用户名: 密码: 验证码:
微流控芯片在两相有机合成中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控学(Microfluidics)是在微米级结构中操控纳升至皮升体积流体的技术与科学,是近十年来迅速崛起的新交叉学科。流体在微流控芯片微米级通道中,由于尺度效应导致了许多不同于宏观体系的特点,促进了微流控芯片在有机合成反应中的发展。
     第一章将对微流控芯片微反应器的特点、微流控芯片反应器中常用的流体驱动技术、微通道中流体的混合及在有机合成反应中的研究现状进行综述。
     第二章首次在玻璃流流控芯片中进行了Claisen-Schmidt缩合反应的研究,讨论了两相间的接触面积对反应速率和转化率的影响。实验表明,在相同实验条件下,微流控芯片中合成苄叉丙酮得到转化率比常规反应容器高,且反应时间短。在宽度分别为300μm和500μm微通道中反应8 min,苯甲醛的转化率分别能达到94%和80%。而在玻璃烧瓶中,快速搅拌下反应8 min,转化率还不到60%。实验中观察到,在相同流速下,不互溶两相在通道内形成的流形与通道尺寸有关,通道尺寸小(300μm)易形成塞流,通道尺寸宽(500μm)易形成层流,塞流比层流转质速度快。实验结果表明,在微流控芯片中进行有机合成反应的研究,具有反应速度快,试剂消耗量少,实验室污染轻等优点。
     第三章首次提出了采用负压进样装置控制反应物以低流量通过微通道进行合成反应的进样方法,克服目前微量注射泵设备昂贵和电渗泵输液量难以控制等缺点。研制了一种密闭性能良好的接口。负压进样装置由一个微型真空泵,一个负压瓶,一个电接点真空表,以及微型调节阀和接口组成。大大简化了在微流控芯片上进行有机合成反应的进样设备。在玻璃微流控芯片中进行了对甲氧基苯甲醛和盐酸羟胺反应生成对甲氧基苯甲醛肟的相转移反应,测定了反应时间对转化率的影响,并与常规方法进行了比较。实验结果说明了负压进样结合微流控芯片进行合成研究具有价廉,流量稳定等优点。
     第四章系统地研究了流体流速、微通道宽度和进样通道构形对微流控芯片内不互溶液-液两相流体流形的综合影响。实验结果说明,目前常用的毛细管数(Ca)不能准确地说明不相互溶两相流体在微通道内的流形。首次报道了除Ca外,流体在微流控玻璃芯片通道内形成的流形还和通道尺寸、通道构形有关。通过对芯片进样通道构形的不断优化,使形成塞流的微通道宽度和流体的临界流速大大增加,从而加快了不互溶两相间的传质速度。实验结果说明,在宽度500μm的带部分细管双T和十字型微通道内,两相间的传质速度比Y型微通道中快13-15倍。在微通道中用环己酮和盐酸羟胺为原料合成环己酮肟,在50mm/s的流速下反应18 s,在Y形芯片上得到产物的转化率为20%,而在带部分细管的十字形芯片上转化率高达70%。
     第五章首次在装有C18的微流控芯片反应器中进行了Edman降解反应,用顺序注射系统提高了Edman降解的自动化程度。对固体吸附材料的选择、顺序注射程序的设计和优化、影响Edman降解反应的因素进行讨论。实验结果说明在微流控芯片反应器中进行Edman降解反应,具有需要试剂和样品量少,反应速度快等特点,可以得到蛋白质或多肽N-端氨基酸残基结构的准确信息,在蛋白质组学的研究中有一定的应用前景。
Microfluidics is the science and technology of systems that process or manipulate small (10~(-9) to 10~(-18) litres) amounts of fluids, using channels with dimensions of tens to hundreds of micrometres. Compared to macroscale laboratory techniques, microfluidic reactors have a number of advantages over conventional chemical processes, which would be expected to promote highly effective chemical reactions in the microchip.
     In the chapter 1, the main feature of microfluidic reactors、the method to drive liquid through the microchannels, the method for mixing liquids in microchennels and the organic synthesis reactions carried out in microfluidics reactors were reviewed.
     In the chapter 2, the Claisen-Schmidt reaction was carried out in glass microfluidic chips with two Y-shaped inlets. The effect of interfacial area on the rate of phase transfer reaction was studied and discussed. 93% and 80 conversions were obtained after 8 min reaction in microchannels in width of 300 and 500μm, respectively. In comparison, 60% conversion was obtained in a bulk reaction with vigorous stirring. Even the reaction time was doubled to 16 min, only 73% conversion could be achieved. It has been observed that by introducing the reactants into microchannels at the same linear flow rate of 12.0 cm/min, slug flow was formed reproducibly in the 300-μm wide microchannel and laminar flow was formed in the 500-μm wide microchannel. Slug flow provides faster mass transfer than laminar flow. The demonstrated advantages of organic synthesis in microfluidic chip included faster reaction rate, less consumption of reactants and labor contaminant, which proved microfluidic chip to be a powerful tool for synthetic applications.
     In the chapter 3, a novel experiment system and method for organic synthesis in a microfluidic chip was developed, in which a negative pressure delivery device was used to drive reactants through the microchannels at a constant low flow rate. The negative pressure delivery device consists of a micro-vacuum air pump, a buffer vessel, a regulating value, a vacuum gauge and a newly developed interface to ensure airtight. The phase-transfer reaction for synthesis of 4-methoxy- benzaldehyde oxime from 4-methoxybenzaldehyde and hydroxylammonium chloride was carried out in glass microfluidic chips by using the developed negative pressure system. The effect of reaction time on yield was determined and compared with the standard batch system. The developed experiment system and method for organic synthesis in a microfluidic chip has been proved to be easy to operation, flow-stable and inexpensive, compared to the conventional sampling methods, such as using micro-pump and electroosmotic flow.
