluidic large-scale integration Science 2002, 298, 580-584.
    (12) Unger, M. A.; Chou, H. P.; Thorsen, T.; Scherer, A.; Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography Science 2000,288, 113-116.
    (13) Chen, S. H.; Lin, Y. H.; Wang, L. Y.; Lin, C. C.; Lee, G.B. Flow-through sampling for electrophoresis-based microchips and their applications for protein analysis Anal. Chem. 2002, 74, 5146-5153.
    (14) Fan, L. Y.; Chen, H. L.; Zhang, J. Y.; Chen, X. G.; Hu, Z. D. Continuous on-line derivatization and determination of amino acids by a microfluidic capillary electrophoresis system with a continuous sample introduction interface Anal. Chim. Acta 2004, 501, 129-135.
    (15) Fang, Q.; Xu, G.M.; Fang, Z. L. A high-throughput continuous sample introduction interface for microfluidic chip-based capillary electrophoresis systems Anal. Chem. 2002, 74, 1223-1231.
    (16) Wang, S. L.; Huang, X. J.; Fang, Z. L.; Dasgupta, R K. A miniaturized liquid core waveguide-capillary electrophoresis system with flow injection sample introduction and fluorometric detection using light-emitting diodes Anal. Chem. 2001, 73, 4545-4549.
    (17) He, Q. H.; Fang, Q.; Du, W. B.; Huang, Y Z.; Fang, Z. L. An automated electrokinetic continuous sample introduction system for microfluidic chip-based capillary electrophoresis Analyst 2005,130, 1052-1058.
    (18) He, Q. H.; Fang, Q.; Du, W. B.; Fang, Z. L. Fabrication of a monolithic sampling probe system for automated and continuous sample introduction in microchip-based CE Electrophoresis 2007, 28, 2912-2919.
    (19) Du, W. B.; Fang, Q.; He, Q. H.; Fang, Z. L. High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows Anal. Chem. 2005, 77, 1330-1337.
    (20) Du, W. B.; Fang, Q.; Fang, Z. L. Microfluidic sequential injection analysis in a short capillary Anal. Chem. 2006, 78, 6404-6410.
    (21) Chen, Y.; Yang, P. Y.; Li, J. H.; Chen, D.; Chen, G. Electrophoresis microchips with sharp inlet tips, for contactless conductivity detection, fabricated by in-situ surface polymerization Anal. Bioanal. Chem. 2006, 384, 683-691.
    (22) Bings, N. H.; Wang, C.; Skinner, C. D.; Colyer, C. L.; Thibault, P.; Harrison, D. J. Microfluidic devises connected to fused-silica capillaries with minimal dead volume Anal. Chem. 1999, 71, 3292-3296.
    (23) Chen, G.; Wang, J. Fast and simple sample introduction for capillary electrophoresis microsystems Analyst 2004,129, 507-511.
    (24) Vandenesse, R. J.; Hoogland, G.J. M.; Demoel, J. J. M.; Gooijer, C.; Brinkman, U. A. T.; Velthorst, N. H. Online coupling of liquid chromatography to thin-layer chromatography for the identification of polycyclic aromatic-hydrocarbons in marine sediment by fluorescence excitation and emission-spectroscopy J. Chromatogr. 1991, 552, 613-623.
    (25) Li, J. J.; Kelly, J. F.; Chemushevich, I.; Harrison, D. J.; Thibault, P. Separation and identification of peptides from gel-isolated membrane proteins using a microfabricated device for combined capillary electrophoresis nanoelectrospray mass spectrometry Anal. Chem. 2000, 72, 599-609.
    (26) Deng, Y Z.; Henion, J.; Li, J. J.; Thibault, P.; Wang, C.; Harrison, D. J. Chip-based capillary electrophoresis/mass spectrometry determination of carnitines in human urine Anal. Chem. 2001, 73, 639-646.
    (27) Wang, M.; Roman, G.T.; Schultz, K.; Jennings, C.; Kennedy, R. T. Improved temporal resolution for in vivo microdialysis by using segmented flow Anal. Chem. 2008, 80, 5607-5615.
