用户名: 密码: 验证码:
微型化吸收光度分析系统及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过近20年的发展,微流控技术因其强大的微流体自动化操控能力和系统的微型化潜力,被众多学者视为分析仪器微型化、自动化发展最具潜力的革命性技术。然而微流控吸收光度分析系统的发展却遭遇到一些问题,如微系统内检测光程短、灵敏度低,吸光度检测器与电子电路和流体驱动部件的综合集成度不高等。
     第一章首先综述了微流控长光程吸收光度分析系统的研究现状。然后,对当前微流控领域中适用于现场检测和床边检验的微流体驱动技术和试剂预封装技术进行了介绍。
     第二章报道了一种基于液芯波导技术的全集成手持式微流控光度计。光度计所有部件包括吸光度检测器、液体驱动装置和电路及电池都被集成在12cm×4.5 cm×2.1 cm的仪器内。该光度计将流通池、取样探针和光耦合器集成加工于一根液芯波导毛细管上,显著简化了吸光度检测器结构。首次提出在液芯波导毛细管上加工U型拐弯光耦合器的方法,实现检测光经毛细管侧壁的导入和导出,显著提高了仪器工作的可靠性。采用两只波长为260 nm和280 nm的紫外发光二极管作为光源,实现了双波长的光度检测。该仪器成功应用于微量脱氧核糖核酸试样的纯度和含量测定,以350 nL的试样消耗获得了约15 mm的有效光程。此外,该仪器还被成功用于血清总胆固醇的分析,初步展示了微型手持光度计在床边检验中的应用潜力。
     第三章报道了一种基于光反射式流通池的全集成手持式微流控光度计。光度计由一次性使用光反射式流通池、重复使用的光电检测器和按压式微泵三部分构成。反射式流通池由涂覆了镜面漆的毛细管构成,以不到400 nL的检测体积获得了近8 mm的有效光程。毛细管流通池内预封装了以油相间隔的试剂溶液、调零溶液、空白溶液和标准溶液四个液段,配合按压泵,实现了微量试样的准确量取和引入、试样试剂的在线混合和各溶液区段的顺序驱动。各区段溶液顺序通过流通池可以依次完成光度计校正、标准溶液吸光度测定和样品吸光度测定等操作步骤,显著简化了吸光度测定的过程。该光度计成本低廉,用一次性毛细管流通池克服了流通池重复使用带来的试样交叉污染问题,用光电检测器实现了高精度的测量,因此在床边检验领域具有很好的应用前景。
After twenty years'development, microfluidics has been perceived as one of the most promising revolutionary technologies for on-site analysis and point of care testing (POCT) for its advantage of low sample consumption, rapid analysis, automation and miniaturization of device. Nevertheless, there are still two challenges in the miniaturization of absorption detection systems, including the short path-lengths in miniaturized systems constraining the detection sensitivity, and the lack of fully-integrated absorption spectrometers involving absorption detector, controlling circuit and fluid-handling device.
     In Chapter One, the development and the recent progress of long path length microfluidic absorption detection systems are reviewed. The fluid driving techniques and reagent preloading techniques suitable for point of care application are also introduced.
     In Chapter Two, a fully integrated hand-held photometer based on the liquid-core waveguide (LCW) detection principle for nanoliter-scale samples was developed. All components of the photometer including light-emitting diode (LED) light source, LCW flow cell, photodiode detector, dropper pump, electronic circuit, liquid-crystal display screen, and battery were fully integrated into a small-sized (12 x 4.5 x 2.1 cm) instrument. A bent optical coupler was developed to conduct the detection light into or out of the LCW flow cell through its sidewall. This design allowed the sampling probe, input and output optical couplers, and LCW flow cell to be integrated in a single Teflon AF capillary, which significantly simplified system structure, improved working reliability, and reduced sample consumption. Two UV-LEDs were used as light source in the photometer to achieve dual wavelength detection at 260 and 280 nm, which was applied to assess on-site the quality and quantity of DNA samples. The effective optical path length of the photometer was-15 mm with a sample consumption of only 350 nL. The potential of the photometer applied in POCT was also demonstrated in the measurement of total cholesterol in serum samples.
     In Chapter Three, a totally-integrated handheld photometer based on multi-reflection principle for POCT was developed. The photometer consists of a disposable multi-reflection flow cell, a permanent absorption detector and a dropper pump. The disposable multi-reflection flow cell was composed of a fused silica capillary with specular paint coating. The effective optical path length of the multi-reflection flow cell was -8 mm with a detection volume less than 400 nL. The capillary was also functioned as a liquid cartridge which was preloaded with plugs of reagents segmented by oil. A series of operations including liquid metering, introducing, mixing and driving were realized using the dropper pump, to achieve photometer calibration, and absorbance measurements of sample and standard solutions. The present photometer has advantages of low cost and no cross contamination between different samples, and has potential in the application of POCT.
