用户名: 密码: 验证码:
纳米硫化物和氧化物的湿化学合成与形貌控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构及其相关的复合结构具有许多有趣的与尺寸和形貌相关的性能。利用纳米结构材料的特殊性能可以设计全新的电子、光子、传感等纳米器件,具有广阔的潜在应用前景。本论文针对己有纳米材料制备方法存在的工艺复杂、成本较高的问题,采用设备条件要求不高、适应性强的湿化学方法,选择典型的半导体材料为研究对象,通过对反应介质、结构导向剂以及制备工艺的精心选择和设计,在相对温和、简单的条件下实现了对纳米材料在尺寸和形貌等方面的可控合成,并对生长机理进行了探讨。论文主要内容归纳如下:
     1.采用水热法成功合成了Mn~(2+)掺杂MS(M=Zn、Cd)纳米棒,探讨了Mn~(2+)含量对光谱性能的影响。结果表明随着Mn~(2+)含量的增加,其直径基本不变,但长度变短,形貌变的较杂乱,并且伴随有颗粒产生。MS纳米棒的紫外吸收光谱和荧光光谱都逐渐红移,表明Mn~(2+)是一种重要的光谱调节元素,能有效的调节MS纳米棒的光学性能。
     采用十二烷基苯磺酸钠辅助水热法制备了ITO交叉棒。研究了不同温度下合成的前驱体的微结构和形貌,并在此基础上对粉末择优取向生长机理进行了探讨。结果表明,在113℃下合成的前驱体的择优取向最为明显,该温度下前驱体的生长主要沿着[100]晶向择优取向并且具有最好的空间交叉棒形貌。提出了水热合成过程中产生的密实粒子或短棒以“棒-棒”相接的生长模式形成更长的棒状或者交叉棒的生长机理。
     2.利用简单的自组装化学反应,将CuS均匀地包覆于PSA乳胶粒模板的表面,形成PSA/CuS的核/壳结构微球,用有机溶剂溶去PSA乳胶粒模板后,可以得到壳厚20nm、孔直径120nm且大小均匀表面光滑的CuS空心微球。采用超声振动法,利用PEG作为结构诱导软模板成功制备了Bi_2S_3纳米棒,分析了不同时间Bi2S3纳米棒的生长形貌,提出了“粒子-粒子”自组装连接生成Bi2S3纳米棒的生长机理,并通过紫外吸收光谱估算出了Bi_2S_3纳米棒的光学带隙宽度。
     3.采用乙二胺/水溶剂热法,选择不同的硫源,合成了具有双层十二对称结构的Cu_(2-x)S晶体,探讨了不同乙二胺/水体积比对形貌的影响,提出了双层十二对称结构是源于六边形微盘组装而成的生长机理。
     采用二甘醇溶剂热法合成了包含少量水合氯化铟(InCl_3·3H_2O)的In(OH)_3晶体,它们可呈现出棉花状、刺球状和海胆状复杂而有趣的形貌,探讨了温度对形貌变化的影响及相应的生长过程。
     4.采用微乳液法,通过调节微乳液中起始溶液的pH值,合成了CeO_2的纳米球和纳米棒晶体。分析了样品的组成和结构,探讨了形貌对CeO_2纳米晶的比表面积和光谱性能的影响,估算了不同形貌CeO_2纳米晶的光学带隙宽度。
     5.采用水热法制备了聚合物PVP表面修饰ZnO纳米棒,比较了改性前后ZnO纳米棒的晶体结构和光学性质。结果表明,PVP对改性后对ZnO的晶体结构影响不大,但增加了ZnO纳米棒在紫外区域的吸收,而对其在紫外区域的屏蔽能力和在可见光区域的透过能力影响不大。353nm处弱的发射峰表明ZnO晶体的表面已经被钝化,与氧有关的缺陷被PVP所修饰。
Nanomaterials and relatived composites have many interesting properties relating size and morphology. Novel electrons, photons and sensors can be designed by their especial structure. Most of the developed synthetic routes to nanomaterials are complicated in process, expensive in cost, this work of the dissertation has explored a series of new wet chemical methods, which present low requirements in equipment and strong adaptability, to synthesize some typical semiconductor nanocrystals with controllable sizes and morphologies under relatively mild and simple conditions by carefully selecting the reaction media, structure-directing agents and processes. Relatived mechanisms were discussed. The main points can be summarized as follows:
     1. Mn~(2+) doped MS(M=Zn, Cd) nanorods were successfully synthesized through hydrothermal route. With the increase of Mn~(2+) in the samples, the morphology of products become disorder accompanying some nanoparticles. The diameter of nanorods retains almost the same, but the length becomes shorter. Mn~(2+) enters the position of M2+(M=Zn, Cd) by substitution. Both the absorption band edge and the PL emission spectroscopy of MS nanorods shifted gradually to longer wavelength with the increase of Mn~(2+). The results confirm that the doped Mn~(2+) is the major luminescent component and can effectively adjust the optical properties of ZnS nanorods.