    (28) Gray, B. L.; Jaeggi, D.; Mourlas, N. J.; van Drieenhuizen, B. P.; Williams, K. R.; Maluf, N. I.; Kovacs, G.T. A. Novel interconnection technologies for integrated microfluidic systems Sens. Actuators, A 1999, 77, 57-65.
    (29) Chen, H.; Acharya, D.; Gajraj, A.; Meiners, J. C. Robust interconnects and packaging for microfluidic elastomeric chips Anal. Chem. 2003, 75, 5287-5291.
    (30) Puntambekar, A.; Ahn, C. H. Self-aligning microfluidic interconnects for glass- and plastic-based microfluidic systems J. Micromech. Microeng. 2002, 12, 35-40.
    (31) Gonzalez, C.; Collins, S. D.; Smith, R. L. Fluidic interconnects for modular assembly of chemical microsystems Sens. Actuators, B 1998, 49, 40-45.
    (32) Zhang, B. L.; Foret, F.; Karger, B. L. High-throughput microfabricated CE/ESI-MS: Automated sampling from a microwell plate Anal. Chem. 2001, 73,2675-2681.
    (33) Caliper Life Sciences http://www.caliperLS.com 2009.
    (34) Dong, L.; Du, W. B.; Fang, Q. In The Proceedings of μTAS 2007: Pairs, 2007; Vol. 2, pp 1652-1654.
    (35) Xu, Z. R.; Lan, Y.; Fan, X. F.; Li, Q. Automated sampling system for the analysis of amino acids using microfluidic capillary electrophoresis Talanta 2009, 78, 448-452.
    (36) Zhang, T.; Fang, Q.; Du, W. B.; Fu, J. L. Microfluidic Picoliter-Scale Translational Spontaneous Sample Introduction for High-Speed Capillary Electrophoresis Anal. Chem. 2009, 81, 3693-3698.
    (37) Pan, J. Z.; Fang, Q. In The Proceedings of μTAS 2007: Paris, 2007; Vol. 1, pp 95-97.
    (38) Van Berkel, G. J.; Sanchez, A. D.; Quirke, J. M. E. Thin-layer chromatography and electrospray mass spectrometry coupled using a surface sampling probe Anal. Chem. 2002, 74, 6216-6223.
    (39) Liu, C. Y.; Xu, X.; Gao, H. J.; Chen, J. R. Fabrication of a novel poly(dimethylsiloxane) microchips with two sharpened stretching tips Chin. Chem. Lett. 2007, 18, 221-224.
    (40) Liu, C. Y.; Xu, X.; Gao, H. J.; Chen, J. R. Poly(dimethylsiloxane) microchips with two sharpened stretching tips and its application to protein separation using dynamic coating Chin. J. Chem. 2007, 25, 190-195.
    (41) Abdelgawad, M.; Watson, M. W. L.; Wheeler, A. R. Hybrid microfluidics: A digital-to-channel interface for in-line sample processing and chemical separations Lab Chip 2009, 9, 1046-1051.
    (42) Cygan, Z. T.; Cabral, J. T.; Beers, K. L.; Amis, E. J. Microfluidic platform for the generation of organic-phase microreactors Langmuir 2005, 21, 3629-3634.
    (43) Lorenz, R. M.; Edgar, J. S.; Jeffries, G. D. M.; Chiu, D. T. Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets Anal. Chem. 2006, 78, 6433-6439.
    (44) Song, H.; Ismagilov, R. F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents J. Am. Chem. Soc. 2003,125, 14613-14619.
    (45) Liau, A.; Karnik, R.; Majumdar, A.; Cate, J. H. D. Mixing crowded biological solutions in milliseconds Anal. Chem. 2005, 77, 7618-7625.
    (46) Beer, N. R.; Hindson, B. J.; Wheeler, E. K.; Hall, S. B.; Rose, K. A.; Kennedy, I. M.; Colston, B. W. On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets Anal. Chem. 2007, 79, 8471-8475.
