用户名: 密码: 验证码:
声表面波为能量源微液滴微反应器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂的微分析系统往往难以集成在一个基片中,同时为发挥不同基片的优点,一个微分析系统可能采用不同材料的基片。为此,微流体在不同基片间的输运是不可避免的。相对连续流的微流控芯片,数字流(微液滴)的微流控芯片具有分析精度更高、操作更简单及尺寸更小等优点。而微反应器是微流控芯片重要且不可或缺的组成单元,由于声表面波(Surface Acoustic Wave, SAW)器件具有技术成熟、工艺简单、成本低廉、尺寸小且功能单元易集成等优点,因此受到国内外微流控学者的重视。本文以声表面波为能量源,以微液滴为操控对象,设计和制作了具有双基片结构的微反应器系统,提出了通过声表面波驱动微液滴在基片间的输运并作用于反应物微液滴的混合反应的新方法。
     该微反应器系统以128°YX-LiNbO_3为基片材料,在基片上集成多组平行或垂直排列的叉指换能器(Interdigital Transducer, IDT)组用来激发声表面波,它由上基片、弧形微通道和下基片组成,上、下基片采用微电子工艺光刻叉指换能器阵列,弧形微通道采用聚合物材料制作,工作表面进行疏水化处理,便于微液滴输运。
     频率为27.5MHz的RF信号经放大后加到上基片叉指换能器上,激发声表面波驱动其声路径上的微液滴按声传播方向快速运动。微液滴到达与上基片连接的经疏水处理的弧形聚合物表面,由于自身重力克服表面张力沿弧形聚合物表面滑落至下基片,实现两基片间输运。实验结果表明弧形聚合物曲率半径、微液滴体积的大小以及微液滴的物理性状决定微液滴在两基片间输运。理论分析了弧形聚合物近似为平面时和作为曲面时,微液滴在弧形聚合物上的受力情况。
     达到下基片后的微液滴与下基片上的另一反应物微液滴混合,下基片的叉指换能器接入放大后频率为25.5MHz的RF信号,激发声表面波作用于此混合液滴。采用该微反应器实现了油包封微反应物的物理和化学反应,结果表明,微液滴的混合和反应速率在声表面波作用下提高并随加到叉指换能器的电信号功率增大而增大;油包封反应物可减少反应物的蒸发速率。理论分析了反应物微液滴的反应机理和声表面波滴反应的影响。
Microfluidic chip has been used in biochemical analysis, single molecule analysis, single cell analysis, food testing, and national security. It is often difficulty for complex microanalysis systems to be integrated into one substrate. At the meantime, different substrate materials will be choosen in one microanalysis system to take their advantages. Thus, the transportation of droplet between different substrates is inevitable. Compared with continuous flow microfluidic chip, the microfluidic chip working in digital flow (droplet) has more advantages due to its higher analysis accuracy, more simple operation, and smaller size. Micro-reactor is an important and indispensable unit for a microfluidic chip, and is receiving more and more attention at home and abroad. In this paper, a microreactor system with a double-substrate structure using SAW as the energy source has been designed, and a new method to transport microdroplet between substrates and compact droplet mixing and reaction with SAW have been proposed.
     The micro-reactor system excites SAW with vertical or horizontal arrangement IDTs which were fabricated on 128°YX-LiNbO_3 substrates. It consists of above, below substrate and arc-shaped microchannel. The IDTs were fabricated on the substrates with microelectronics technique, the arc-shaped microchannel was made by polymer; and their surfaces were hydrophobic treated for transporting droplets.
     When the amplified RF signal with 27.5MHz center frequency is added on the IDTs, SAW is excited and drives the droplet to move along its propagation direction. Then the micro-droplet slides off the arc-shaped polymer and falls on the bellow substrate. Experiment results showed that curvature radius of the arc-shaped polymer, volumes and physical characteristics of droplet would affect the transportation. Theoretical analyses of the forces on micro-droplet depending on different considerations would be given in paper.
     After arriving at the down substrate, the microdroplet mixes with the other microdroplet under the influence of SAW, which is excited by the RF signal of a 25.5MHz center frequency added on the IDTs on the down substrates. Physical and chemical reaction was implemented in this microreactor system. The results showed that reaction velocity increases with RF signal power. The results also showed that the reactants with oil encapsulation can reduce evaporation rate. The reaction mechanism was analysized and relation of the reaction velocity to the SAW power was also given in the paper.