     Indium-tin oxide (ITO) precursor powderswere synthesized by hydrothermal method. The effects of temperature on the preferred orientation morphologies of the precursor powders were studied. Thereby their preferred orientation growth mechanisms were deduced. The effects of temperature on the phase structures and morphologies of the precursors were remarkable. ITO precursors synthesized at 113℃had the most obvious preferred orientation and grew mainly along the [100] direction and exhibited the best morphology of intersecting-rods.
     2. CuS hollow spheres with a wall thickness about 20 nm and a pore diameter about 150 nm have been successfully prepared using the PSA latex template approach by a layer-by-layer self-assembly technique. Growth mechanism of CuS hollow spheres was discussed.
     Bi2S3 nanorods has successfully fabricated by sonochemical aqueous solution using PEG as structure-directing agent. The Bi2S3 nuclei show an obvious tendency to arrange themselves in rod-like arrays over extended length scales under soft template. The growth mode of particle?to?particle by self-assembly under soft template is proposed. The band gap energy of Bi_2S_3 nanorods was estimated at about 1.36 eV by UV-Vis absorption spectroscopy.
     3. Novel twelve-fold symmetrical Cu2-xS single crystals were synthesized by En/H2O solvothermal process,, and they were built up by two layers of about 80–100 nm in thickness. The possible growth process had been discussed. In(OH)3 with cotton-like, bur-like and pod-like morphologies were synthesized at different temperatures by diglycol-mediated solvothermal processes. The effect of temperature on morphology was discussed and growth mechanism was proposed.
     4. CeO2 nanocrystals with different morphologies were synthesized by adjusting the pH value of the starting solution in water-in-oil microemulsion. Results show that the morphologies of CeO_2 were transformed from granular, to spherical, and to rod-like with the pH of the starting solution varying from 5, to 8, and to11. All samples were indexed to the phase of CeO_2 and Ce(OH)_4, and the molar ratio of CeO_2 to Ce(OH)_4 could be deduced about 0.25. The morphologies of CeO_2 nanocrystals had a little influence on the specific surface area, UV-Vis spectra and PL spectra. The band gap energies of different morphological samples were estimated by UV-Vis spectroscopic method.
     5. ZnO nanorods modified by PVP were obtained by hydrothermal technique. Comparison of the amount of ZnO nanorods synthesized in the presence or absence of PVP reveals that PVP plays an important role in the preparation ZnO nanorods, but doesn’t alter the crystalline structure of ZnO. The optical property of the ZnO nanomaterials could be modified by PVP. ZnO nanorods increase in absorption at UV region, and don’t influence the UV-shielding ability and transparency in the visible light region of ZnO. A weak UV emission at 353 nm of PL spectra exhibits the surface of ZnO is passivated and oxygen-related defects were supplied by PVP.
引文
[1]朱静.纳米材料与器件.北京:清华大学出版社,2003,1-2
    [2]夏建白.半导体纳米材料和物理.物理,2003,32(10): 693-699
    [3] Cushing, B. L, Kolesnichenko. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews 2004,104(9):3893-3946
    [4] [美]K.J.克莱邦德.纳米材料化学.北京:化学工业出版社,2004
    [5]刘焕彬,陈小泉.纳米科学与技术导论.北京:化学工业出版社,2005
    [6] B. A. Korgel, Nanosprings Take Shape, Science, 2005, 309: 1683-1684
    [7]张立德.纳米材料和纳米结构.北京:科学出版社,2001,51-57
    [8] Henglein A.. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical Reviews 1989, 89 (8): 1861-1873
    [9]张立德.我国纳米材料技术应用的现状和产业化的机遇.材料导报,2001, 15 (7): 2-5
    [10] Weller H.. Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules. Angewandte Chemie International Edition in English 1993,32(1):41-53