    (47) Beer, N. R.; Wheeler, E. K.; Lee-Houghton, L.; Watkins, N.; Nasarabadi, S.; Hebert, N.; Leung, P.; Arnold, D. W; Bailey, C. G.; Colston, B. W. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets Anal. Chem. 2008, 80, 1854-1858.
    (48) Tsuchiya, H.; Okochi, M.; Nagao, N.; Shikida, M.; Honda, H. On-chip polymerase chain reaction microdevice employing, a magnetic droplet-manipulation system Sens. Actuators, B 2008,130, 583-588.
    (49) Schaerli, Y.; Wootton, R. C.; Robinson, T.; Stein, V.; Dunsby, C.; Neil, M. A. A.; French, P. M. W; deMello, A. J.; Abell, C.; Hollfelder, F. Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets Anal. Chem. 2009, 81, 302-306.
    (50) Mohr, S.; Zhang, Y. H.; Macaskill, A.; Day, P. J. R.; Barber, R. W; Goddard, N. J.; Emerson, D. R.; Fielden, P. R. Numerical and experimental study of a droplet-based PCR chip Microfluid. Nanofluidics 2007, 3, 611-621.
    (51) He, M. Y.; Edgar, J. S.; Jeffries, G. D. M.; Lorenz, R. M.; Shelby, J. P.; Chiu, D. T. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets Anal. Chem. 2005, 77, 1539-1544.
    (52) El-Ali, J.; Gaudet, S.; Gunther, A.; Sorger, P. K.; Jensen, K. F. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow Anal. Chem. 2005, 77, 3629-3636.
    (53) Zheng, B.; Roach, L. S.; Ismagilov, R. F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets J. Am. Chem. Soc. 2003,725, 11170-11171.
    (54) Zheng, B.; Gerdts, C. J.; Ismagilov, R. F. Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization Curr. Opin. Struct. Biol. 2005, 15, 548-555.
    (55) Chen, D. L.; Gerdts, C. J.; Ismagilov, R. F. Using microfluidics to observe the effect of mixing on nucleation of protein crystals J. Am. Chem. Soc. 2005,127, 9672-9673.
    (56) Zheng, B.; Tice, J. D.; Ismagilov, R. F. Formation of arrayed droplets of soft lithography and two-phase fluid flow, and application in protein crystallization Adv. Mater. 2004,16, 1365-1368.
    (57) Chen, D. L. L.; Li, L.; Reyes, S.; Adamson, D. N.; Ismagilov, R. F. Using three-phase flow of immiscible liquids to prevent coalescence of droplets in microfluidic channels: Criteria to identify the third liquid and validation with protein crystallization Langmuir 2007, 23, 2255-2260.
    (58) Roach, L. S.; Song, H.; Ismagilov, R. F. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants Anal. Chem. 2005, 77, 785-796.
    (59) Dittrich, P. S.; Jahnz, M.; Schwille, P. A new embedded process for compartmentalized cell-free protein expression and on-line detection in microfluidic devices Chembiochem 2005, 6, 1439-4227.
    (60) Tang, J.; Jofre, A. M.; Lowman, G. M.; Kishore, R. B.; Reiner, J. E.; Helmerson,K.;Goldner,L.S.;Greene,M.E.Green fluorescent protein in inertially injected aqueous nanodroplets Langmuir 2008,24,4975-4978.
    (61) Jones,T.B.;Gunji,M.;Washizu,M.;Feldman,M.J.Dielectrophoretic liquid actuation and nanodroplet formation J.Appl.Phys.2001,89,1441-1448.
    (62) Ahmed,R.;Jones,T.B.Dispensing picoliter droplets on substrates using dielectrophoresis J.Electrostat.2006,64,543-549.
    (63) Wang,K.L.;Jones,T.B.;Raisanen,A.Dynamic control of DEP actuation and droplet dispensing J.Micromech.Microeng.2007,17,76-80.
    (64) Jones,T.B.Liquid dielectrophoresis on the microscale J.Electrostat.2001,51,290-299.