引文
1. Whitesides G M. The origins and the future of microfluidics. Nature,2006,442(7101), 368-373.
    2. 方肇伦.微流控分析芯片.北京:科学出版社,2003.
    3. Dempsey E, Diamond D, Smyth M R, Urban G, Jobst G, Moser I, Verpoorte E M J, Manz A, Widmer H M, Rabenstein K, Freaney R. Design and development of a miniaturised total chemical analysis system for on-line lactate and glucose monitoring in biological samples. Anal. Chim. Acta,1997,346(3),341-349.
    4. Cheng X H, Irimia D, Dixon M, Sekine K, Demirci U, Zamir L, Tompkins R G, Rodriguez W, Toner M. A microfluidic device for practical label-free CD4+T cell counting of HIV-infected subjects. Lab Chip,2007,7(2),170-178.
    5. Song H, Li H W, Munson M S, Van Ha T G, Ismagilov R F. On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system. Anal. Chem.,2006,78(14),4839-4849.
    6. Murphy B M, He X Y, Dandy D, Henry C S. Competitive immunoassays for simultaneous detection of metabolites and proteins using micromosaic patterning. Anal. Chem.,2008, 80(2),444-450.
    7. Salim M, O'Sullivan B, McArthur S L, Wright P C. Characterization of fibrinogen adsorption onto glass microcapillary surfaces by ELISA. Lab Chip,2007,7(1),64-70.
    8. Ahn C H, Choi J W, Beaucage G, Nevin J H, Lee J B, Puntambekar A, Lee J Y. Disposable Smart lab on a chip for point-of-care clinical diagnostics. Proc. IEEE,2004,92(1),154-173.
    9. Sia S K, Linder V, Parviz B A, Siegel A, Whitesides G M. An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew. Chem. Inter. Ed., 2004,43(4),498-502.
    10. Easley C J, Karlinsey J M, Bienvenue J M, Legendre L A, Roper M G, Feldman S H, Hughes M A, Hewlett E L, Merkel T J, Ferrance J P, Landers J P. A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc. Natl. Acad. Sci. U. S. A., 2006,103(51),19272-19277.
    11. Christodoulides N, Mohanty S, Miller C S, Langub M C, Floriano P N, Dharshan P, Ali M F, Bernard B, Romanovicz D, Anslyn E, Fox P C, McDevitt J T. Application of microchip assay system for the measurement of C-reactive protein in human saliva. Lab Chip,2005,5(3), 261-269.
    12. Biehl M, Velten T. Gaps and challenges of Point-of-Care technology. IEEE Sens. J.,2008, 8(5-6),593-600.
    13. Chin C D, Linder V, Sia S K. Lab-on-a-chip devices for global health:Past studies and future opportunities. Lab Chip,2007,7(1),41-57.
    14. Tudos A J, Besselink G A J, Schasfoort R B M. Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip,2001,1(2),83-95.
    15. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam M R, Weigl B H. Microfluidic diagnostic technologies for global public health. Nature,2006,442(7101),412-418.
    16. Park J Y, Kricka L J. Prospects for nano-and microtechnologies in clinical point-of-care testing. Lab Chip,2007,7(5),547-549.
    17. Varmus H, Klausner R, Zerhouni E, Acharya T, Daar A S, Singer P A. Grand challenges in global health. Science,2003,302(5644),398-399.
    18. Becker H. Hype, hope and hubris:the quest for the killer application in microfluidics. Lab Chip,2009,9(15),2119-2122.
    19. Grumann M, Steigert J, Riegger L, Moser I, Enderle B, Riebeseel K, Urban G, Zengerle R, Ducree J. Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance. Biomed. Microdevices,2006,8(3),209-214.
    20. Steigert J, Grumann M, Brenner T, Riegger L, Harter J, Zengerle R, Ducree J. Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip,2006,6(8),1040-1044.
    21. Steigert J, Grumann M, Dube M, Streule W, Riegger L, Brenner T, Koltay P, Mittmann K, Zengerle R, Ducree J. Direct hemoglobin measurement on a centrifugal microfluidic platform for point-of-care diagnostics. Sens. Actuators, A,2006,130(228-233.
    22. Noda T, Takao H, Yoshioka K, Oku N, Ashiki M, Sawada K, Matsumoto K, Ishida M. Performance of absorption photometry microchip for blood hemoglobin measurement integrated with processing circuits and Si(110) 45 degrees mirrors. Sens. Actuators, B,2006, 119(1),245-250.
    23. Greenway G M, Haswell S J, Petsul P H. Characterisation of a micro-total analytical system for the determination of nitrite with spectrophotometric detection. Anal. Chim. Acta,1999, 387(1),1-10.
    24. Petsul P H, Greenway G M, Haswell S J. The development of an on-chip micro-flow injection analysis of nitrate with a cadmium reductor. Anal. Chim. Acta,2001,428(2), 155-161.