    [11] Hagfeldt A., Graetzel M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chemical Reviews 1995, 95 (1): 49-68
    [12] C. Burda, X. Chen, R. Narayanan, et al. Chemistry and Properties of Nanocrystals of Diferent Shapes, Chem. Rev, 2005, 105(4): 1025-1102
    [13] C. J. Murphy, T. K. Sau, A. M. Gole, et al. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications, J Phys Chem, B.2005,109(29): 13857-13870
    [14] Y. W. Jun, J. H. Lee, J. S. Choi, et al. Symmetry-Controlled Colloidal Nanocrystals: Nonhydrolytic Chemical Synthesis and Shape Determining Parameters, J Phys. Chem. B, 2005, 109(31): 14795-14806
    [15] Y. Xia, P. Yang, Y. Sun, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater., 2003, 15(5): 353-389
    [16] Mao S X, Zhao M H, Wang Z L. Nanoscale mechanical behavior of individual semiconducting nanobelts. Appl. Phys. Let., 2003, 83: 993-995
    [17] Bai X D, Gao P X, Wang Z L, et al. Dual-mode mechanical resonance ofindividual ZnO nanobelts. Appl. Phys. Let., 2003, 82: 4806-4808
    [18] Heo Y W, Tien L C, Norton D P, et al. Electrical transport properties of single ZnO nanorods. Appl. Phys. Let., 2004, 85: 2002-2004
    [19] Z. Zhang, D. A. Blom, Z. Gai, J. R. Thompson, J. Shen, S. Dai, High-Yield Solvothermal Formation of Magnetic Copt Alloy Nanowires, J Am. Chem. Soc,2003, 125(25): 7528-7529
    [20] Y. Xia, P.D. Yang, Y. Sun, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater., 2003, 15(5): 353-389
    [21] J. Kong, N. R. Franklin, C.W.Zhou, et al. Nanotube moleculer wires as chemical sensors, Science, 2000, 287: 622-625
    [22] Collins. G, Bradley. K A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000,287:1801-1804
    [23] Y. Cui, Q. Wei, H. Park, et al. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, 2001, 293: 1289-1292
    [24] Y. Huang, X. F. Duan, C. M. Lieber. Logic Gates and Computation from Assembled Nanowire Building Blocks. Science, 2001, 294: 1313-1317
    [25] A. Bachtold, P. Hadley, T. Nakanishi, et al. Logic Circuits with Carbon Nanctube Transistors, Science, 2001, 294: 1317-1320
    [26] Y. Huang, X. F. Duan,Y.Cui, et al. Gallium Nitride Nanowire Nanodevices. Nano Lett, 2002, 2(2):101-104
    [27] G.Y. Tseng, J. C. Ellenbogen. Nanotechnology toward Nanocomputers, Science, 2001, 294: 1293-1294
    [28] C.L Xie, Z. P. Qiao, M. H. Zeng, et al. A Single-Source Approach to Bi2S3 and Sb2S3 Nanorods via a Hydrothermal Treatment, Cryst. Growth Des, 2004, 4(3): 513-516
    [29] M. P. Pileni. Nanocrystal Self-Assemblies: Fabrication and Collective Properties, J Phys. Chem. B, 2001, 105(17): 3358-3371
    [30] Z. Tang, N. A. Kalov, M. Giersig. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science, 2002, 297: 237-240
    [31] Bradley J. S., Tesche B., Busser W., et al. Surface Spectroscopic Study of the Stabilization Mechanism for Shape-Selectively Synthesized Nanostructured Transition Metal Colloids, J. Am. Chem. Soc. 2000,122:4631
    [32]于迎春,徐柏庆.The microtubule aster formation and its role in nuclear envelope assembly around the sperm chromatin in Xenopus egg extracts,科学通报, 2003, 48(18):1919
    [33] Li L, Zhang.Y, Li G, et al. A route to fabricate single crystalline bismuth nanowirearrays with diferent diameters. Chem. Phys. Let,2003,378:244-249.
    [34] Ren-Jiang La, Zhong-Ai Hu, Hu-Lin Li, et al. Template synthesis of CeO2 ordered nanowire arrays, Materials Science and Engineering. A 2004, 368: 145-148
    [35] Y.Wang, J. Y. Lee, H. C. Zeng. Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application, Chem. Mater, 2005, 17(15):3899-3903
    [36] G. Malandrino, S. T. Finocchiaro, R. L. Nigro,et al. Free-Standing Copper Oxide Nanotube Arrays through an MOCVD Template Process, Chem. Mater., 2004,16(26): 5559-5561.