    (65) Ahmed,R.;Jones,T.B.Optimized liquid DEP droplet dispensing J.Micromech.Microeng.2007,17,1052-1058.
    (66) Lee,J.;Moon,H.;Fowler,J.;Schoellhammer,T.;Kim,C.J.Electrowetting and electrowetting-on-dielectric for microscale liquid handling Sens.Actuators,A 2002,95,259-268.
    (67) Roux,J.M.;Fouillet,Y.;Achard,J.L.3D droplet displacement in microfluidic systems by electrostatic actuation Sens.Actuators,A 2007,134,486-493.
    (68) Cho,S.K.;Moon,H.J.;Kim,C.J.Creating,transporting,cutting,and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits J.Microelectromech.S.2003,12,70-80.
    (69) Berthier,J.;Clementz,P.;Raccurt,O.;Jary,D.;Claustre,P.;Peponnet,C.;Fouillet,Y.Computer aided design of an EWOD microdevice Sens.Actuators,A 2006,127,283-294.
    (70) Moon,H.;Wheeler,A.R.;Garrell,R.L.;Loo,J.A.;Kim,C.J.An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS Lab Chip 2006,6,1213-1219.
    (71) He,M.;Kuo,J.S.;Chiu,D.T.Effects of ultrasmall orifices on the electrogeneration of femtoliter-volume aqueous droplets Langmuir 2006,22,6408-6413.
    (72) Kim, S. J.; Song, Y. A.; Skipper, P. L.; Han, J. Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip Anal. Chem. 2006, 78, 8011-8019.
    (73) Wixforth, A.; Strobl, C.; Gauer, C.; Toegl, A.; Scriba, J.; von Guttenberg, Z. Acoustic manipulation of small droplets Anal. Bioanal. Chem. 2004, 379, 982-991.
    (74) Guttenberg, Z.; Muller, H.; Habermuller, H.; Geisbauer, A.; Pipper, J.; Felbel, J.; Kielpinski, M.; Scriba, J.; Wixforth, A. Planar chip device for PCR and hybridization with surface acoustic wave pump Lab Chip 2005, 5, 308-317.
    (75) Darhuber, A. A.; Valentino, J. P.; Troian, S. M.; Wagner, S. Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays J. Microelectromech. S. 2003,12, 873-879.
    (76) Delville, J. P.; de Saint Vincent, M. R.; Schroll, R. D.; Chraibi, H.; Issenmann, B.; Wunenburger, R.; Lasseux, D.; Zhang, W. W.; Brasselet, E. Laser microfluidics: fluid actuation by light J. Opt. A-Pure. Appl. Op. 2009,11.
    (77) Lai, C. W.; Lin, Y. H.; Lee, G. B. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches Biomed. Microdevices 2008,10, 749-756.
    (78) Haeberle, S.; Zengerle, R. Microfluidic platforms for lab-on-a-chip applications Lab Chip 2007, 7, 1094-1110.
    (79) Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A. Monodisperse double emulsions generated from a microcapillary device Science 2005, 308, 537-541.
    (80) Chu, L. Y.; Utada, A. S.; Shah, R. K.; Kim, J. W.; Weitz, D. A. Controllable monodisperse multiple emulsions Angew. Chem. Int. Ed. 2007, 46, 8970-8974.
    (81) Quevedo, E.; Steinbacher, J.; McQuade, D. T. Interfacial polymerization within a simplified microfluidic device: Capturing capsules J. Am. Chem. Soc. 2005,127, 10498-10499.
    (82) Chen, D. L. L.; Ismagilov, R. F. Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well plates for screening Curr. Opin. Chem. Biol. 2006,10, 226-231.
    (83) Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L. L.; Tice, J. D.; Ismagilov, R. F. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins Proc. Natl. Acad. Sci. U. S. A. 2006,103, 19243-19248.
    (84) Skeggs, L. T. An Automatic Method for Colorimetric Analysis Am. J. Clin. Pathol. 1957,25,311-322.
    (85) Lewis, L. A. Leonard Tucker Skeggs - A Multifaceted Diamond Clin. Chem. 1981,27, 1465-1468.