    25. Mogensen K B, El-Ali J, Wolff A, Kutter J P. Integration of polymer waveguides for optical detection in micro fabricated chemical analysis systems. Appl. Opt.,2003,42(19),4072-4079.
    26. Mogensen K B, Petersen N J, Hubner J, Kutter J P. Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices. Electrophoresis,2001,22(18),3930-3938.
    27. Petersen N J, Mogensen K B, Kutter J P. Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices. Electrophoresis,2002,23(20),3528-3536.
    28. Ro K W, Lim K, Shim B C, Hahn J H. Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis. Anal. Chem.,2005,77(16),5160-5166.
    29. Collins G E, Lu Q, Pereira N, Wu P. Long pathlength, three-dimensional absorbance microchip. Talanta,2007,72(1),301-304.
    30. Llobera A, Demming S, Wilke R, Buttgenbach S. Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing. Lab Chip,2007,7(11),1560-1566.
    31. Salimi-Moosavi H, Jiang Y T, Lester L, McKinnon G, Harrison D J. A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices. Electrophoresis,2000,21(7),1291-1299.
    32. Mishra S K, Dasgupta P K. Capillary scale light emitting diode based multi-reflection absorbance detector. Anal. Chim. Acta,2007,605(2),166-174.
    33. Sun Y, Yu X, Nguyen N T, Shum P, Kwok Y C. Long path-length axial absorption detection in photonic crystal fiber. Anal. Chem.,2008,80(11),4220-4224.
    34. Byrne R, Kaltenbacher E, Waterbury R; Autonomous in-situ analysis of the upper ocean-Construction of a compact, long pathlength absorbance spectrometer aimed at order-of-magnitude improvements in the sensitivity of spectrophotometric analysis. Sea Technology,1999,40(2),71-75.
    35. Waterbury R D, Yao W S, Byrne R H. Long pathlength absorbance spectroscopy:trace analysis of Fe(II) using a 4.5m liquid core waveguide. Anal. Chim. Acta,1997,357(1-2), 99-102.
    36. Yao W S, Byrne R H. Determination of trace chromium(VI) and molybdenum(VI) in natural and bottled mineral waters using long pathlength absorbance spectroscopy (LPAS). Talanta, 1999,48(2),277-282.
    37. Callahan M R, Rose J B, Byrne R H. Long pathlength absorbance spectroscopy:trace copper analysis using a 4.4 m liquid core waveguide. Talanta,2002,58(5),891-898.
    38. Duggan M P, McCreedy T, Aylott J W. A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3D architecture. Analyst,2003,128(11),1336-1340.
    39. Du W B, Fang Q, He Q H, Fang Z L. High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows. Anal. Chem.,2005,77(5),1330-1337.
    40. Liu R H, Yang J N, Lenigk R, Bonanno J, Grodzinski P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem.,2004,76(7),1824-1831.
    41. Liu R H, Nguyen T, Schwarzkopf K, Fuji H S, Petrova A, Siuda T, Peyvan K, Bizak M, Danley D, McShea A. Fully integrated miniature device for automated gene expression DNA microarray processing. Anal. Chem.,2006,78(6),1980-1986.
    42. Liu R H, Lodes M J, Nguyen T, Siuda T, Slota M, Fuji H S, McShea A. Validation of a fully integrated microfluidic array device for influenza A subtype identification and sequencing. Anal. Chem.,2006,78(12),4184-4193.
    43. Qin L.D, Vermesh O, Shi Q H, Heath J R. Self-powered microfluidic chips for multiplexed protein assays from whole blood. Lab Chip,2009,9(14),2016-2020.
    44. Do J, Lee S, Han J Y, Kai J H, Hong C C, Gao C A, Nevin J H, Beaucage G, Ahn C H. Development of functional lab-on-a-chip on polymer for point-of-care testing of metabolic parameters. Lab Chip,2008,8(12),2113-2120.
    45. Liu C C, Qiu X B, Ongagna S, Chen D F, Chen Z Y, Abrams W R, Malamud D, Corstjens P, Bau H H. A timer-actuated immunoassay cassette for detecting molecular markers in oral fluids. Lab Chip,2009,9(6),768-776.
    46. Linder V, Sia S K, Whitesides G M. Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices. Anal. Chem.,2005,77(1),64-71.
    47. Chen D L L, Ismagilov R F. Microfluidic cartridges preloaded with nanoliter plugs of reagents:an alternative to 96-well plates for screening. Curr. Opin. Chem. Biol.,2006,10(3), 226-231.
    48. Boden R, Lehto M, Margell J, Hjort K, Schweitz J A. On-chip liquid storage and dispensing for lab-on-a-chip applications. J. Micromech. Microeng.,2008,18(7),1-7.
    49. Weng K Y, Chou N J, Cheng J W. Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays. Lab Chip,2008,8(7),1216-1219.