    [37]迟广俊,冯钊永,赵瑾,等.纳米金属多层膜与多层纳米线的电化学制备及其表征.物理化学学报,2003, 19(2):177
    [38] Han Zhou, Tongxiang Fan, Di Zhang. Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplate, Microporous and Mesoporous Materials.2006,65:321–326
    [39] G. N. Karanikolos, P. Alexandridis, G. Itskos, et al. Synthesis and Size Control of Luminescent ZnS Nanocrystals by a Microemulsion-Gas Contacting Technique. Langmuir, 2004, 20(3):550-553
    [40] E. C. Scher, L. Ma nna, A. P. Alivisatos. Shape control and applications of nanocryslals. Phil. Trans. R. Soc.Lond A,2003,361:241-257
    [41] Lieber C M. Nanoscale Science and Technology: Building a Big Future from Small Things. MRS Bull, 2003, 7: 486-491
    [42] Kim P, Lieber C M, Nanotube nanotweezers. Science, 1999,286: 2148-2150
    [43] G. W. Sears, prepare and characterization of Fe nanowirr. Acta Metal,1995, 3: 367
    [44] X. Y Kong, Y Ding, R S Yang, et al. Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar-Nanobelts, Science, 2004, 303: 1348-1351
    [45] Z W Pan, Z R Dai, Z L Wang. Nanobelts of Semiconducting Oxides, Science, 2001, 291:1947-1949
    [46] P X Gao, Y Ding, W Mai, et al. Conversion of Zinc Oxide Nanobelts into Superlatice-Structured Nanohelices, Science, 2005, 309: 1700-1704
    [47] Z L Wang. Self-Assembled Nanoarchitectures of Polar Nanobelts/Nanowires, J Mater Chem., 2005,15:1021-1024
    [48] Y D Li, H W Liao, Y Ding, et al. Solvothermal Elemental Direct Reaction To CdE (E=S, Se, Te) Semiconductor Nanorod, Inorg. Chem., 1999,38(7): 1382-1387
    [49] W. T. Yao, S. H. Yu, L. Pan, et al. Flexible Wurtzite-Type ZnS Nanobelts With Quantum-Size Efects: A Diethylenetriamine Assisted Solvothermal Approach, Small, 2005, 1(3):320-325
    [50] Q. Peng, Y. J. Dong, Y. D. Li. ZnSe Semiconductor Hollow Microspheres, Angew. Chem. Int. Ed, 2003,42:3027-3030
    [51] D. Kuang, A. Xu, Y. Fang, et al. Surfactant-Assisted Growth of Novel PbS Dendritic Nanostructures via Facile Hydrothermal Process, Adv. Mater., 2003, 15(20):1747-1750
    [52] Y. Chang, H. C. Zeng. Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu2O Microcrystals, Cryst. Growth Des., 2004, 4: 273-278
    [53] B. Liu, H. C. Zeng. Mesoscale Organization of CuO Nanoribbons: Formation of Dandelions, J. Am. Chem. Soc., 2004,126: 8124-8125
    [54] M. Cao, T. Liu, S. Can, et al. Single-Crystal Dendritic Micro-Pines of Magnetic Fe2O3: Large-Scale Synthesis, Formation Mechanism, and Properties, Angew. Chem. Int. Ed., 2005, 44: 4197-4201
    [55] X. Wang, J. Lu, Y. Xie, et al. A Novel Route To Multiwalled Carbon Nanotubes and Carbon Nanorods at Low Temperature, J Phys. Chem. B, 2002, 106(5): 933-937
    [56] M. J. OConnell, P. Boul, L. M. Ericson,et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett., 2001, 342 (3-4): 265-271
    [57]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性.北京:化学工业出版社, 2003,52-56
    [58] Zhang RQ, Lifshitz Y, Lee S.T. Oxide-assisted growth of semiconducting nanowires. Adv. Mater. 2003, 15 (7-8):635-640
    [59] Xianhui Xia, Zhizhen Ye, Guodong Yuan. Rapid synthesis of novel flowerlike ZnO structures by thermolysis of zinc acetate, Applied Surface Science 253. 2006,909-914
    [60] Larsen T H., Sigman M., Ghezelbash A., et al. Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. Journal of the American Chemical Society 2003, 125(19):5638-5639
    [61] Sigman Jr, M. B., Ghezelbash A., et al. Solventless Synthesis of Monodisperse Cu2S Nanorods, Nanodisks, and Nanoplatelets. J. Am. Chem. Soc‘2003,125(51):16050-16057
    [62] Chen L., Chen Y B., Wu L. M.. Synthesis of Uniform Cu2S Nanowires from Copper-Thiolate Polymer Precursors by a Solventless Thermolytic Method. Journal of the American Chemical Society 2004, 126(50):16334-16335
    [63] Zhaohui Han, Yupeng Li, Shuhong Yu. An organic solution method for crystal growth of tin chalcogenides with special morphologies, Journal of Crystal Growth.2001,223:1-5
    [64] Zhaoping Liu,Sheng Peng,QinXie,et al, Large-Scale Synthesise fratra-long Bi2S3 Nanoribbon svia a Solvothermal Process,Adv.Mater.2003,15:936-940