     In the chapter 4, the effect of flow rate, dimension of the microchannels and inlet shape of the microfluidic chip on the flow pattern inside the microchannel was systematically studied. It has been found that not only Capillary number, which was usually used to characterize the flow pattern inside the microchannel, but also dimension of the microchannels and inlet shape of the microfluidic chip also affect the flow pattern. Experiments showed that slug flow offers a simple method of achieving rapid mixing. It was easy to form slug flow in the smaller channels and low flow velocity. By optimization of the inlet shape of the microchannels, the threshold velocity for forming slug flow in the larger (500μm in width) channels has greatly improved. Rapid mass transfer between organic and aqueous phases in optimized microfluidic reactors with double T and crossing inlets was realized, which is 13-15 fold faster than conventional reactors with Y inlet. 70% conversion for synthesis of cyclohexane oxime from cyclohexanone and hydroxylammonium chloride was obtained after 18 s reaction at the flow rate of 50 mm/s in large microchannels (500μm in width) in the suggested microfludic reactors. In comparison, only 20% conversion was obtained in the conventional reactors with Y inlet.
     In the chapter 5, Edman degradation reaction was carried out in microfluidic chip packed with C18 beads as reaction cartridge, which was automatically manipulated by a sequential injection system. The program for sequential injection system, the column material for adsorption of protein or peptide and the temperature for Edman degradation reaction were optimized. Experiment results showed that the N-terminal residue of protein or peptide can be obtained by Edman degradation in microfluidic chip with the advantages of faster reaction rate, less consumption of protein or peptide.
引文
[1]. Whitesides G M. The origins and the future of microfluidics. Nature, 2006, 442(7101): 368-373.
    [2]. Salimi-Moosavi H, Tang T, Harrison D J. Electroosmotie Pumping of Organic Solvents and Reagents in Microfabricated Reactor Chips. J. Am. Chem. Soc., 1997, 119: 8715-8717.
    [3]. Jahnisch K, Hessel V, Lowe H, Baems M. Chemistry in Microstructured Reactors. Angew. Chem. Int. Ed., 2004, 43(4): 406-446.
    [4]. Brivio M, Verboom W, Reinhoudt D N. Miniaturized continuous flow reaction vessels: influence on chemical reactions. Lab on a Chip, 2006, 6: 329-344.
    [5]. Dittrich P S, Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nature Roy. Dru. Discov., 2006, 5: 211-218.
    [6]. Veser G. Experimental and theoretical investigation of H_2 oxidation in a high-temperature catalytic microreactor. Chemical Engineering Science, 2001, 56: 1265-1273.
    [7]. Hisamoto H, Saito T, Tokeshi M, Hibara A, Kitamori T. Fast and high conversion phase-transfer synthesis exploiting the liquid-liquid interface formed in a microchannel chip. Chem. Commun., 2001, 2662-2663.
    [8]. Kolb G, Hessel V. Micro-structured reactors for gas phase reactions. Chemical Engineering Journal, 2004, 98: 1-38.
    [9]. Mitchell M C, Spikmans V, de Mello A J. Microchip-based synthesis and analysis: Control of multicomponent reaction products and intermediates. Analyst, 2001, 126: 24-27.
    [10]. Losey M W, Schmidt M A, Jensen K F. Microfabricated Multiphase Packed-Bed Reactors: Characterization of Mass Transfer and Reactions. Ind Eng Chem Res., 2001, 40: 2555-2562.
    [11]. Iles A, Fortt R, de Mello A J. Thermal optimisation of the Reimer-Tiemann reaction using thermochromic liquid crystals on a microfluidic reactor. Lab Chip, 2005, 5: 550-554.
    [12]. Kikutani Y, Horiuchi T, Uchiyama K, Hisamoto H, Tokeshi M, Kitamori T. Glass microchip with three-dimensional microchannel network for 2×2 parallel synthesis. Lab Chip, 2002, 2: 188-192.
    [13].方肇伦.微流控分析芯片.北京:科学出版社,2003.
    [14]. Ueno K, Kitagawa F, Kitamura N. Photocyanation of pyrene across an oil/water interface in a polymer microchannel chip. Lab Chip, 2002, 2: 231-234.
    [15]. Doku G N, Haswell S J, McCreedya T, Greenway G M. Electric field-induced mobilisation of multiphase solution systems based on the nitration of benzene in a micro reactor. Analyst, 2001, 126: 14-20.
    [16]. Nikbin N, Watts P. Solid-Supported Continuous Flow Synthesis in Microreactors Using Electroosmotic Flow. Org. Process Rcs. Dev., 2004, 8: 942-944.
    [17]. Wiles C, Watts P, Haswell S J, Pombo-Villar E. The preparation and reaction of enolates within micro reactors. Tetrahedron, 2005, 61: 10757-10773.
    [18]. Fletcher P D I, Haswell S J, Zhang X. Electrokinetic control of a chemical reaction in a lab-on-a-chip micro-reactor: measurement and quantitative modeling. Lab Chip, 2002, 2: 102-112.
    [19]. Bello M S. Electrolytic modification of a buffer during a capillary electrophoresis run. J. Chromatogr. A, 1996, 744: 81-91.
    [20]. Corstjen H, Billiet H A, Frank J, Luyben K C A M. Variation of the pH of the background electrolyte due to electrode reactions in capillary electrophoresis: Theoretical approach and in situ measurement. Electrophoresis, 1996, 17: 137-143.
    [21]. Oki A, Takamura Y, Yoshitaka I, Horiike Y. pH Change of buffer solution in a microcapillary chip and its suppression. Electrophoresis, 2002, 23: 2860-2864.
    [22]. Duffy D C, Gillis H L, Lin J, Sheppard N F, Kellogg G J. Microfabricated Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic Assays. Anal. Chem., 1999, 71: 4669-4678.
    [23]. Unger M A, Chou H-P, Thorsen T, Scherer A, QuakeMonolithic St R. Microfabricated Valves and Pumps by Multilayer Soft Lithography. Science, 2000, 288: 113-II6.
    [24]. Hosokava K, Fujii T, Endo I, Handling of Picoliter Liquid Samples in a Poly(dimethylsiloxane)-Based Microfluidic Device. Anal. Chem., 1999, 71: 4781-4785.
    [25]. Bohm S, Timmer B, Olthuis W, Bergveld P. A closed-loop controlled electrochemically actuated micro-dosing system. J. Micromech. Microeng., 2000, 10: 498-504.
    [26].方肇伦 主编.微流控分析芯片的制作及应用.北京:化学工业出版社.2005.P:129.