    50. Andersson P, Jesson G, Kylberg G, Ekstrand G, Thorsen G. Parallel nanoliter microfluidic analysis system. Anal. Chem.,2007,79(11),4022-4030.
    51. Lu C M, Xie Y B, Yang Y, Cheng M M C, Koh C G, Bai Y L, Lee L J. New valve and bonding designs for microfluidic biochips containing proteins. Anal. Chem.,2007,79(3), 994-1001.
    52. Grumann M, Geipel A, Riegger L, Zengerle R, Ducree J. Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip,2005,5(5),560-565.
    53. Haeberle S, Brenner T, Zengerle R, Ducree J. Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip,2006,6(6),776-781.
    54. Steigert J, Brenner T, Grumann M, Riegger L, Lutz S, Zengerle R, Ducree J. Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk. Biomed. Microdevices,2007,9(5),675-679,
    55. Cho Y K, Lee J G, Park J M, Lee B S, Lee Y, Ko C. One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip,2007,7(5), 565-573.
    56. Kim N, Dempsey C M, Zoval J V, Sze J Y, Madou M J. Automated microfluidic compact disc (CD) cultivation system of Caenorhabditis elegans. Sens. Actuators, B,2007,122(2), 511-518.
    57. Kim J, Jang S H, Jia G Y, Zoval J V, Da Silva N A, Madou M J. Cell lysis on a microfluidic CD (compact disc). Lab Chip,2004,4(5),516-522.
    58. Jia G Y, Ma K S, Kim J, Zoval J V, Peytavi R, Bergeron M G, Madou M J. Dynamic automated DNA hybridization on a CD (compact disc) fluidic platform. Sens. Actuators, B, 2006,114(1),173-181.
    59. Peng X Y, Li P C H, Yu H Z, Parameswaran M, Chou W L. Spiral microchannels on a CD for DNA hybridizations. Sens. Actuators, B,2007,128(1),64-69.
    60. Duffy D C, Gillis H L, Lin J, Sheppard N F, Kellogg G J. Microfabricated centrifugal microfluidic systems:Characterization and multiple enzymatic assays. Anal. Chem.,1999, 71(20),4669-4678.
    61. Riegger L, Grumann M, Steigert J, Lutz S, Steinert C P, Mueller C, Viertel J, Prucker O, Ruhe J, Zengerle R, Ducree J. Single-step centrifugal hematocrit determination on a 10-$ processing device. Biomed. Microdevices,2007,9(6),795-799.
    62. Watts A S, Urbas A A, Moschou E, Gavalas V G, Zoval J V, Madou M, Bachas L G. Centrifugal microfluidics with integrated sensing microdome optodes for multiion detection. Anal. Chem.,2007,79(21),8046-8054.
    63. Johnson R D, Badr I H A, Barrett G, Lai S Y, Lu Y M, Madou M J, Bachas L G. Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics. Anal. Chem.,2001,73(16),3940-3946.
    64. Badr I H A, Johnson R D, Madou M J, Bachas L G. Fluorescent ion-selective optode membranes incorporated onto a centrifugal microfluidics platform. Anal. Chem.,2002, 74(21),5569-5575.
    65. Puckett L G, Dikici E, Lai S, Madou M, Bachas L G, Daunert S. Investigation into the applicability of the centrifugal microfluidics development of protein-platform for the ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter. Analytical Chemistry,2004,76(24),7263-7268.
    66. Riegger L, Grumann M, Nann T, Riegler J, Ehlert O, Bessler W, Mittenbuehler K, Urban G, Pastewka L, Brenner T, Zengerle R, Ducree J. Read-out concepts for multiplexed bead-based fluorescence immunoassays on centrifugal microfluidic platforms. Sensors and Actuators a-Physical,2006,126(2),455-462.
    67. Lai S, Wang S N, Luo J, Lee L J, Yang S T, Madou M J. Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal. Chem.,2004,76(7), 1832-1837.
    68. Lee B S, Lee J N, Park J M, Lee J G, Kim S, Cho Y K, Ko C. A fully automated immunoassay from whole blood on a disc. Lab Chip,2009,9(11),1548-1555.
    69. Gascoyne P R C, Vykoukal J V, Schwartz J A, Anderson T J, Vykoukal D M, Current K W, McConaghy C, Becker F F, Andrews C. Dielectrophoresis-based programmable fluidic processors. Lab Chip,2004,4(4),299-309.
    70. Schwartz J A, Vykoukal J V, Gascoyne P R C. Droplet-based chemistry on a programmable micro-chip. Lab Chip,2004,4(1),11-17.
    71. Chen J Z, Darhuber A A, Troian S. M, Wagner S. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation. Lab Chip,2004,4(5),473-480.
    72. Guttenberg Z, Muller H, Habermuller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A. Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip,2005,5(3),308-317.