    (86) Laitinen, H. A. Automatic Chemical Analysis Anal. Chem. 1966, 38, 529.
    (87) Ruzicka, J. H.; Hansen, E. H. Flow Injection Analysis, John Wiley & Sons, New York, 1988.
    (88) Du, W. B.; Dong, L.; Fang, Q. In The Proceedings of μTAS 2007: Paris, 2007; Vol. 2, pp 943-945.
    (89) Gerdts, C. J.; Sharoyan, D. E.; Ismagilov, R. F. A synthetic reaction network: Chemical amplification using nonequilibrium autocatalytic reactions coupled in time J. Am. Chem. Soc. 2004,126, 6327-6331.
    (90) Clausell-Tormos, J.; Lieber, D.; Baret, J. C.; El-Harrak, A.; Miller, O. J.; Frenz, L.; Blouwolff, J.; Humphry, K. J.; Koster, S.; Duan, H.; Holtze, C.; Weitz, D. A.; Griffiths, A. D.; Merten, C. A. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms Chem. Biol. 2008,15, 427-437.
    (91) Zheng, B.; Ismagilov, R. F. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow Angew. Chem. Int. Ed. 2005, 44, 2520-2523.
    (92) Song, H.; Li, H. W.; Munson, M. S.; Van Ha, T. G.; Ismagilov, R. F. On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system Anal. Chem. 2006, 78, 4839-4849.
    (93) Kline, T. R.; Runyon, M. K.; Pothiawala, M.; Ismagilov, R. F. ABO, D blood typing and subtyping using plug-based microfluidics Anal. Chem. 2008, 80, 6190-6197.
    
    (94) Takeuchi, S.; Garstecki, P.; Weibel, D. B.; Whitesides, G. M. An axisymmetric flow-focusing microfluidic device Adv. Mater. 2005,17, 1067-1072.
    
    (95) Xu, S.; Nie, Z.; Seo, M.; Lewis, P.; Kumacheva, E.; Stone, H. A.; Garstecki, P.; Weibel, D. B.; Gitlin, I.; Whitesides, G. M. Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition Angew. Chem. Int. Ed. 2005, 44, 3799-3799.
    
    (96) Khan, S. A.; Gunther, A.; Schmidt, M. A.; Jensen, K. F. Microfluidic synthesis of colloidal silica Langmuir 2004, 20, 8604-8611.
    
    (97) Okushima, S.; Nisisako, T.; Torii, T.; Higuchi, T. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices Langmuir 2004, 20, 9905-9908.
    
    (98) Choi, C. H.; Jung, J. H.; Rhee, Y. W.; Kim, D. P.; Shim, S. E.; Lee, C. S. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device Biomed. Microdevices 2007, 9, 855-862.
    
    (99) Hatakeyama, T.; Chen, D. L. L.; Ismagilov, R. F. Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS J. Am. Chem. Soc. 2006,128, 2518-2519.
    
    (100) Fidalgo, L. M.; Whyte, G.; Ruotolo, B. T.; Benesch, J. L. P.; Stengel, F.; Abell, C.; Robinson, C. V.; Huck, W. T. S. Coupling Microdroplet Microreactors with Mass Spectrometry: Reading the Contents of Single Droplets Online Angew. Chem. Int. Ed. 2009, 48, 3665-3668.
    
    (101) Chen, H.; Fang, Q.; Yin, X. F.; Fang, Z. L. Microfluidic chip-based liquid-liquid extraction and preconcentration using a subnanoliter-droplet trapping technique Lab Chip 2005, 5, 719-725.
    
    (102) Edgar, J. S.; Pabbati, C. P.; Lorenz, R. M.; He, M. Y.; Fiorini, G. S.; Chiu, D. T. Capillary electrophoresis separation in the presence of an immiscible boundary for droplet analysis Anal. Chem. 2006, 78, 6948-6954.
    (103) Edgar, J. S.; Milne, G.; Zhao, Y. Q.; Pabbati, C. P.; Lim, D. S. W.; Chiu, D. T. Compartmentalization of Chemically Separated Components into Droplets Angew. Chem. Int. Ed. 2009, 48, 2719-2722.