引文
[1] Ganley J. C., Seebauer E. G., Masel R. I.. Development of microreactor for the production of hydrogen from ammonia [J]. Power Sources, 2004, 137(10):53-61.
    [2] Veser Gotz. Experimental and theoretical investigation of H2 oxidation in a high temperature catalytic microreactor [J]. Chemical Engineering Science, 2001, 56(12):1265-1273.
    [3] Teuschel Ute. What is a microreactor? It is a miniature version of the traditional, large-scale reactor that most people are familiar with [J]. Reviews in Molecular Biotechnology, 2001, 82(2):87-88.
    [4] Lee Ki Bang, Lin Liwei. Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications [J]. Sensors and Actuators A, 2004, 111(3):44-50.
    [5] Ke C., Berney H., Mathewson A., et al. Rapid amplification for the detection of Mycobacterium tuberculosis using a noncontact heating method in a silicon microreactor based thermal cycler [J]. Sensors and Actuators B, 2004, 102(9):308-314.
    [6] Manz A, Effenhauser C S, Barggraf N, et al. Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems [J]. A nal. Mag., 1994, 4(9):257-265.
    [7] Younes Metzler Osnat, Svagin Jakob, Jensen Sren, et al. Microfabricated high temperature reactor for catalytic partial oxidation of methane [J]. Applied Catalysis A, 2005, 28(4):5-10.
    [8] Chang Zhenqi, Liu Gang, Fang Fang, et al.γRay-initiated dispersion polymerization of PMA in microreactor [J]. Chemical Engineering Journal, 2004, 101(1):195-199.
    [9] Miyazaki Masaya, Kaneno J un, Kohama Ryo , et al. Preparation of functionalized nanostructures on microchannel surface and their use for enzyme microreactors [J]. Chemical Engineering Journal, 2004, 101(1): 277-284
    [10]刘建平,刘莉,何平笙,等.微反应器和微聚合反应器[J].化学通报, 2002, 65(11):758-761.
    [11] Garcia Egido E, Spikmans V, Wong S Y F, et al. Synthesis and analysis of combinatorial libraries performed in an automated micro reactor system [J] .Lab on a Chip, 2003, 3(2):73-76.
    [12] Kohler J M, Zieren M. Chip reactor for microfluid calorimetry [J]. Thermochimica Acta, 1998, 310 (1/2):25-35.
    [13] Song H, Ismagilov R F.Millisecond kinetics on a microfluidic chip using nanoliters of reagents [J]. Journal of the American Chemical Society, 2003, 125(47):14613-14619.
    [14] Felbel J, Reichert A, Kielpinski A, et al. Reverse transcription polymerase chain reaction (RT-PCR) in flow through micro-reactors: Thermal and fluidic concepts [J]. Chemical Engineering Journal, 2008, 135(1):S298-S302.
    [15] Jeremie Bouchaud, Lars Stuible. Micro reaction in Europe and Asia: status of R&D and industry, applications and markets [C]. Microproducts Breakthrough Institute(MBI), 2004 Micro Nano Breakthrough Conference, Oregon, 2004.
    [16] Yole Development. Microreaction technologies: microtechnologies for chemical process intensification[R]. 2007.
    [17] Mleczko L. Micro reaction technology for small scale production [C]. Bayer Technology Services, 3rd International Technology Excellence Congress in Process & Pharmaceutical Industry, Shanghai, 2007.
    [18] Helmut Pennemann, Volker Hessel, Holger Lowe. Chemical microprocess technology: From laboratory scale to production [J]. Chem Eng Sci, 2004, 59(22): 4789-4794.
    [19] Roberge D M.Microreactor technology: A revolution for the fine chemical and pharmaceutical industries [J]. Chem Eng Technology, 2005, 28(2):318-323.
    [20] Ehrfeld W, Hessel V, Lowe H.微反应器:现代化学中的新技术[M].骆广生,王玉军,吕阳成,译.北京:化学工业出版社, 2004.
    [21] Christopher GF, Anna SL.Microfluidic methods for generating continuous droplet streams [J]. Journal of Physics D: Applied Physics, 2007, 40(19):319-336.
    [22] Link D R, Anna SL, Weitz D A, et al. geometrically mediated breakup of drops in microfluidic devices [J]. Physical Review Letters, 2004, 92(5):054503.
    [23] Dummann G, Quittmann U, Groschell L, et al. The capillary-microreactor:A new reactor concept for the intensification of heat and mass transfer in liquid-liquid reactions[J]. Catalysis Today, 2003, 79(1/2/3/4):433-439.