    [65] Zhang H. T, Wu G, Chen X. H. Large-scale synthesis and self-assembly of monodisperse hexagon Cu2S nanoplates. Langmuir 2005, 21(10):4281-4282
    [66] Min Guo, Peng Diao, Shengmin Cai, Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparingconditions, Journal of Solid State Chemistry.2005,178:1864-1873
    [67] Min Guo, Peng Diao, Xindong Wang. et al. The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films, Journal of Solid State Chemistry.2005,178:3210-3215
    [68] Xiangdong Gao, Xiaomin Li, Weidong Yu. Synthesis and characterization of flowerlike ZnO nanostructures via an ethylenediamine-meditated solution route, Journal of Solid State Chemistry .2005,178:1139-1144
    [69] S. G. Chen, C. H. Li, W. H. Xiong, et al. Preparation of indium-tin oxide (ITO) aciculae by a novel concentration-precipitation and post-calcination method. Materials Letters, 2004, 58: 294-298
    [70] S. G. Chen, C. H. Li, W. H. Xiong, et al. Preparation of indium-tin oxide (ITO) nano-aciculae by a simple precipitation near boiling point and post-calcination method. Materials Letters, 2005, 59: 1342-1346
    [71] H. R. Xu, G. S. Zhou, H. Y. Zhou, et al. Preparation of monodispersed tin-doped indium oxide nanopowders under moderate conditions. Materials Letters, 2005, 59: 19-21
    [72] D. B. Yu, D. B. Wang, W. C. Yu, et al. Synthesis of ITO nanowires and nanorods with corundum structure by a co-precipitation-anneal method. Materials Letters, 2003, 58: 84-87
    [73] A. S. Aricd, P. Bruce, B. Scrosati, et al. Nanostructured Materials forAdvanced Energy Conversion and Storage Devices, Nature Materials, 2005, 4: 366-377
    [74] L.Medintz, H. T. Uyeda, E. R. Goldman, et al. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing, Nature Materials, 2005, 4: 435-447
    [75] Gur N. A. Fromer, M. L. Geier, A. P. Alivisatos. Air-Stable all-Inorganic Nanocrystal Solar Cells Processed from Solution, Science, 2005, 310: 462-465
    [76] Ageeth A. Bol, Rick van Beek, Joke Ferwerda, et al. Temperature dependence of the luminescence of nanocrystalline CdS/Mn2+, J. Phys. Chem Sol. 2003,64:247-252
    [77] P. Yang, M. Lt, D. Xi, et al. Strong green luminescence of Ni2+-doped ZnS nanocrystals, Appl. Phys. A. 2002,74:257-259
    [78] Jae Hun Chung, Chil Seong Ah, Du-Jeon Jang. Formation and Distinctive Decay Times of Surface-and Lattice-Bound Mn2+ Impurity Luminescence in ZnS Nanoparticles. J. Phys. Chem. B. 2001,105:4128-4132
    [79] Pavle V. Radovanovic, Carl J. Barrelet. General Synthesis of Manganese-Doped II-VI and III-V Semiconductor Nanowires. Nano letters, 2007,5(7):1401-1407
    [80] Ageeth A. Bol, Rick van Beek, Andries Meijerink. On the Incorporation of Trivalent Rare Earth Ions in II-VI Semiconductor Nanocrystals. Chem. Mater, 2002, 14:1121-1126
    [81] Y.C. Zhang, W.W. Chen, X.Y. Hu. Controllable Synthesis and Optical Properties of Zn-Doped CdS Nanorods from Single-Source Molecular Precursors [J]. Crystal growth design 2007,7(3):580-586
    [82] A.L. Pan, X. Wang, P.B. He. Color-Changeable Optical Transport through Se-Doped CdS 1D Nanostructures. Nano letters, 2007, 10(7):2970-2975
    [83] J.Z. Liu, P.X. Yan, G.H. Yue. Synthesis of doped ZnS one-dimensional nanostructures via chemical vapor deposition. Mater. Lett, 2006,60: 3471-3476
    [84] H.J. Yuan, X.Q. Yan, Z.X. Zhang. Synthesis, optical, andmagnetic properties of Zn1-xMnxS nanowires grown by thermal evaporation. J. Cryst. Growth, 2004, 271:403-408
    [85] Shao-Min Zhou, Fabrication and optical properties of Sb-doped CdS nanowires. Mater lett.2007,61:119-122
    [86] Chan Woong Na, Doo Suk Han, Dae Sung Kim. Young, Photoluminescence ofCd1-xMnxS Nanowires. J. Phys. Chem. B 2006, 110:6699-6704
    [87] D.S. Kim, Y.J. Cho, J. Park, (Mn, Zn) Co-Doped CdS Nanowires. J. Phys. Chem. C 2007, 111:10861-10868
    [88]袁求理,赵金涛,聂秋林.一维Mn2+掺杂CdS纳米晶体的水热合成及其发光性能.光谱学与光谱分2007, 27(6):1058-1061
    [89] C.W. Cheng, G.Y. Xu, H.Q. Zhang, Solvothermal synthesis and photoluminescence properties of single-crystal Mn2+ doped CdS nanowires. Mater. Chem. Phys, 2006, 97:448-451
    [90] Q.S. Wang, Z.D. Xu, Q.L. Nie. Hydrothermal preparation and characterization of Cd0.9Mn0.1S nanorods . Solid. State. Commun. 2004,130: 607–611