    [27]. Hessel V, Hardt S, Lowe H, Schonfeld F. Laminar Mixing in Different Interdigital Micromixers: Ⅰ. Experimental Characterization. American Institute of Chemical Engineers, 2003, 49(3): 566-577.
    [28]. Hardt S, Schonfeld F. Laminar Mixing in Different Interdigital Micromixers: Ⅱ. Numerical Simulations. American Institute of Chemical Engineers, 2003, 49(3): 578-584.
    [29]. Hessel V, Lowe H, Schonfeld F. Micromixers—a review on passive and active mixing principles. Chemical Engineering Science, 2005, 60: 2479-2501.
    [30]. Yaralioglu G G, Wygant I O, Marentis T C, Khuri-Yakub B T. Ultrasonic Mixing in Microfluidic Channels Using Integrated Transducers. Anal. Chem., 2004, 76: 3694-3698.
    [31]. Liu R H, Yang J N, Pindera M Z, Athavale M, Grodzinski P. Bubble-induced acoustic micromixing. Lab Chip, 2002, 2: 151-157.
    [32]. Ukita H, Kanehira M. A shuttlecock optical rotator-its design, fabrication and evaluation for a microfluidic mixer. IEEE J. Sel. Top. Quantum Electron., 2002, 8: 111-117.
    [33]. Paik P, Pamula V K, Pollack M G, Fair R B. Electrowetting-based droplet mixers for microfluidic systems. Lab Chip, 2003, 3: 28-33.
    [34]. Ryu K S, Shaikh K, Goluch E, Fan Z F. Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab Chip, 2004, 4: 608-613.
    [35]. Oddy M H, Santiago J G, Mikkelsen J C. Electrokinetic Instability Micromixing. Anal. Chem., 2001, 73: 5822-5832.
    [36]. Bessoth F G, deMello A J, Manz A. Microstructure for efficient continuous flow mixing. Anal. Commun., 1999, 36: 213-215.
    [37]. Mengenud V, Josserand J, Girault H H. Mixing processes in a zigzag microchannel: finite element simulation and optical study. Anal. Chem. 2002, 74: 4279-4286.
    [38]. Dertinger S K W, Chiu D T, Jeon N L, Whitesides G M. Generation of Gradients Having Complex Shapes Using Microfluidic Networks. Anal. Chem.; 2001, 73(6): 1240-1246.
    [39]. Stmock A D, Dertinger S K W, Ajdari A, Mezic I, Stone H A, Whitesides G M. Chaotic mixer for microchannels. Science, 2002, 295: 647-651.
    [40]. Lin Y, Gerfen G J, Rousseau D L, Yeh S R. Ultrafast Microfluidic Mixer and Freeze-Quenching Device. Anal. Chem., 2003, 75: 5381-5386.
    [41]. Chen H, Meiners J C. Topologic mixing on a microfluidic chip. Appl. Phys. Lett., 2004, 84: 2193-2195.
    [42]. Liu R H, Stremler M A, Sharp K V, Olsen M G, Santiago J G, Adrian R J, Aref H, Beebe D J. Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromech. Syst., 2000, 9: 190-197.
    [43]. Kim D S, Lee S H, Kwon T H, Ahn C H. A serpentine laminating micromixer combining splitting/recombination and Advection. Lab Chip, 2005, 5: 739-747.
    [44]. Xia H M, Wan S Y M, Shu C, Chew Y T. Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers. Lab Chip, 2005, 5: 748-755.
    [45]. Jen C-P, Wu C-Y, Lin Y-C, Wu C-Y. Design and simulation of the micromixer with chaotic advection in twisted microchannels. Lab Chip, 2003, 3: 77-81.
    [46]. Gobby D, Angeli P, Gavriilidis A. Mixing characteristics of T type microfluidic mixers. J. Micromech. Microeng., 2001, 11: 126-132.
    [47]. Yang J-T, Huang K-J, Lin Y-C. Geometric effects on fluid mixing in passive grooved micromixers. Lab Chip, 2005, 5: 1140-1147.
    [48]. Howell P B, Jr., Mott D R, Fertig S, Kaplan C R, Golden J P, Oranb E S, Ligler F S. A microfluidic mixer with grooves placed on the top and bottom of the Channel. Lab Chip, 2005, 5: 524-530.
    [49]. Biddiss E, Erickson D, Li D Q. Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal. Chem., 2004, 76: 3208-3213.
    [50]. Sasaki N, Kitamori T, Kim H-B. AC electroosmotic micromixer for chemical processing in a microchannel. Lab Chip, 2006, 6: 550-554.
    [51]. Coleman J T, McKechnie J, Sinton D. High-efficiency electrokinetic micromixing through symmetric sequential injection and expansion. Lab Chip, 2006, 6: 1033-1039.
    [52]. Song H, Tice J D, Ismagilov R F. A microfluidie system for controlling reaction networks in time. Angew. Chem. Int. Edn., 2003, 42: 768-772.
    [53]. Bums J R, Ramshaw C. The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip, 2001, 1: 10-15.
    [54]. Gunther A, Jhunjhunwala M, Thalmann M, Schmidt M A, Jensen K F. Micromixing of Miscible Liquids in Segmented Gas-Liquid Flow. Langmuir, 2005, 21: 1547-1555.
    [55]. Pennemann H, Watts P, Haswell S J, Hessel V, Lowe H. Benchmarking of Microreactor Applications. Organic Process Research & Development 2004, 8: 422-439.
    [56]. Haswell S J, Watts P. Green chemistry: synthesis in micro reactors. Green Chemistry, 2003, 5: 240-249.
    [57]. deMello A J. Control and detection of chemical reactions in microfluidic systems. Nature, 2006, 442: 394-402.
    [58]. Fletcher P D I, Haswell S J, Pombo-Villar E, Warrington B H, Watts P, Wong S Z F, Yhang X. Micro reactors: principles and applications in organic synthesis. Tetrahedron, 2002, 58: 4735-4757.
    [59]. Yoshida J, nagaki A, Iwasaki T, Suga S. Enhancement of Chemical Selectivity by Microractors. Chem. Eng. Technol., 2005, 28: 259-266.