    [24] Pennemann H, Hessel V, Lowe H. Chemical microprocess technology from laboratory-scale to production [J]. Chemical Engineering Science, 2004, 59(22/23):4789-4794.
    [25] Lob P, Lowe H, Hessel V. Fluorinations, chlorinations and brominations of organic compounds in micro reactors [J]. Journal of Fluorine Chemistry, 2004, 125(11):1677-1694.
    [26] Chen G G, Luo GS, Li S W, et al. Experimental approaches for understanding mixing performance of a minireactor[J]. AIChEJournal, 2005, 51(11):2923-2929.
    [27] Xu J H, Luo G S, Chen G G, et al. Mass transfer performance and two-phase flow characteristic in membrane dispersion mini-extractor [J]. Journal of Membrane Science, 2005, 249(1/2):75-81.
    [28] Kralj J G, Schmidt M A, Jensen K F. Surfactant enhanced liquid-liquid extraction in microfluidic channels with inline electric field enhanced coalescence [J]. Lab on a Chip, 2005, 5(5):531-535.
    [29] Dendukuri D, Tsoi K, Hatton T A, et al. Controlled synthesis of nonspherical microparticles using microfluidics [J]. Langmuir, 2005, 21(6):2113-2116.
    [30] Kohler J M, Zieren M. Chip reactor for microfluid calorimetry [J]. Thermochimica Acta, 1998, 310(1/2):25-35.
    [31] Wang K, Lu YC, Shao HW, et al. Improving selectivity of temperature sensitive exothermal reactions with microreactor [J]. Industrial & Engineering Chemistry Research, 2008, 47 (14):4683-4688.
    [32] Chen G G, Luo G S, Xu J H, et al. Membrane dispersion precipitation method to prepare nanopartials[J]. Powder Technology, 2004, 139(2):180-185.
    [33] Wang K, Wang YJ, Chen G G, et al. Enhancement of mixing and mass transfer performance with a microstructure minireactor for controllable preparation of CaCO3nanoparticles[J]. Industrial & Engineering Chemistry Research, 2007, 46(19):6092-6098.
    [34]陈光文.微化工技术研究进展[J].现代化工, 2007, 27(10):8-13.
    [35]徐昌昆,孟秀林,林江,等.声表面波器件及其应用[M].北京:科学出版社, 1984,1-30.
    [36]吴连法.声表面波器件及其应用[M].北京:人民邮电出版社, 1983, 37-87.
    [37]成龙.声表面波器件加速市场扩展[J].中国电子商情(元器件市场), 2003, 10:16-18.
    [38] C.M.Panasik. Surface Programmable Transversal Filter for Adaptive Interference Suppression [c]. Proc.IEEE Ultrasonic Symposium. 1982, 214-218
    [39] S.W.Merritt, G.K. Montress and T.W.Grudkowsik. GaAs SAW/MESFET Programmable Asynchronous Correlator with Complex Tap Weighting [C]. Proc.IEEE Ultrasonic Symposium.1986,197-202
    [40] C.M.Panasik, W.R.Paxman and J.W.Cluver. A32-Tap Digitally Controlled Programmable Transversal Filter [C]. Proc.IEEE Ultrasonic Symposium. 1992, 111-122.
    [41] J.C.Hartsen. Development of A Monolithic. Programmable SAW Filter in Silicon [C]. Proc. IEEE MTT-S Digest. 1990, 219-225
    [42] J.B.Green and G.S.Kino. The SAW-FET Signal Processor [C]. Proc. IEEE Trans. Sonics Ultrason. 1985, 85-91.
    [43]何芳钧,等.现代晶体滤波器设计[M].北京:科学出版社, 1980, 3-113
    [44]李忠诚.现代晶体滤波器设计[M].北京:国防工业出版社, 1981. 55-78
    [45] S.Minagawa, T.Okamoto, T.Niitsuma, Sezawa Wave Correlator Using Monolithic ZnO/SiO2/Si Structure [C]. Proc.IEEE Ultrasonic Symposium, 1984. 123.
    [46] J.B.Green, D.E.Oates, P.M.Grant. Adaptive and Matched Filtering with a SAW/FET Programmable Transversal Filter [C]. Proc.IEEE Ultrasonic Symposium, 1986, 127-235
    [47] K.Sugai, H.Takakuni, O.Noguchi. SAW Programmable Norch Filters for Adaptive Interference Suppression [C]. Proc.IEEE Ultrasonic Symposium, 1989, 214-218.