    [91] F. Gao, Q. Lu, S. Xie, et al. A Simple Route for the Synthesis of Multi-Armed CdS Nanorod-Based Materials. Adv. Mater., 2002, 14(21):1537-1540
    [92] Anlian Pan, Ruibin Liu, Qing Yang, et al. Stimulated emissions in aligned CdS nanowires at room temperature, J Phys Chem B, 2005, 109:24268-24272
    [93] Huaqiang Cao, Guozhi Wang, Sichun Zhang, et al. Growth and optical properties of wurtzite-type CdS nanocrystals, Inorg. Chem, 2006,45: 5103-5108
    [94] Lai Qia, Burtrand I. Leea, Jong M. Kimb, et al. Synthesis and characterization of ZnS:Cu,Al phosphor prepared by a chemical solution method, Journal of Luminescence.2003,104:261-266
    [95] Ageeth A. Bol, Joke Ferwerda, Jaap A. Luminescence of nanocrystalline ZnS:Cu2+, Journal of Luminescence.2002,99:325-334
    [96] H.J.Yuan, X.Q. Yan, Z.X. Zhang, et al. Synthesis, optical, and magnetic properties of Zn1-xMnxS nanowires grown by thermal evaporation, Journal of Crystal Growth.2004,271:403-408
    [97] J.Z. Liu, P.X. Yan, G.H. Yue, et al. Synthesis of doped ZnS one-dimensional nanostructures via chemical vapor deposition, Materials Letters.2006,60: 3471-3476
    [98] J.P. Ge, J. Wang, H.X. Zhang, et al. Adv. Funct. Mater. 2005,15:303
    [99] X. Wang, P. Hu, F.L. Yuan. Preparation and characterization of ZnO hollow spheres and ZnO-Carbon composite materials using colloidal carbon spheres as templates, J. Phys. Chem. 2007,111:6706-6712
    [100] S.F. Wang, F. Gu, M.K. Lu. Sonochemical synthesis of hollow PbS nanospheres, Langmuir.2006,22:398-401
    [101] J.J. Zhu, Y. Koltypin, A. Gedanken. General sonochemical method for the preparation of nanophasic selenides: synthesis of ZnSe Nanoparticles, Chem. Mater. 2000,12:73-77
    [102] Y.J. He, X.Y. Yu, X.L. Zhao. Synthesis of hollow CuS nanostructured microspheres with novel surface morphologies, Mater. Lett. 2007,61: 3014-3016
    [103] Y.C. Zhang, X.Y. Hu, T. Qiao. Shape-controlled synthesis of CuS nanocrystallites via a facile hydrothermal route, Solid. State. Commun. 132 2004,132:779-782
    [104] H.L. Zhu, X. Ji, D.R. Yang. Novel CuS hollow spheres fabricated by a novel hydrothermal method, Microporous. Mesoporous. Mater.2005,80:153-156
    [105] Y.H. Ni, R. Liu, X.F. Cao. Preparation and transformation to hollow nanospheres of wrapped CuS nanowires by a simple hydrothermal route, Mater. Lett.2007,61:1986-1989
    [106] J.Z. Xu, S. Xu, J. Geng. The fabrication of hollow spherical copper sulfide nanoparticle assemblies with 2-hydroxypropyl-b-cyclodextrin as a template under sonication, Ultrasonics Sonochem. 2006,13:451-454
    [107] X.Y. Chen, Z.H. Wang, X. Wang. Synthesis of novel copper sulfide hollow spheres generated from copper (II)–thiourea complex, J. Cryst. Growth. 263 (2004) 570-574
    [108] C.X. Song, G.H. Gu, Y.S. Lin. Preparation and characterization of CdS hollow spheres, Mater. Res. Bull, 2003,38:917-924
    [109] Sakamoto T., Sunamura H., Kawaura H., et al. Nanometer-scale switches using copper sulfide.Applied Physics Letters 2003, 82:3032-3034
    [110] Setkus A., Galdikas A., Mironas A., et al. Properties of CuxS thin film based structures: influence on the sensitivity to ammonia at room temperatures. Thin Solid Films 2001, 391(2):275-281
    [111] Lou Y., Samia A. C. S., Cowen J., et al. Evaluation of the photoinduced electron relaxation dynamics of Cu1.8S quantum dot. Chem. Phys. 2003,5: 1091-1095
    [112] Ghezelbash A., Korgel B. A.. Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir 2005, 21(21):9451-9456
    [113] Saunders A. E., Ghezelbash A., Smilgies D. M., et al. Columnar self-assembly of colloidal nanodisks. Nano Lett 2006, 6(12):2959-2963
    [114] Lou Y., Samia A. C. S., Cowen J., et al. Evaluation of the photoinducedelectron relaxation dynamics of Cu1.8S quantum dotsy. Chem. Phys 2003,5: 1091-1095
    [115] Brelle M. C., Torres-Martinez C. L., McNulty J. C., et al. Synthesis and characterization of CuxS nanoparticles. Nature of the infrared band and charge-carrier dynamics. Pure Appl. Chem. 2000, 72(1-2):101-117