    [60]. Watts P, Haswell S J. The Application of Microreactors for Small Organic Synthesis. Chem. Eng. Technol., 2005, 28: 290-301.
    [61]. Hessel V, Lowe H. Organic Synthesis with Microstructured Reactors. Chem. Eng. Technol., 2005, 28(3): 267-284.
    [62]. Haswell S J, Middleton R J, O'Sullivan B, Skelton V, Watts P, Styring P. The application of micro reactors to synthetic chemistry. Chem. Commun., 2001, 391-398.
    [63]. Geysen H M, Schoenen F, Wagner D, Wagner R. Combinatorial compound libraries for drug discovery: an ongoing challenge. Nature Rev. Drug Discov., 2003, 2: 222-230.
    [64]. Watts P, Haswell S J. Continuous flow reactors for drug disoovery. Drug Discov. Today, 2003, 8: 586-593.
    [65]. Geyer K, Codee J D C, Seeberger P H. Microreactors as Tools for Synthetic Chemists-The Chemists Round-Bottomed Flask of the 21st Century?. Chem. Eur. J., 2006, 12: 8434-8442.
    [66]. Watts P, Haswell S J, Microfluidic combinatorial chemistry. Current Opinion in Chemical Biology. 2003, 7: 380-387.
    [67]. Watts P, Haswell S J. The application of micro reactors for organic synthesis. Chem. Soc. Rev., 2005, 34: 235-246.
    [68]. Garcia-Egido E, Wong S Y F, Warrington B H. A Hantzseh synthesis of 2-aminothiazoles performed in a heated microreactor system. Lab Chip, 2002, 2: 31-33.
    [69]. Femandez-Suarez M, Wong S Y F, Warrington B H. Synthesis of a three-member array of cycloadducts in a glass microchip under pressure driven flow. Lab Chip, 2002, 2: 170-174.
    [70]. Taghavi-Moghadam S, Kleemann A, Golbig K G. Microreaction Technology as a Novel Approach to Drug Design, Process Development and Reliability. Organic Process Research & Development, 2001, 5: 652-658.
    [71]. Garcia-Egido E, Spikmans V, Wong S Y F, Warrington B H. Synthesis and analysis of combinatorial libraries performed in an automated micro reactor system. Lab Chip, 2003, 3: 73-76.
    [72]. Pennemann H, Hessel V, Lowe H. Chemical microprocess technology—from laboratory—scale to production. Chemical Engineering Science, 2004, 59: 4789-4794.
    [73]. Watts P, Wiles C, Haswell S J, Pombo-Villar E, Styring P. The synthesis, of peptides using micro reactors. Chem. Commun, 2001, 990-991.
    [74]. Watts P, Wiles C, Haswell S J, Pombo-Villar E. Solution phase synthesis of β-peptides using micro reactors. Tetrahedron, 2002, 58: 5427-5439.
    [75]. Watts P, Haswell S J, Pombo-Villar E. Electrochemical effects related to synthesis in micro reactors operating under electrokinetic flow. Chem. Eng. J., 2004, 101: 237-240.
    [76]. Watts P, Wiles C, Haswell S J, Pombo-Villar E. Investigation of racemisation in peptide synthesis within a micro reactor. Lab Chip, 2002, 2: 141-144.
    [77]. Flogel O, Codee J D C, Seebach D, Seeberger P H. Microreactor Synthesis of β-Peptides. Angew. Chem. Int. Ed., 2006, 45: 7000-7003.
    [78]. George V, Watts P, Haswell S J, Pombo-Villar E. On-chip separation of peptides prepared within a micro reactor. Chem. Commun., 2003, 2886-2887.
    [79]. Wiles C, Watts P, Haswell S J, Pombo-Villar E. The aldol reaction of silyl enol ethers within a micro reactor. Lab Chip, 2001, 1: 100-101.
    [80]. Wiles C, Watts P, Haswell S J, Pombo-Villar E. The regioselective preparation of 1, 3-diketones within a micro reactor. Chem. Commun., 2002, 1034-1035.
    [81]. Wiles C, Watts P, Haswell S J, Pombo-Villar E. 1, 4-Addition of enolates to αβ-unsaturated ketones within a micro reactor. Lab Chip, 2002, 2: 62-64.
    [82]. Kawai K, Ebata T, Kitazume T. The synthesis of fluorinated materialsin microreactors. J. Fluorine Chem., 2005, 126: 956-961.
    [83]. Lowe H, Hessel V, Lob P, Hubbard S. Addition of Secondary Amines to α, β-Unsaturated Carbonyl Compounds and Nitriles by Using Microstructured Reactors. Organic Process Research & Development, 2006, 10(6): 1144-1152.
    [84]. Sands M, Haswell S J, Kelly S M, Skelton V, Morgan D, Styring P, Warrington B. The investigation of an equilibrium dependent reaction for the formation of enamines in a microchemical system. Lab Chip, 2001, 1: 64-65.
    [85]. Wiles C, Watts P, Haswell S J, Pombo-Villar E. The Application of Microreactor Technology for the Synthesis of 1, 2-Azoles. Org. Process. Res. Dev., 2004, 8: 28-32.
    [86]. Furmeier S, Griep-Raming J, Hayen A, Metzger J O. Chelation-Controlled Radical Chain Reactions Studied by Electrospray Ionization Mass Spectrometry. Chem. Eur. J., 2005, 11: 5545-5554.
    [87]. Brivio M, Oosterbroek R E, Verboom W, van den Berg A, Reinhoudt D N. Simple chip-based interfaces for on-line monitoring of supramolecular interactions by nano-ESI MS. Lab Chip, 2005, 5: 1111-1112.
    [88]. Wensink H, Benito-Lopez F, Hermes D H, Verboom W, Gardeniers J G E, Reinhoudt D N, van den Berg A. Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR. Lab Chip, 2005, 5: 280-284.
    [89]. Brivio M, Tas N R, Goedbloed M H, GardenieraJ G E, Verboom W, van den Berg A, Reinhoudt D N. A MALDI-chip integrated system with a monitoring window. Lab Chip, 2005, 5: 378-381.