    (104) Roman, G. T.; Wang, M.; Shultz, K. N.; Jennings, C.; Kennedy, R. T. Sampling and Electrophoretic Analysis of Segmented Flow Streams Using Virtual Walls in a Microfluidic Device Anal. Chem. 2008, 80, 8231-8238.
    (105) Carlsson, K.; Karlberg, B. Determination of octanol-water partition coefficients using a micro-volume liquid-liquid flow extraction system Anal. Chim. Acta 2000, 423, 137-144.
    (106) Engl, W; Tachibana, M.; Colin, A.; Panizza, P. A droplet-based high-throughput tubular platform to extract rate constants of slow chemical reactions Chem. Eng. Sci. 2008, 63, 1692-1695.
    (107) Zheng, B.; Tice, J. D.; Roach, L. S.; Ismagilov, R. F. A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction Angew. Chem. Int. Ed. 2004, 43, 2508-2511.
    (108) Kautz, R. A.; Goetzinger, W. K.; Karger, B. L. High-throughput microcoil NMR of compound libraries using zero-dispersion segmented flow analysis J. Comb. Chem. 2005, 7, 14-20.
    (109) Chen, D.; Du, W. B.; Liu, Y.; Liu, W. S.; Kuznetsov, A.; Mendez, F. E.; Philipson, L. H.; Ismagilov, R. F. The chemistrode: A droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 16843-16848.
    (110) Mugele, F.; Baret, J. C. Electrowetting: from basics to applications J. Phys.: Condens. Matter 2005,17, R705-R774.
    (111) Huebner, A.; Sharma, S.; Srisa-Art, M.; Hollfelder, F.; Edel, J.; B. Demello, A. J. Microdroplets: A sea of applications Lab Chip, 2008, 8, 1244-1254.
    (1) Dittrich,P.S.;Tachikawa,K.;Manz,A.Micro total analysis systems.Latest advancements and trends Anal.Chem.2006,78,3887-3907.
    (2) Vilkner,T.;Janasek,D.;Manz,A.Micro total analysis systems.Recent developments Anal.Chem.2004,76,3373-3385.
    (3) Harrison,D.J.;Fluri,K.;Seiler,K.;Fan,Z.H.;Effenhauser,C.S.;Manz,A.Micromachining a Miniaturized Capillary Electrophoresis Based Chemical Analysis System on a Chip Science 1993,261,895-897.
    (4) Ruzicka,J.Lab-on-valve:universal microflow analyzer based on sequential and bead injection Analyst 2000,125,1053-1060.
    (5) Wang,J.;Tian,B.M.;Wang,J.Y.;Lu,J.M.;Olsen,C.;Yarnitzky,C.;Olsen,K.;Hammerstrom,D.;Bennett,W.Stripping analysis into the 21st century:faster,smaller,cheaper,simpler and better 7th European Conference on ElectroAnalysis(ESEAC 98) 1998,429-435.
    (6) Fang,Q.;Sun,M.;Huang,Y.Z.Capillary-based microfluidic analysis systems Anal.Bioanal.Chem.2009,393,63-66.
    (7) Hisamoto,H.;Nakashima,Y.;Kitamura,C.;Funano,S.;Yasuoka,M.;Morishima,K.;Kikutani,Y.;Kitamod,T.;Terabe,S.Capillary-assembled microchip for universal integration of various chemical functions onto a single microfluidic device Anal. Chem. 2004, 76, 3222-3228.
    (8) Linder, V.; Sia, S. K.; Whitesides, G. M. Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices Anal. Chem. 2005, 77,64-71.
    (9) Hatakeyama, T.; Chen, D. L. L.; Ismagilov, R. F. Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS J. Am. Chem. Soc. 2006,128, 2518-2519.
    (10) Zheng, B.; Ismagilov, R. F. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow Angew. Chem. Int. Ed. 2005, 44, 2520-2523.