    [48] D.Huynh, R.Mcgowan, etc. Experimental Studies of SAW and STW ACC eleraration Sensitvity [C]. IEEE I.F.C.S., 1995, 120-322.
    [49] J.R.Reid, V.M. Bright and J.A.Kosinski. A Micromachined Vibration Isolation System for a 1GHz STW Resonator [C]. IEEE I.F.C.S., 1997, 201-411.
    [50] C. E. Bradley. Acoustic streaming field structure: The influence of the radiator [J].Journal of Acoustical Society of America, 1996, 100(1):1399-1408.
    [51] B. Desjardins and C.-K. Lin. A survey of the compressible Navier-Stokes equations [J]. Taiwanese Journal of Mathematics, 1999, 3(2):123-137.
    [52] A. Gantner, R.H.W. Hoppe and D. Koster et al. Numerical simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips, 2007, 10(3):145-161.
    [53] Z. Guttenberg, H. Muller, and A. Geisbauer. Planar chip device for pcr and hybridization with surface acoustic wave pump [J]. Lab Chip, 2005, 5(3):308-317.
    [54] Unger M A, Chou HP, Thorsen T, et al. Monolithic Microfabricated Valves and Pumps by Multiplayer Soft Lithography [J]. Science, 2000,288(5463):3-116.
    [55] Chou H P, Unger M A, Quake S R. A Microfabricated Rotary Pump [J], Biomed. Microdevices, 2001, 3(1):323-330.
    [56] Chen L, Ma J P, Guan Y F. An Electroosmotic Pump for Packed Capillary Liquid Chromatography [J], Microehem, 2003, 75(1):15-21.
    [57] Duffy D C, Gillis H I, Lin J, et a1. Microfabricated Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic Assays [J]. Ana1.Chem. 1999, 71(20):4669-4678.
    [58]电子工业生产技术手册编委会.半导体与集成电路卷[M].电子工业生产技术手册第七卷, 1990,1024.
    [59] Jin Yong Kim and Hyeong Joon Kim.Passivation Layer Effects on Power Durability of SAW Duplexer [C]. Proc.IEEE Ultrsonics Symposium, 1999, 39-42.
    [60] Hiroyuki Odagawa. SAW Device beyond 5GHz [M]//Clemens C.W.Ruppel, Tot A.Fjeldly. Advance in Surface Acoustic Wave Technology, System and Application (volume 2). New Jersey: World Scientific Publishing Company, 1st edition 2001:245-276.
    [61] Rajan Subramanian, Jason W elter.High-Frequency SAWFabricated by Ion Etch Technology [C]. Proc.IEEE Ultrasonics Symposium, 1996, 271-276.
    [62] Jensen Klavs F., Microreactor engineering is small better [J]. Chemical Engineering Science, 2001, 56(2): 293-303.
    [63] Worz O., Jakckel K. P., Richter TH. , et al. Microreactors, a new efficient tool for optimum reactor design [J]. Chemical Engineering Science, 2001, 56(3): 1029-1033.
    [64] Worz O., Jakckel K. P. Winzlinge mil grofier Zukunft-Mikroreaktoren fur die Chemie [J]. Chem. Techn. , 1997, 131(26):130-134.
    [65] Floyd T M, Losey M W, Firebaugh S L, et al. Novel Liquid Phase Microreactors for Safe Production of Hazardous Specialty Chemicals [C]. In: Ehrfeld W. Microreaction Technology: Industrial Prospects. Berlin: Springer, 2000, 171-180.
    [66] Losey M W, Schmidt M A, Jensen K F. A Micro Packed-bed Reactor for Chemical Synthesis [C].In: Ehrfeld W. Microreaction Technology: Industrial Prospects. Berlin: Springer,2000,277-286
    [67] Lee P. C., Tseng F. G., Pan Chin. Bubble dynamics in microchannels [J]. Part I: single microchannel. International Journal of Heat and Mass Transfer, 2004, 47(1):5575-5589.
    [68]田军,薛群基.平板上低表面能涂层的水筒减阻研究[J].科学通报(Chinese Science Bulletin), 1996, 41(18): 1667-1669.
    [69] ENZELBERGER L J, Quake S. A nanoliter rotary device for polymerase chain reaction [J]. Elect rophoresis, 2002, 23(10):1531-1536.
    [70] TAN M K, FRIEDND J R., YEO L Y. Surface Acousticwave Driven Microchannel Flow[C]//Proc of the 16th Aust ralasian Fluid Mechanics Conference. Queensland, Aust ralia, 2007:2-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700