    [90]. Brivio M, Oosterbroek R E, Verboom W, Goedbloed M H, van den Berg A, Reinhoudt D N. Surface effects in the esterification of 9-pyrenebutyric acid within a glass micro reactor. Chem. Commun., 2003, 1924-1925.
    [91]. Lu S Y, Watts P, Chin F T, Hong J, Musachio J L, Briard E, Pike V W. Syntheses of ~(11)C- and ~(18)F-labeled carboxylic esters within a hydrodynamically-driven micro-reactor. Lab Chip, 2004, 4: 523-525.
    [92]. Kawaguehi T, Miyata H, Ataka K, Mae K, Yoshida J-i. Room—temperature Swern oxidations by using a mieroseMe flow system. Angew. Chem. Int. Ed., 2005, 4: 2413-2416.
    [93]. Hessel V, Hofmann C, Lowe H, Meudt A, Scherer S, Schonfeld F, Werner B. Selectivity gains and energy savings for the industrial phenyl boronie acid process using micromixer/tubularreactors. Org. Pro. Res. & Dev., 2004, 8: 511-523.
    [94]. Schwalbe T, Autze V, Hohmann M, Stimer W. Novel Innovation Systems for a Cellular Approach to Continuous Process Chemistry from Discovery to Market. Organic Process Research & Development, 2004, 8: 440-454.
    [95]. Schubert K, Brandner J, Fichtner M, Linder G, Schygnlla U, Wenka A. Microstructure devices, for applications in thermal and chemical process engineering. Microscale Thermophys. Eng,, 2001, 5: 17-39.
    [96]. Skelton V, Greenway G M, Haswell S J, Styring P, Morgan D O, Warrington B H, Wong S Y F. The generation of concentration gradients using electroosmotic flow in micro reactors allowing stereoselective chemical synthesis. Analyst, 2001, 126: 11-13.
    [97]. Skelton V, Greenway G M, Haswell S J, Styring P, Morgan D O, Warrington B H, Wong S Y F. The preparation of a series of nitrostilbene ester compounds using micro reactor technology. Analyst, 2001, 126: 7-10.
    [98]. Baxendsle I R, Deeley J, Griffiths-Jones C M, Ley S V, Saaby S, Tranmer G K. A flow process for the multi-stop synthesis of the alkaloid natural product oxomaritidine: a new paradigm for molecular assembly. Chem. Commun., 2006, 2566-2568.
    [99]. Lu H, Schmidt M A, Jonson K F. Photochemical reactions and on-line UV detection in microfabricated reactors. Lab Chip, 2001, 1: 22-28.
    [100]. Worz O, Jackel K P, Richter T, Wolf A. Microreactors-A New Efficient Tool for Reactor Development. Chem. Eng. Technol., 2001, 24: 138-142.
    [101]. Worz O, Jackel K P, Richter T, Wolf A. Microreactors, a new efficient tool for optimum reactor design. Chemical Engineering science, 2001, 56: 1029-1033.
    [102]. Kikutani Y, Hibara A, Uchiyama. K, Hisamoto H, Tokeshi M, Kitarnori T. Pile-up glass microreactor. Lab Chip, 2002, 2: 193-196.
    [103]. Ueno M, Hisamoto H, Kitamori T, Kobayashi S. Phase-transfer alkylation reactions using microreactors. Chem. Commun., 2003, 936-937.
    [104]. de Bellefon C, Tanchoux N, Caravieilhes S, Grenouillet P, Hessel V. Microreactors for Dynamic, High Throughput Screening of Fluid/Liquid Molecular Catalysis. Angew. Chem., 2000, 112: 3584-3587. Angew. Chem. Int. Ed., 2000, 39: 3442-3445.
    [105]. Matsuoka S, Hibara A, Ueno M, Kitamori T. Supercooled micro flows and application for asymmetric synthesis. Lab Chip, 2006, 6: 1236-1238.
    [106]. Wootton R C R, Fortt R, Mello A J. On-chip generation and reaction of unstable intermediates—monolithic nanoreactors for diazonium chemistry: Azo dyes. Lab Chip, 2002, 2: 5-7.
    [107]. Pennemann H, Hessel V, Lowe H, Forster S, Kinkel J. Improvement of Dye Properties of the Azo Pigment Yellow 12 Using a Micromixer-Based Process. Org. Process Res. Dev. 2005, 9: 188-192.
    [108]. Ducry L, Roberge D M. Controlled autocatalytic nitration of phenol in a microreactor. Angew. Chem., 2005, 117: 8186-8189..
    [109]. Mikami K, IsIam M N, Yamanaka M, Itoh Y, Shinoda M, Kudo K. Nanoflow system for perfect regiocontrol in the Baeyer-Villiger oxidation by aqueous hydrogen peroxide using lowest concentration of a fluorous lanthanide catalyst. Tetrahedron Letters, 2004, 45: 3681-3683.
    [110]. Mikami K, Yamanaka M, Islam M M, Kudo K, Seino N, Shinoda M. Dramatic increase in the rate of the Mukaiyama aldol reaction by 'fluorous nano flow' system in the lowest concentration of a fluorous catalyst. Tetrahedron Lett., 2003, 44: 7545-7548.
    [111]. Greenway G M, Haswell S J, Morgan D O, Skelton V, Styring P. The use of a novel microreactor for high throughput continuous flow organic synthesis. Sensors Actuators B, 2000, 63: 153-158.
    [112]. He P, Haswell S J, Fletcher P D I. Microwave heating of heterogeneously catalysed Suzuki reaction in a microreactor. Lab chip, 2004, 4: 38-41.
    [113]. Haswell S J, O'Sullivan B, Styring P. Kumada-Cordu reactions in a pressure-driven microflow reactor. Lab Chip, 2001, 1: 164-166.
    [114]. Wiles C, Watts P, Haswell S J. An investigation into the use of silica-supported bases within EOF-based flow reactors. Tetrahedron, 2004, 60: 8421-8427.
    [115]. Lai S M, Martin-Aranda R, Yeung K L. Knoevenagel condensation reaction in a membrane microreactor. Chem. Commun., 2003, 218-219.
    [116]. Wiles C, Watts P, Haswell S J. Acid-catalysed synthesis and dcprotection of dimethyl acetals in a miniaturised electroosmotic flow reactor. Tetrahedron, 2005, 61: 5209-5217.