    73. Zhao Y J, Cho S K. Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles. Lab Chip,2007,7(2),273-280.
    74. Chatterjee D, Hetayothin B, Wheeler A R, King D J, Garrell R L. Droplet-based microfluidics with nonaqueous solvents and solutions. Lab Chip,2006,6(2),199-206.
    75. Brassard D, Malic L, Normandin F, Tabrizian M, Veres T. Water-oil core-shell droplets for electrowetting-based digital microfluidic devices. Lab Chip,2008,8(8),1342-1349.
    76. Nanayakkara Y S, Moon H, Payagala T, Wijeratne A B, Crank J A, Sharma P S, Armstrong D W. A fundamental study on electrowetting by traditional and multifunctional ionic liquids: Possible use in electrowetting on dielectric-based microfluidic applications. Anal. Chem., 2008,80(20),7690-7698.
    77. Gong J, Kim C J. All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip,2008,8(6),898-906.
    78. Wang K L, Jones T B, Raisanen A. DEP actuated nanoliter droplet dispensing using feedback control. Lab Chip,2009,9(7),901-909.
    79. Satoh W, Hosono H, Suzuki H. On-chip microfluidic transport and mixing using electrowetting and incorporation of sensing functions. Anal. Chem.,2005,77(21), 6857-6863.
    80. Zeng J, Korsmeyer T. Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip,2004,4(4),265-277.
    81. Baird E, Young P, Mohseni K. Electrostatic force calculation for an EWOD-actuated droplet. Microfluid. Nanofluid.,2007,3(6),635-644.
    82. Baviere R, Boutet J, Fouillet Y. Dynamics of droplet transport induced by electrowetting actuation. Microfluid. Nanofluid.,2008,4(4),287-294.
    83. Lu H W, Bottausci F, Fowler J D, Bertozzi A L, Meinhart C, Kim C J. A study of EWOD-driven droplets by PIV investigation. Lab Chip,2008,8(3),456-461.
    84. Song J H, Evans R, Lin Y Y, Hsu B N, Fair R B. A scaling model for electrowetting-on-dielectric microfluidic actuators. Microfluid. Nanofluid.,2009,7(1),75-89.
    85. Chatterjee D, Shepherd H, Garrell R L. Electromechanical model for actuating liquids in a two-plate droplet microfluidic device. Lab Chip,2009,9(9),1219-1229.
    86. Cooney C G, Chen C Y, Emerling M R, Nadim A, Sterling J D. Electrowetting droplet microfluidics on a single planar surface.Microfluid. Nanofluid.,2006,2(5),435-446.
    87. Fan S K, Hsieh T H, Lin D Y. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting. Lab Chip,2009,9(9), 1236-1242.
    88. Fan S K, Huang P W, Wang T T, Peng Y H. Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab Chip,2008,8(8), 1325-1331.
    89. Fan S K, Yang H P, Wang T T, Hsu W. Asymmetric electrowetting-moving droplets by a square wave. Lab Chip,2007,7(10),1330-1335.
    90. Watson M W L, Abdelgawad M, Ye G, Yonson N, Trottier J, Wheeler A R. Microcontact printing-based fabrication of digital microfluidic devices. Anal. Chem.,2006,78(22), 7877-7885.
    91. Abdelgawad M, Wheeler A R. Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid. Nanofluid.,2008,4(4),349-355.
    92. Abdelgawad M, Freire S L S, Yang H, Wheeler A R. All-terrain droplet actuation. Lab Chip, 2008,8(5),672-677.
    93. Wheeler A R, Moon H, Kim C J, Loo J A, Garrell R L. Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem.,2004,76(16),4833-4838.
    94. Jebrail M J, Wheeler A R. Digital Microfluidic Method for Protein Extraction by Precipitation. Anal. Chem.,2009,81(1),330-335.
    95. Nichols K P, Gardeniers H. A digital microfluidic system for the investigation of pre-steady-state enzyme kinetics using rapid quenching with MALDI-TOF mass spectrometry. Anal. Chem.,2007,79(22),8699-8704.
    96. Moon H, Wheeler A R, Garrell R L, Loo J A, Kim C J. An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip, 2006,6(9),1213-1219.
    97. Wheeler A R, Moon H, Bird C A, Loo R R O, Kim C J, Loo J A, Garrell R L. Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal. Chem.,2005,77(2),534-540.
    98. Cho S K, Zhao Y J, Kim C J. Concentration and binary separation of micro particles for droplet-based digital microfluidics. Lab Chip,2007,7(4),490-498.
    99. Zhao Y J, Cho S K. Microparticle sampling by electrowetting-actuated droplet sweeping. Lab Chip,2006,6(1),137-144.
    100. Miller E M, Wheeler A R. A digital microfluidic approach to homogeneous enzyme assays. Anal. Chem.,2008,80(5),1614-1619.
    101. Shah G J, Ohta A T, Chiou E P Y, Wu M C, Kim C J. EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip,2009,9(12),1732-1739.