    (11) Du, W. B.; Fang, Q.; He, Q. H.; Fang, Z. L. High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows Anal. Chem. 2005, 77, 1330-1337.
    (12) Fang, Q.; Shi, X. T.; Du, W. B.; He, Q. H.; Shen, H.; Fang, Z. L. High-throughput microfluidic sample-introduction systems TrAC-Trends Anal. Chem. 2008, 27, 521-532.
    (13) Fang, Q.; Du, W. B.; He, Q. H.; Fang, Z. L. High throughput sample introduction system for microfluidic chips Chem. J. Chin. U. 2004, 25, 1442-1444.
    (14) Du, W. B.; Fang, Q.; Fang, Z. L. Microfluidic sequential injection analysis in a short capillary Anal. Chem. 2006, 78, 6404-6410.
    (15) Liu, J.; Fang, Q.; Du, W. B. Miniaturized capillary electrophoresis system with slotted micro-vial array based sample introduction system and ultraviolet detection Chin. J. Anal. Chem. 2005, 33, 1799-1802.
    (16) Zhang, T.; Fang, Q.; Du, W. B.; Fu, J. L. Microfluidic Picoliter-Scale Translational Spontaneous Sample Introduction for High-Speed Capillary Electrophoresis Anal. Chem. 2009, 81, 3693-3698.
    (17) Sun, M.; Du, W. B.; Fang, Q. Microfluidic liquid-liquid extraction system based on stopped-flow technique and liquid core waveguide capillary Talanta 2006, 70, 392-396.
    
    (18) Du, W. B.; Dong, L.; Fang, Q. Flexible capillary-based sequential introduction for multiphase droplet microfluidic systems The Proceedings of μTAS 2007 2007, 2, 943-945.
    (1) Teh,S.Y.;Lin,R.;Hung,L.H.;Lee,A.P.Droplet microfluidics Lab Chip 2008,8,198-220.
    (2) Song,H.;Chen,D.L.;Ismagilov,R.F.Reactions in droplets in microflulidic channels Angew.Chem.Int.Ed.2006,45,7336-7356.
    (3) Chen,D.L.L.;Ismagilov,R.F.Mierofluidie cartridges preloaded with nanoliter plugs of reagents:an alternative to 96-well plates for screening Curr.Opin.Chem.Biol.2006,I0,226-231.
    (4) Hung,L.H.;Choi,K.M.;Tseng,W.Y.;Tan,Y.C.;Shea,K.J.;Lee,A.P.Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanopartiele synthesis Lab Chip 2006,6,174-178.
    (5) Fidalgo,L.M.;Abell,C.;Huck,W.T.S.Surface-induced droplet fusion in microfluidie devices Lab Chip 2007,7,984-986.
    (6) Chiu,D.T.;Wilson,C.F.;Ryttsen,F.;Stromberg,A.;Farre,C.;Karlsson,A.;Nordholm,S.;Gaggar,A.;Modi,B.P.;Moscho,A.;Garza-Lopez,R.A.;Orwar,O.;Zare,R.N.Chemical transformations in individual ultrasmall biomimetic containers Science 1999,283,1892-1895.
    (7) Zeng,S.J.;Li,B.W.;Su,X.O.;Qin,J.H.;Lin,B.C.Microvalve-actuated precise control of individual droplets in microfluidic devices Lab Chip 2009,9,1340-1343.
    (8) Li,L.;Mustafi,D.;Fu,Q.;Tereshko,V.;Chen,D.L.L.;Tice,J.D.;Ismagilov,R.F.Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins Proc.Natl.Acad.Sci.U.S.A.2006,103,19243-19248.
    (9) Zheng,B.;Gerdts,C.J.;Ismagilov,R.F.Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization Curr.Opin.Struct.Biol.2005,15,548-555.
    (10) Zheng,B.;Tice,J.D.;Ismagilov,R.F.Formation of droplets of in microfluidic channels alternating composition and applications to indexing of concentrations in droplet-based assays Anal.Chem.2004,76,4977-4982.
    (11) Du,W.B.;Fang,Q.;He,Q.H.;Fang,Z.L.High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows Anal.Chem.2005,77,1330-1337.