    [117]. Wilson N G, McCreedy T. On-chip catalysis using a lithographically fabricated glass microreactor—the dehydration of alcohols using sulfated zirconia. Chem. Commun. 2000, 733-734.
    [118]. McCreedy T, Wilson N G. Microfabricated reactors for on chip heterogeneous catalysis. Analyst, 2001, 126: 21-23.
    [119]. Wan Y S S, Chau J L H, Yeung K L, Gavriilidis A. 1-Pentene epoxidafion in catalytic microfabricated reactors. Journal of Catalysis, 2004, 223: 241-249.
    [120]. Hsing I M, Srinivasan R, Harold M P, Jensen K F, Schmidt M A. Simulation of micromachined chemical reactors for heterogeneous partial oxidation reactions. Chem. Eng. Sci., 2000, 55: 3-13.
    [121]. Rebrov E V, de Croon M H J M, Schouten J C. Design of a microstructured reactor with integrated heat-exchanger for optimum performance of a highly exothermic reaction. Catal. Today, 2001, 69: 183-192.
    [122]. Miller P W, Long N J, do Mello A J, Vilar R, Passchier J, Gee A. Rapid formation of amides via Carbonylative coupling reactions using a microfluidic device. Chem. Commun., 2006, 546-548.
    [123]. Ajmera S K, Losey M W, Jensen K F. Microfabricated packed-bed reactor for phosgene synthesis. AIChE Journal, 2001, 47: 1639-1648.
    [124]. Yeong K K, Gavriilidis A, Zapf R, Hessel V. Catalyst preparation and deactivation issues for nitrobenzene hydrogenation in a microstructured falling film reactor. Catal. Today., 2003, 81: 641-651.
    [125]. Kobayashi J, Mori Y, Okamoto K, Akiyama R, Ueno M, Kitamori T, Kobayashi S. A Microfluidic Device for Conducting Gas-Liquid-Solid Hydrogenation Reactions. Science, 2004, 304: 1305-1308.
    [126]. Gorges R, Meyer S, kreisel G. Photocatalysis in microreactors. J Photochem Photobiol A, 2004, 167: 95-99.
    [127]. Knitter R, Liauw M A. Ceramic microreactors for heterogeneously catalysed gas-phase reactions. Lab Chip, 2004, 4: 378-383.
    [128]. Chambers R D, Spink R C H. Microreactors for elemental fluorine. Chem. Commun., 1999, 883-884.
    [129]. Chambers R D, Holling D, Spink R C H, Sandford G. Elemental fluorine Part 13.+ Gas-liquid thin film microreactors for selective direct fluorination. Lab Chip, 2001, 1: 132-137.
    [130]. Chambers R D, Fox M A, Sandford G. Elemental fluorine Part 18. Selective direct fluorination of 1, 3-ketoesters and 1, 3-diketones using gas/liquid microreactor technology. Lab Chip, 2005, 5: 1132-1139.
    [131]. Jahnisch K, Baems M, Hessel V, Ehrfeld W, Haverkamp W, Lowe H, Wille C, Guber A. Direct fuorination of toluene using elemental fuorine in gas/liquid microreactors. J. Fluorine Chem., 2000, 105: 117-128.
    [132]. de Mas N, Gunther A, Schmidt M A, Jensen K F. Microfabricated Multiphase Reactors for the Selective Direct Fluorination of Aromatics. Ind. Eng. Chem. Res., 2003, 42(4): 698-710.
    [133]. Miyake N, Kitazume T. Microreactors for the synthesis of fluorinated materials. Journal of Fluorine Chemistry, 2003, 122: 243-246.
    [134]. Chambers R D, Holling D, Sandford G, Batsanov A S, Howard J A K. Elemental fluorine Part 15. Selective direct fluorination of quinoline derivatives. J. Fluorine Chem. 2004, 125: 661-671.
    [135]. Chambers R D, Holling D, Sandford G, Puschmann H, Howard J A K. Selective direct fluorination of quinoline derivatives. J. Fluorine Chem. 2002, 117: 99-101.
    [136]. Chambers R D, Holling D, Rees A J, Sandford G. Microreactors for oxidations using fluorine. J. Fluorine Chem., 2003, 119: 81-82.
    [137]. Jahnisch K, Dingerdissen U. Photochemical generation and [4+2]-cycloaddition of singlet oxygen in a falling film microreactor. Chem. Eng. Technol., 2005, 28: 426-427.
    [138]. Wootton R C R, Fortt R, Mello A J. A Microfabricated Nanoreactor for Safe, Continuous Generation and Use of Singlet Oxygen. Org. Proc. Res. Dev., 2002, 6: 187-189.
    [139]. Lob P, Lowe H, Hessel V. Fluorinations, chlorinations and brominatious of organic compounds in micro reactors. Journal of Fluorine Chemistry, 2004, 125: 1677-1694.
    [140]. Hessel V, Angeli P, Gavriilidis A, Lolwe H. Gas-Liquid and Gas-Liquid-Solid Microstructured Reactors: Contacting Principles and Applications. Ind. Eng. Chem. Res., 2005, 44: 9750-9769.
    [1]. Nefzi A, Ostresh J M, Yu J P, Houghten R A. Combinatorial Chemistry: Libraries from Libraries, the Art of the Diversity-Oriented Transformation of Resin-Bound Peptides and Chiral Polyamides to Low Molecular Weight Acyclic and Heterocyclic Compounds. J. Org. Chem., 2004, 69(11): 3603-3609.
    [2]. Dolle R E. Comprehensive Survey of Combinatorial Library Synthesis: 1999. J. Comb. Chem., 2000, 2(5): 383-433.
    [3]. Hall D G, Manku S, Wang F. Solution-and Solid-Phase Strategies for the Design, Synthesis, and Screening of Libraries Based on Natural Product Templates: A Comprehensive Survey. J. Comb. Chem., 2001, 3(2): 125-150.
    [4]. Dolle R E. Comprehensive Survey of Combinatorial Library Synthesis: 2000. J. Comb. Chem., 2001, 3(6): 477-517.