    102. Pollack M G, Shenderov A D, Fair R B. Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip,2002,2(2),96-101.
    103. Paik P, Pamula V K, Fair R B. Rapid droplet mixers for digital microfluidic systems. Lab Chip,2003,3(4),253-259.
    104. Paik P, Pamula V K, Pollack M G, Fair R B. Electrowetting-based droplet mixers for microfluidic systems. Lab Chip,2003,3(1),28-33.
    105. Srinivasan V, Pamula V K, Fair R B. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip,2004,4(4),310-315.
    106. Abdelgawad M, Watson M W L, Wheeler A R. Hybrid microfluidics:A digital-to-channel interface for in-line sample processing and chemical separations. Lab Chip,2009,9(8), 1046-1051.
    107. Sista R, Hua Z S, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V. Development of a digital microfluidic platform for point of care testing. Lab Chip,2008, 8(12),2091-2104.
    108. Yang H, Luk V N, Abeigawad M, Barbulovic-Nad I, Wheeer A R. A World-to-chip interface for digital microfluidics. Anal. Chem.,2009,81(3),1061-1067.
    1. Yager P, Domingo G J, Gerdes J. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng.,2008,10,107-144.
    2. Biehl M, Velten T. Gaps and challenges of Point-of-Care technology. IEEE Sens. J.,2008, 8(5),593-600.
    3. Tudos A J, Besselink G A J, Schasfoort R B M. Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip,2001,1(2),83-95.
    4. Park J Y, Kricka L J. Prospects for nano-and microtechnologies in clinical point-of-care testing. Lab Chip,2007,7(5),547-549.
    5. Dobson M G, Galvin P, Barton D E. Emerging technologies for point-of-care genetic testing. Expert Rev. Mol. Diagn.,2007,7(4),359-370.
    6. Linder V. Microfluidics at the crossroad with point-of-care diagnostics. Analyst,2007, 132(12),1186-1192.
    7. Cheng X H, Irimia D, Dixon M, Sekine K, Demirci U, Zamir L, Tompkins R G, Rodriguez W, Toner M. A microfluidic device for practical label-free CD4+T cell counting of HIV-infected subjects. Lab Chip,2007,7(2),170-178.
    8. Wu Z Y, Chen K, Qu B Y, Tian X X, Wang X J, Fang F. A thermostat chip of indium tin oxide glass substrate for static polymerase chain reaction and in situ real time fluorescence monitoring. Anal. Chim. Acta,2008,610(1),89-96.
    9. Do J, Lee S, Han J Y, Kai J H, Hong C C, Gao C A, Nevin J H, Beaucage G, Ahn C H. Development of functional lab-on-a-chip on polymer for point-of-care testing of metabolic parameters. Lab Chip,2008,8(12),2113-2120.
    10. Stiles T, Fallon R, Vestad T, Oakey J, Marr D W M, Squier J, Jimenez R. Hydrodynamic focusing for vacuum-pumped microfluidics. Microfluid. Nanofluidics,2005,1(3),280-283.
    11. Murphy B M, He X Y, Dandy D, Henry C S. Competitive immunoassays for simultaneous detection of metabolites and proteins using micromosaic patterning. Anal. Chem.,2008,80(2), 444-450.
    12. Salim M, O'Sullivan B, McArthur S L, Wright P C. Characterization of fibrinogen adsorption onto glass microcapillary surfaces by ELISA. Lab Chip,2007,7(1),64-70.
    13. Hong J W, Chung K H, Yoon H C. Fluorescence affinity sensing by using a self-contained fluid manoeuvring microfluidic chip. Analyst,2008,133(4),499-504.
    14. Ahn C H, Choi J W, Beaucage G, Nevin J H, Lee J B, Puntambekar A, Lee J Y. Disposable Smart lab on a chip for point-of-care clinical diagnostics. Proc. IEEE,2004,92(1),154-173.
    15. Thorslund S, Klett O, Nikolajeff F, Markides K, Bergquist J. A hybrid poly(dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening. Biomed. Microdevices,2006,8(1),73-79.
    16. Boden R, Lehto M, Margell J, Hjort K, Schweitz J A. On-chip liquid storage and dispensing for lab-on-a-chip applications. J. Micromech. Microeng.,2008,18(7).
    17. Sista R, Hua Z S, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V. Development of a digital microfluidic platform for point of care testing. Lab Chip,2008, 8(12),2091-2104.
    18. Liu C C, Qiu X B, Ongagna S, Chen D F, Chen Z Y, Abrams W R, Malamud D, Corstjens P, Bau H H. A timer-actuated immunoassay cassette for detecting molecular markers in oral fluids. Lab Chip,2009,9(6),768-776.
    19. Meagher R J, Hatch A V, Renzi R F, Singh A K. An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab Chip,2008,8(12),2046-2053.
    20. Liu R H, Yang J N, Lenigk R, Bonanno J, Grodzinski P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem.,2004,76(7),1824-1831.