    [116] Liu Z., Xu D, Liang J, et al. Growth of Cu2S ultrathin nanowires in a binary surfactant solvent. J. Physica. Chem. B. 2005, 109(21):10699-10704
    [117] Zhang H. T., Wu G., Chen X. H.. Large-scale synthesis and self-assembly of monodisperse hexagon Cu2S nanoplates. Langmuir 2005, 21(10):4281-4282
    [118] Du X. S., Yu Z. Z., Dasari A., et al. Facile synthesis and assembly of Cu2S nanodisks to comcoblike nanostruct ues. Chemistry of materials 2006,18(22): 5156-5158
    [119] Lim W. P., Wong C. T., Ang S. L., et al. Phase-Controlle Selective Synthesis of Copper Sulfide Nanocrystals. Chem. Mater 2006, 18(26):6170-6177
    [120] S. Gorai, D. Ganguli, S. Chaudhuri. Shape selective solvothermal synthesis of copper sulphides: role of ethylenediamine–water solvent system, Materials Science and Engineering B.2005,116:221-225
    [121] Soma Gorai, Dibyendu Ganguli, Subhadra Chaudhuri. Synthesis of flower-like Cu2S dendrites via solvothermal route, Materials Letters.2005,59: 826- 828
    [122] Fenghua Zhao, Xijian Chen, Ningsheng Xu. Controlled growth of Cu2S hexagonal microdisks and their optical properties, Journal of Physics and Chemistry of Solids .2006,67:1786-1791
    [123] Liying Zhu, Yi Xie, Xiuwen Zheng. Fabrication of novel urchin-like architecture and snowflake-like pattern CuS, Journal of Crystal Growth. 2004,260:494-499
    [124] C.C. Wang, J.Y. Ying. Sol–gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals, Chem. Mater. 1999,11:3113-3120
    [125] K.Manzoor, V. Aditya, S. R. Vaderaa. Enhanced electroluminescence properties of doped ZnS nanorods formed by the self-assembly of colloidal nanocrystals, Solid State Communications 2005,135:16-20
    [126] M.E. Rinco′n, P.K. Nair. Kinetics of electrical conductivity enhancement in bismuth sulphide thin films. Part I. Argon and hydrogen annealing, J. Phys. Chem. Solids. 1996,57:1937-1945
    [127] S.Y. Wang, Y.W. Du. Preparation of nanocrystalline bismuth sulfide thinfilms by a synchronous-pulse ultrasonic spray pyrolysis technique, J. Cryst. Growth. 2002, 236:627-634
    [128] W.Zhang, Z.Yang, X.Huang. Low temperature growth of bismuth sulfide nanorods by a hydrothermal method, Solid state communications. 2001,119: 143-146
    [129] D. Wang, M. Shao, D. Yu. Polyol-mediated preparation of Bi2S3 nanorods, Journal of Crystal Growth. 2002,243: 331-335
    [130] M.W. Shao, M.S. Mo, Y. Cui. The effect of agitation states on hydrothermal synthesis of Bi2S3 nanorods, Journal of Crystal Growth. 2001,223:799-802
    [131] D. Barreca, A. Gasparotto, C. Maccato, et al. Toward the innovative synthesis of columnar CeO2 nanostructures, Langmuir. 2006,22:8639-8641
    [132] A.L. Vantomme, Z.Y. Yuan, G. Du. Surfactant-assisted large-scale preparation f crystalline CeO2 nanorods, Langmuir. 2005,21:1132-1135
    [133] H.Y. Chang, H. Chen. Morphological evolution for CeO2 nanoparticles synthesized by precipitation technique, J. Crystal. Growth.2005,283:457-468
    [134] X.Y Zhang, T.W. Wang, W.Q. Jiang. Preparation and characterization of three dimensionally ordered crystalline macroporous CeO2, Chin. Chem. Lett. 2005,16(8):1109-1112
    [135] Y.P. Fu, C.H. Lin, C.S. Hsu. Preparation of ultrafine CeO2 powders by microwave induced combustion and precipitation, J. Alloys. Compounds. 2005,391:110-114
    [136] F. Zhou, X. Ni, Y. Zhang, et al. Size-controlled synthesis and electrochemical characterization of spherical CeO2 crystallites, J. Colloid. Interface. Sci. 2007,307:135-138
    [137] D.E. Zhang, X.M. Ni, H.G. Zheng, et al. Fabrication of rod-like CeO2: characterization, optical and electrochemical properties, Solid. State. Sci. 2006,8:1290-1293
    [138] L. Li, Y. Chen. Preparation of nanometer-scale CeO2 particles via a complex thermo-decomposition method, Mater. Sci. Eng. A.2005,406:180-185
    [139] F. Zhang, S.P. Yang, H.M. Chen. Preparation of discrete nanosize ceria powder, Ceram. Int. 2004,30:997-1002
    [140] S. Patil, S.C. Kuiry, S. Seal. Synthesis of nanocrystalline ceria particles for high temperature oxidation resistant coating, J. Nanoparticle. Research. 2002,4:433-438