    [5]. Schiedel M S, Briehn C A, Bauerle P. Single-Compound Libraries of Organic Materials: Parallel Synthesis and Screening of Fluorescent Dyes. Angew. Chem. Int. Ed., 2001, 40: 4677-4680.
    [6]. Salimi-Moosavi H, Tang T, Harrison D J. Electroosmotic Pumping of Organic Solvents and Reagents in Microfabricated Reactor Chips. J. Am. Chem. Soc., 1997, 119: 8716-8717.
    [7]. Haswell S J, Middleton R J, O, Sullivan B, Skelton V, Watts P, Styring P. The application of micro reactors to synthetic chemistry. Chem. Commun., 2001, 391-398.
    [8]. Haswell S J, Watts P. Green Chemistry: synthesis in micro reactors. Green Chemistry; 2003, 5: 240-249.
    [9]. Pennemann H, Watts P, Haswell S J, Gessel V, Lowe H. Benchmarking of Microreactor Applications. Org. Press. Res. Dev., 2004, 8: 422-439.
    [10]. Wu T, Mei Y, Cabral J T, Xu C, Beers K L. A New Synthetic Method for Controlled Polymerization Using a Microfluidic System. J. Am. Chem. Soc., 2004, 126(32): 9880-9881.
    [11]. Jahnisch K, Hessel V, Lowe H, Beams M. Chemistry in Microstructured Reactors. Angew. Chem. Int. Ed., 2004, 43: 406-446.
    [12]. Hisamoto H, Saito T, Tokeshi M, Hibara A, Kitamiri T. Fast and high conversion phase-transfer synthesis exploiting the liquid-liquid interface formed in a microchannel chip. Chem. Commun., 2001, 2662-2663.
    [13]. Ueno M, Hisamoto H, Kitamori T, Kobayashi S. Phase-transfer alkylation reactions using microreactors. Chem. Commun., 2003, 936-937.
    [14].殷学锋,沈宏,方肇伦.制造玻璃微流控芯片的简易加工技术.分析化学,2003,31(1):116-119.
    [15]. Chaphekar S S, Samant S D. Novel gel-entrapped base catalysts for the Claisen-Schmidt reaction. J. Chem. Technol. Biotechnol., 2004, 79: 769-773.
    [1].方肇伦.微流控分析芯片.北京:科学出版社,2003:8.
    [2]. Ueno M, Hisamoto H, Kitamod T, Kobayashi S. Phase-transfer alkylation reactions using microreactors. Chem. Commun., 2003, 936-937.
    [3]. Hisamoto H, Saito T, Tokeshi M, Hibara A, Kitamori T. Fast and high conversion phase-transfer synthesis exploiting the liquid-liquid interface formed in a microchannel chip. Chem. Commun., 2001, 2662-2663.
    [4]. Mu J X, Yin X F, Wang Y G. The Claisen-Schmidt Reaction Carried Out in Microfluidic Chips. Synlett, 2005, 20: 3163-3165.
    [5]. Jahnisch K, Hessel V, Lowe H, Baems M. Chemistry in Microstructured Reactors. Angew. Chem. Int. Ed., 2004, 43(4): 406-446.
    [6]. Salimi-Moosavi H, Tang T, Harrison D J. Electroosmotic Pumping of Organic Solvents and Reagents in Microfabricated Reactor Chips. J. Am. Chem. Soc., 1997, 119: 8716-8717.
    [7]. Brivio M, Verboom W, Reinhoudt D N. Miniaturized continuous flow reaction vessels: influence on chemical reactions. Lab Chip, 2006, 6: 329-344.
    [8]. Corstjen H, Billiet H A, Frank J, Luyben K C A M. Variation of the pH of the background electrolyte due to electrode reactions in capillary electrophoresis: Theoretical approach and in situ measurement. Electrophoresis, 1996, 17: 137-143.
    [9]. Duffy D C, Gillis H L, Lin J, Sheppard N F, Kellogg G J. Microfabricated Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic Assays. Anal. Chem., 1999, 71: 4669-4678.
    [10]. Unger M A, Chou H-P, Thorsen T, Scherer A, QuakeMonolithic St R. Microfabricated Valves and Pumps by Multilayer Soft Lithography. Science, 2000, 288: 113-116.
    [11]. Hosokava K, Fujii T, Endo I. Handling of Picoliter Liquid Samples in a Poly(dimethylsiloxane)-Based Microfluidic Device. Anal. Chem., 1999, 71: 4781-4785.
    [12]. Bohm S, Timmer B, Olthuis W, Bergveld P. A closed-loop controlled electrochemically actuated micro-dosing system. J. Micromech. Microeng., 2000, 10: 498-504.
    [13].湛建阶,周旭章,邹利鹏,吴文健.3—甲氧基—4—羟基苯甲醛肟的合成.国防科技大学学报,2002,24(2):17-18.
    [14].殷学锋,沈宏,方肇伦.制造玻璃微流控芯片的简易加工技术.分析化学,2003,31(1):116-119.
    [1]. Tan Y C, Fisher J S, Lee A I V, Cristini V, Lee A P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip, 2004, 4: 292-298.
    [2]. Zheng B, Tice J D, Ismagilov R F. Formation of Droplets of Alternating Composition in Microfluidic Channels and Applications to Indexing of Concentrations in Droplet-Based Assays. Anal. Chem., 2004, 76: 4977-4982.
    [3]. Nisisako T, Torii T, Higuchi T. Droplet formation in a microchannel network. Lab Chip, 2002, 2: 24-26.
    [4]. Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Phys. Rev. Lett., 2001, 86: 4163-4166.
    [5]. Anna S L, Bontoux N, Stone H A. Formation of dispersions using "flow focusing" in microchannels. Appl. Phys. Lett., 2003, 82: 364-366.
    [6]. He M, Edgar J S, Jeffries G D M, Lorenz R M, Shelby J P, Chiu D T. Selective Encapsulation of Single Cells and Subcellutar Organelles into Picoliter-and Femtoliter-Volume Droplets. Anal. Chem., 2005, 77: 1539-1544.
    [7]. Tice J D, Song H, Lyon A D, Ismagilov R F. Formation of Droplets and Mixing in Multiphase Microfluidics at Low Values of the Reynolds and the Capillary Numbers. Langmuir, 2003, 19: 9127-9133.