    21. Weng K Y, Chou N J, Cheng J W. Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays. Lab Chip,2008,8(7),1216-1219.
    22. Splawn B G, Lytle F E. On-chip absorption measurements using an integrated waveguide. Anal. Bioanal. Chem.,2002,373(7),519-525.
    23. Balslev S, Jorgensen A M, Bilenberg B, Mogensen K B, Snakenborg D, Geschke O, Kutter J P, Kristensen A. Lab-on-a-chip with integrated optical transducers. Lab Chip,2006,6(2), 213-217.
    24. Malic L, Kirk A G. Integrated miniaturized optical detection platform for fluorescence and absorption spectroscopy. Sens. Actuators, A,2007,135(2),515-524.
    25. Kee J S, Poenar D P, Neuzil P, Yobas L. Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements. Sens. Actuators, B, 2008,134(2),532-538.
    26. Collins G E, Lu Q, Pereira N, Wu P. Long pathlength, three-dimensional absorbance microchip. Talanta,2007,72(1),301-304.
    27. Mogensen K B, El-Ali J, Wolff A, Kutter J P. Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems. Appl. Opt.,2003,42(19),4072-4079.
    28. Steigert J, Grumann M, Dube M, Streule W, Riegger L, Brenner T, Koltay P, Mittmann K, Zengerle R, Ducree J. Direct hemoglobin measurement on a centrifugal microfluidic platform for point-of-care diagnostics. Sens. Actuators, A,2006,130,228-233.
    29. Noda T, Takao H, Yoshioka K, Oku N, Ashiki M, Sawada K, Matsumoto K, Ishida M. Performance of absorption photometry microchip for blood hemoglobin measurement integrated with processing circuits and Si(110) 45 degrees mirrors. Sens. Actuators, B,2006, 119(1),245-250.
    30. Steigert J, Grumann M, Brenner T, Riegger L, Harter J, Zengerle R, Ducree J. Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip, 2006,6(8),1040-1044.
    31. Grumann M, Steigert J, Riegger L, Moser I, Enderle B, Riebeseel K, Urban G, Zengerle R, Ducree J. Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance. Biomed. Microdevices,2006,8(3),209-214.
    32. Ro K W, Lim K, Shim B C, Hahn J H. Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis. Anal. Chem.,2005,77(16),5160-5166.
    33. Petersen N J, Mogensen K B, Kutter J P. Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices. Electrophoresis,2002,23(20),3528-3536.
    34. Mogensen K B, Petersen N J, Hubner J, Kutter J P. Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices. Electrophoresis,2001,22(18),3930-3938.
    35. Petsul P H, Greenway G M, Haswell S J. The development of an on-chip micro-flow injection analysis of nitrate with a cadmium reductor. Anal. Chim. Acta,2001,428(2),155-161.
    36. Doku G N, Haswell S J. Further studies into the development of a micro-FIA (mu FIA) system based on electroosmotic flow for the determination of phosphate as orthophosphate. Anal. Chim. Acta,1999,382,1-13.
    37. Greenway G M, Haswell S J, Petsul P H. Characterisation of a micro-total analytical system for the determination of nitrite with spectrophotometric detection. Anal. Chim. Acta,1999, 387(1),1-10.
    38. Sun Y, Yu X, Nguyen N T, Shum P, Kwok Y C. Long path-length axial absorption detection in photonic crystal fiber. Anal. Chem.,2008,80(11),4220-4224.
    39. Llobera A, Demming S, Wilke R, Buttgenbach S. Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing. Lab Chip,2007,7(11),1560-1566.
    40. Salimi-Moosavi H, Jiang Y T, Lester L, McKinnon G, Harrison D J. A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices. Electrophoresis,2000,21(7),1291-1299.
    41. Mishra S K, Dasgupta P K. Capillary scale light emitting diode based multi-reflection absorbance detector. Anal. Chim. Acta,2007,605(2),166-174.
    42. Du W B, Fang Q, He Q H, Fang Z L. High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows. Anal. Chem.,2005,77(5),1330-1337.
    43. Du W B, Qun F, Fang Z L. A microfluidic chip for absorbance measurements with long optical path-length based on a liquid-core waveguide technique. Chemical Journal of Chinese Universities-Chinese,2004,25(4),610-613.
    44. Duggan M P, McCreedy T, Aylott J W. A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3D architecture. Analyst, 2003,128(11),1336-1340.
    45. Byrne R, Kaltenbacher E, Waterbury R. Autonomous in-situ analysis of the upper ocean-Construction of a compact, long pathlength absorbance spectrometer aimed at order-of-magnitude improvements in the sensitivity of spectrophotometric analysis. Sea Technology,1999,40(2),71-75.
    46. Waterbury R D, Yao W S, Byrne R H. Long pathlength absorbance spectroscopy:trace analysis of Fe(II) using a 4.5m liquid core waveguide. Anal. Chim. Acta,1997,357,99-102.