    (12) Du,W.B.;Fang,Q.;Fang,Z.L.Microfluidic sequential injection analysis in a short capillary Anal.Chem.2006,78,6404-6410.
    (13) Fang,Q.;Shi,X.T.;Du,W.B.;He,Q.H.;Shen,H.;Fang,Z.L.High-throughput microfluidic sample-introduction systems TrAC-Trends Anal.Chem.2008,27,521-532.
    (14) Du,W.B.;Dong,L.;Fang,Q.Flexible capillary-based sequential introduction for multiphase droplet microfluidic systems The Proceedings of μTAS 20072007,2,943-945.
    (15) Jia,Z.J.;Fang,Q.;Fang,Z.L.Bonding of glass microfluidic chips at room temperatures Anal.Chem.2004,76,5597-5602.
    (16) He,Q.H.;Fang,Q.;Du,W.B.;Fang,Z.L.Fabrication of a monolithic sampling probe system for automated and continuous sample introduction in microchip-based CE Electrophoresis 2007,28,2912-2919.
    (17) Song,H.;Li,H.W.;Munson,M.S.;Van Ha,T.G.;Ismagilov,R.F.On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system Anal.Chem.2006,78,4839-4849.
    (18) Chen,D.L.;Gerdts,C.J.;Ismagilov,R.F.Using microfluidics to observe the effect of mixing on nucleation of protein crystals J.Am.Chem.Soc.2005,127,9672-9673.
    (1) Szucs,Z.;B.Szabady;M.Szatmary;G.Cimpan;S.Nyiredy.High-throughput analytical strategy with combined planar and column liquid chromatography for improvement of the poppy(Papaver somniferum L.) with a high alkaloid content Chromatographia 2002,56,S49-S54.
    (2) Yrjonen,T.;J.P.Haansuu;K.Haahtela;H.Vuorela;P.Vuorela.Rapid screening of indole-3-acetic acid and other indole derivatives in bacterial culture broths by planar chromatography JPC-J.Planar Chromatogr.-Mod.TLC 2001,14,47-52.
    (3) Nurok,D.;J.M.Koers;M.A.Carmichael.Role of buffer concentration and applied voltage in obtaining a good separation in planar electrochromatography J.Chromatogr.A 2003,983,247-253.
    (4) Nyiredy,S.Fully on-line TLC/HPTLC with diode-array detection and continuous development,part 1:Description of the method and basic possibilities JPC-J.Planar Chromatogr.-Mod.TLC 2002,15,454-457.
    (5) Nurok,D.;J.M.Koers;A.L.Novotny;M.A.Carmichael;J.J.Kosiba;R.E.Santini;G.L.Hawkins;R.W.Replogle.Apparatus and initial results for pressurized planar electrochromatography Anal.Chem.2004,76,1690-1695.
    (6) Dzido,T.H.;P.W.Plocharz;P.Slazak.Apparatus for pressurized planar electrochromatography in a completely closed system Anal.Chem.2006,78,4713-4721.
    (7) Hauck,H.E.;M.Schulz.Ultra thin-layer chromatography Chromatographia 2003,57,S313-S315.
    (8) Fang,Q.;W.B.Du;Q.H.He;Z.L.Fang.High throughput sample introduction system for microfluidic chips Chem.J.Chin.U.2004,25,1442-1444.
    (9) 中华人民共和国药典,国家药典委员会主编,化学工业出版社,北京,2005年版一部,p.16.
    (10) Van Berkel,G.J.;A.D.Sanchez;J.M.E.Quirke.Thin-layer chromatography and electrospray mass spectrometry coupled using a surface sampling probe Anal.Chem.2002,74,6216-6223.
    (11) Van Berkel,G.J.;M.J.Ford;M.A.Deibel.Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization Anal.Chem.2005,77,1207-1215.
    (12) Jautz,U.;G.Morlock.Efficacy of planar chromatography coupled to(tandem)mass spectrometry for employment in trace analysis J.Chromatogr.A 2006,1128,244-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700