    [8]. Tice J D, Lyon A D, Ismagilov R F. Effects of viscosity on droplet formation and mixing in microfluidic channels. Analytica Chimica Acta., 2004, 507: 73-77.
    [9]. Grigoriev R O, Schatz M F, Sharma V. Chaotic mixing in microdroplets. Lab Chip, 2006, 6: 1369-1372.
    [10]. Chen D L, Gerdts C J, Ismagilov R F. Using Microfluidics to Observe the Effect of Mixing on Nucleation of Protein Crystals. J. Am. Chem. Soc., 2005, 127: 9672-9673.
    [11]. Zheng B, Roach L S, Ismagilov R F. Screening of Protein Crystallization Conditions on a Microfluidic Chip Using Nanoliter-Size Droplets. J. Am. Chem. Soc., 2003, 125: 11170-11171.
    [12]. Zheng B, Tice J D, Roach L S, Ismagilov R F. A Droplet-Based, Composite PDMS/Glass Capillary Microfluidie System for Evaluating Protein Crystallization Conditions by Microbatch and Vapor-Diffusion Methods with On-Chip X-Ray Diffraction. Angew. Chem. Int. Ed., 2004, 43: 2508-2511.
    [13]. Shestopalov I, Tice J D, Ismagilov R F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip, 2004,4:316-321.
    [14]. Dendukuri D, Tsoi K, Hatton T A, Doyle P S. Controlled Synthesis of Nonspherical Microparticles Using Microfluidics. Langmuir, 2005, 21:2113-2116.
    [15]. Cristini V, Tan Y-C. Theory and numerical simulation of droplet dynamics in complex flows-a review. Lab Chip, 2004,4: 257-264.
    [16]. Song H, Ismagilov R F. Millisecond kinetics on microfluidic chip using nanoliters of reagent. J. Am. Chem. Soc., 2003,125: 14613-14619.
    [17]. Joanicot M, Ajdari A. Droplet Control for Microfluidics. Science, 2005, 309: 887-888.
    [18]. Gao J, Yin X F, Fang Z L. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip, 2004, 4: 47-52.
    [1]. Boeijen A, Liskamp R M J. Sequencing of peptoid peptidomimetics by Edman degradation. Tetrahedron Letters, 1998, 39: 3589-3592.
    [2]. Brewer M, Oost T, Sukonpan C, Pereckas M, Rich D H. Sequencing hydroxyethylamine-containing peptides via edman degradation. Org. Lett., 2002, 4: 3469-3472.
    [3]. Rydberg P, Luning B, Wachtmeister C A, Eriksson L, Tornqvist M. Applicability of a modified edman procedure for measurement of protein adducts: mechanisms of formation and degradation of phenylthiohydantoins. Chem. Res. Toxicol., 2002, 15: 570-581.
    [4]. Pham V, Tropea J, Wong S, Quach J, Henzel W J. High-throughput protein sequencing. Anal. Chem., 2003, 75: 875-882.
    [5]. Sweeney M C, Pei D. An Improved Method for Rapid Sequencing of Support-Bound Peptides by Partial Edman Degradation and Mass Spectrometry. J. Comb. Chem., 2003, 5: 218-222.
    [6]. Weder J K P, Hinkers S C. Complete Amino Acid Sequence of the Lentil Trypsin-Chymotrypsin Inhibitor LCI-1.7 and a Discussion of Atypical Binding Sites of Bowman-Birk Inhibitors. J. Agric. Food Chem., 2004, 52: 4219-4226.
    [7] Perkins D N, Pappin D J C, Creasy D M, Cottrell J S Probability based protein identification by searching sequence database using mass spectrometry data. Electrophoresis, 1999, 20: 3551-3567.
    [8]. Hoving S, Munchbach M, Schmid H, Signor L, Lehmann A, Staudenmann W, Quadroni M, James P. A Method for the Chemical Generation of N-Terminal Peptide Sequence Tags for Rapid Protein Identification. Anal. Chem., 2000, 72: 1006-1014.
    [9]. Seong G H, Crooks R M. Efficient Mixing and Reactions within Microfluidic Channels Using Microbead-Supported Catalysts. J. Am. Chem. Soc., 2002, 124: 13360-13361.
    [10]. Verpoorte E. Beads and chips: new recipes for analysis. Lab Chip, 2003, 3: 60N-68N.
    [11]. Peterson D S. Solid supports for micro analytical systems. Lab Chip, 2005, 5: 132-139.
    [12]. Ramsey J D, Collins G E. Integrated Microfluidic Device for Solid-Phase Extraction Coupled to Micellar Electrokinetic Chromatography Separation. Anal. Chem., 2005, 77: 6664-6670.
    [13].殷学锋,沈宏,方肇伦.制造玻璃微流控芯片的简易加工技术.分析化学,2003,31(1):116-119.
    [14]. Ekstrom S, Malmstrom J, Wallman L, Lofgren M, Nilsson J, Laurell T, Marko-Varga G. On-chip microextraction for proteomic sample preparation of in-gel digests. Proteomics, 2002, 2: 413-421.
    [15]. Bergkvist J, Ekstrom S, Wallman L, Lofgren M, Marko-Varga G, Nilsson J, Laurell T. Improved chip design for integrated solid-phase microextraction in on-line proteomic sample preparation. Proteomics, 2002, 2: 422-429.
    [16]. Wallman L, Ekstrom S, Marko-Varga G, Laurel T, Nilsson J. Autonomous protein sample processing on-chip using solid-phase microextraction, capillary force pumping, and microdispening. Electrophoresis, 2004, 25: 3778-3787.
    [17]. Li X-F, Waldron K C, Black J, Lewis D, Ireland I, Dovichi N J. Miniaturized protein microsequencer with PTH amino acid identification by capillary electrophoresis II. A syringe-pump-based system for covalent sequencing. Talanta, 1997,44:401-411.
    [18]. Henzel W J, Tropea J, Dupont D. Protein Identification Using 20-Minute Edman Cycles and Sequence Mixture Analysis. Analytical Biochemistry, 1999, 267: 148-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700