    47. Yao W S, Byrne R H. Determination of trace chromium(VI) and molybdenum(VI) in natural and bottled mineral waters using long pathlength absorbance spectroscopy (LPAS). Talanta, 1999,48(2),277-282.
    48. Callahan M R, Rose J B, Byrne R H. Long pathlength absorbance spectroscopy: trace copper analysis using a 4.4 m liquid core waveguide. Talanta,2002,58(5),891-898.
    49. Gupta B D, Dodeja H, Tomar A K. Fibre-optic evanescent field absorption sensor based on a U-shaped probe. Opt. Quantum Electron.,1996,28(11),1629-1639.
    50. Yan Q G, Tao S Q, Toghiani H. Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples. Talanta,2009,77(3),953-961.
    51. Khijwania S K, Gupta B D. Maximum achievable sensitivity of the fiber optic evanescent field absorption sensor based on the U-shaped probe. Optics Communications,2000,175, 135-137.
    52.罗庆尧.分光光度分析.北京:科学出版社,1992.
    1. Kost G J. Principles and Practice of Point-of-Care Testing. Philadelphia: Lippincott Williams & Wilkins,2002.
    2. Varmus H, Klausner R, Zerhouni E, Acharya T, Daar A S, Singer P A. Grand challenges in global health. Science,2003,302(5644),398-399.
    3. 方肇伦.微流控分析芯片.北京:科学出版社,2003.
    4. Yager P, Domingo G J, Gerdes J. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng.,2008,10,107-144.
    5. Biehl M, Velten T. Gaps and challenges of Point-of-Care technology. Ieee Sensors Journal, 2008,8,593-600.
    6. Chin C D, Linder V, Sia S K. Lab-on-a-chip devices for global health:Past studies and future opportunities. Lab Chip,2007,7(1),41-57.
    7. Tudos A J, Besselink G A J, Schasfoort R B M. Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip,2001,1(2),83-95.
    8. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam M R, Weigl B H. Microfluidic diagnostic technologies for global public health. Nature,2006,442(7101),412-418.
    9. Linder V, Sia S K, Whitesides G M. Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices. Anal. Chem.,2005,77(1),64-71.
    10. Cheng X H, Irimia D, Dixon M, Sekine K, Demirci U, Zamir L, Tompkins R G, Rodriguez W, Toner M. A microfluidic device for practical label-free CD4+T cell counting of HIV-infected subjects. Lab Chip,2007,7(2),170-178.
    11. Wu Z Y, Chen K, Qu B Y, Tian X X, Wang X J, Fang F. A thermostat chip of indium tin oxide glass substrate for static polymerase chain reaction and in situ real time fluorescence monitoring. Anal. Chim. Adta,2008,610(1),89-96.
    12. Do J, Lee S, Han J Y, Kai J H, Hong C C, Gao C A, Nevin J H, Beaucage G, Ahn C H. Development of functional lab-on-a-chip on polymer for point-of-care testing of metabolic parameters. Lab Chip,2008,8(12),2113-2120.
    13. Grumann M, Steigert J, Riegger L, Moser I, Enderle B, Riebeseel K, Urban G, Zengerle R, Ducree J. Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance. Biomed. Microdevices,2006,8(3),209-214.
    14. Riegger L, Grumann M, Steigert J, Lutz S, Steinert C P, Mueller C, Viertel J, Prucker O, Ruhe J, Zengerle R, Ducree J. Single-step centrifugal hematocrit determination on a 10-$ processing device. Biomed. Microdevices,2007,9(6),795-799.
    15. Ahn C H, Choi J W, Beaucage G, Nevin J H, Lee J B, Puntambekar A, Lee J Y. Disposable Smart lab on a chip for point-of-care clinical diagnostics. Proc. IEEE,2004,92(1),154-173.
    16. Thorslund S, Klett O, Nikolajeff F, Markides K, Bergquist J. A hybrid poly(dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening. Biomed. Microdevices,2006,8(1),73-79.
    17. Sista R, Hua Z S, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V. Development of a digital microfluidic platform for point of care testing. Lab Chip,2008, 8(12),2091-2104.
    18. Splawn B G, Lytle F E. On-chip absorption measurements using an integrated waveguide. Anal. Bioanal. Chem.,2002,373(7),519-525.
    19. Balslev S, Jorgensen A M, Bilenberg B, Mogensen K B, Snakenborg D, Geschke O, Kutter J P, Kristensen A. Lab-on-a-chip with integrated optical transducers. Lab Chip,2006,6(2), 213-217.
    20. Malic L, Kirk A G. Integrated miniaturized optical detection platform for fluorescence and absorption spectroscopy. Sens. Actuators, A,2007,135(2),515-524.
    21. Kee J S, Poenar D P, Neuzil P, Yobas L. Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements. Sens. Actuators, B, 2008,134(2),532-538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700