    [141] Joon.S. Lee, Jin.S. Lee, S.C. Choi. Synthesis of nano-sized ceria powders bytwo-emulsion method using sodium hydroxide, Mater. Lett. 2005,59:395-398
    [142] Y.J. He, B.L. Yang, G.X. Cheng. Controlled synthesis of CeO2 nanoparticles from the coupling route of homogenous precipitation with microemulsion, Mater. Lett. 2003,57:1880-1884
    [143] J. Bai, Z. Xu, Y. Zheng, et al. Shape control of CeO2 nanostructure materials in microemulsion systems, Mater. Lett. 2006,60:1287-1290
    [144] M. Yamashita, K. Kameyama, S.Yabe, et al. Synthesis and microstructure of calcia doped ceria as UV filters, J. Mater. Sci. 2002,37:683
    [145] C. Ho, J. C. Yu, T. Kwong. Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures, Chem. Mater. 2005,17:4514-4522
    [146] T. Masui, K. Fujiwara, K.I. Machida. Characterization of cerium oxide ultrafine particles prepared using reversed micelles, Chem. Mater.1997,9(10): 2197-2204
    [147] Ji Yun Lianga, Guo Lin, XuHui Bin. A novel synthesis route and phase transformation of ZnO nanoparticles modified by DDAB, Journal of Crystal Growth.2003,252:226-229
    [148] Jinmin Wang, Lian Gao. Synthesis of uniform rod-like, multi-pod-like ZnO whiskers and their photoluminescence properties, Journal of Crystal Growth. 2004,262:290-294
    [149] Sapra S., Nanda J., Sarma D. D. Mechanical strength of carbon nanotube-nickel nanocomposites. Chem.Commun,2001,2188
    [150]邹建,高家诚,王勇.纳米ZnO表面包覆致密SiO2膜的试验研究.材料科学与工程,2004, 22(1):71-73
    [151] Xiang Wu, Ziyu Wu, Lin Guo. Pressure-induced phase transformation in controlled shape ZnO nanorods, Solid State Communications.2005,135: 780–784
    [152]刘卫平,周建萍.氧化锌晶须表面改性及表征.塑料工业,2004,(5):67
    [153] A.Van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, et al. The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission, J. Lumin. 2000,(89):454
    [154] Jinmin Wang, Lian Gao, Synthsis of unifoum rod-like,multi-pod-like ZnO whiskers and their photoluminescence properties. J. Cryst. Growth.2004,262: 290-294
    [155] P.D. Cozzoli, M.L. Curri, A. Agostiano, et al. novel low-temperature method to grow single-crystal ZnO nanorods. Phys. Chem. B.2003,(107):4756
    [156] C.L.Xu, D.H. Qin, H. Li, et al. Low-temperature growth and optical properties of radial ZnO nanowires, Mater. Lett. 2004, (58):3976
    [157] K.Vanheusden, W.L.Warren, C.H. Seager, et al. Hydrothermal synthesis and characterization of ZnO nanorods. J. Appl. Phys.1996,(79):7983
    [158]张维佳,王天民,纳米ITO粉末及高密度ITO靶制备工艺的研究现状.稀有金属材料与工程, 2004,(5): 449-453
    [159]张建荣,曹洋.铟锡氧化物ITO纳米粉体的共沉淀法合成.无机化学学报, 2005, 21: 1887-1890
    [160] Yingjiu Zhang, Hiroki Ago, Jun Liu, et al. The synthesis of In, In2O3 nanowires and In2O3 nanoparticles with shape-controlled, Journal of Crystal Growth.2004,264:363-368
    [161] Maojun Zheng, Lide Zhang, Xinyi Zhang, et al. Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes. Chemical Physics Letters.2001,334:298-302
    [162] Shitao Li, Xueliang Qiao, Jianguo Chen, et al. Effects of temperature on indium tin oxide particles synthesized by co-precipitation, Journal of Crystal Growth.2006,289:151-156
    [163] H. Zhang, S.Y. Xie, Z.M. Ni, et al. Controllable growth of In(OH)3 nanorods with rod-in-rod structure in a surfactant solution. Inorganic Chemistry Communications.2003,6:1445-1447
    [164] Hongliang Zhu, Yong Wang, Naiyan Wang, et al. Hydrothermal synthesis of ndium hydroxide nanocubes. Materials Letters.2004,58:2631-2634
    [165] Tingjiang Yan, Jinlin Long, Yousan Chen, etal, Indium hydroxide: A highly active and low deactivated catalyst for photoinduced oxidation of benzene C. R. Chimie 11. 2008,101-106
    [166]李芝华,任冬燕,溶胶·凝胶法制备透明导电薄膜的研究进展,材料导报,2005(5)19
    [167] X.C. Wu, J.M. Hong, Z.J. Han, Y.R. Tao, Fabrication and photoluminescence characteristics of single crystalline In2O3 nanowires Chemical Physics Letters 373. 2003,28-32
    [168] Dabin Yu, Debao Wang, Weichao Yu, Yitai Qian, etal, Synthesis of ITO nanowires and nanorods with corundum structure by a co-precipitation-anneal method, Materials Letters 58. 2003,84-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700