用户名: 密码: 验证码:
气溶胶物理光学特性的激光雷达遥感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气气溶胶具有显著的气候效应,对大气中许多物理化学过程都能产生一定的影响,是全球气候变化的重要影响因子之一,已成为科学研究的热点问题。IPCC第四次报告指出,准确地评估其气候效应,依赖于对气溶胶物理、化学与光学特性及其时空分布特征的确切、系统的认识。激光雷达作为一种先进的主动遥感仪器,近年来被广泛应用于大气科学和环境科学等研究领域。激光雷达在探测高度、时空分辨率、长期连续高精度监测等方面具有独特的技术优势,是其它探测手段无法比拟的。本论文针对大气气溶胶,以激光雷达为主要研究手段,分别从硬件技术改进、新算法反演及大气遥感应用等三方面出发,系统地研究激光雷达大气气溶胶遥感的主要工作。
     利用兰州大学半干旱气候与环境观测站(SACOL)多套地基激光雷达系统,自2007年以来在我国西北地区五个站点的野外观测资料,重点分析了该地区气溶胶物理光学特性的时空分布变化特征及差异,并与东亚激光雷达观测网AD-NET在日本筑波的激光雷达观测结果对比分析。结果表明,西北地区不同地区气溶胶垂直结构存在显著的差异。SACOL气溶胶散射比季节变化从大到小依次为冬季-春季-秋季-夏季,而筑波则为春季-夏季-秋季-冬季,并且SACOL气溶胶散射比和退偏比分别是筑波的4倍和2倍。
     基于多台地基激光雷达和星载激光雷达CALIPSO的观测,结合NCEP再分析资料、Aura/OMI资料、多套地基太阳光度计以及HYSPLIT轨迹模式等其它独立资料,从不同角度分析2008年5月和2010年3月影响范围很广的2个特大沙尘暴个例。对于2008年5月沙尘个例,张掖站微脉冲激光雷达探测到的沙尘气溶胶出现明显的多层结构,而景泰和SACOL站并没有这种现象且沙尘气溶胶分别被限制在2公里和1.5公里以内,原因是张掖离沙尘源区很近使得沙尘气溶胶未能很好地混合在一起。从CALIPSO卫星探测结果来看,沙尘气溶胶高度可达到2公里,并且水平尺度很宽(约550公里)。对于2010年3月沙尘个例,多台地基激光雷达、星载激光雷达、太阳光度计以及轨迹分析等多种不同资料均一致表明,沙尘气溶胶可从西北地区快速地传输至北极地区,只需要5天时间。此外,结合激光雷达和气团轨迹分析发现,2001至2010年期间约有25.19%沙尘过程可通过该快速通道远距离输送至北极。
     根据激光大气遥感相关理论,利用Mueller矩阵计算各种不同类型退偏比及它们之间的关系,并用观测资料进行验证,发现该关系对沙尘气溶胶和卷云等性质复杂颗粒有明显的差异,依赖于它们的形状、几何结构以及冰晶方向等因素。利用SACOL站双波段偏振激光雷达资料计算气溶胶消光后向散射系数、线性退偏比与色比,并分别讨论它们各自与多波段太阳光度计反演的体积浓度、有效粒子半径之间的关系。基于上述结果,采用偏最小二乘回归分析研究太阳光度计结果与激光雷达所观测的三个参量之间的定量关系,从而提出一种利用激光雷达资料反演体积浓度和有效粒子半径的新算法。结果表明,该算法简便实用、结果合理。
     设计并研制一套米散射-拉曼-荧光光谱紫外偏振多功能激光雷达系统,可实现气溶胶米散射、拉曼散射和32通道连续荧光光谱(约180nm谱宽)等多种信号的同时探测。观测结果发现,判断是否存在荧光物质的阈值是总荧光强度是否大于200MHz,且产生大量荧光信号的色比值在0.25-0.45之间。这些释放很强荧光信号的物质基本上是细粒子,比背景气溶胶小得多。荧光光谱随着水汽的变化存在指数递增关系。经过气团后向轨迹分析发现,这些荧光物质很可能是来自西太平洋海面的生物气溶胶。结果还表明,研制的多功能激光雷达系统可有效地提高激光雷达大气遥感能力。
Atmospheric aerosols play an important role in atmospheric physical and chemical processes, and have been shown that they have a significant impact on climate change. Consequently, study on atmospheric aerosols has been a hot research topic over the world. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol physical and chemical properties, according to the fourth IPCC report published in2007. Lidar, one of advanced active remote sensing instruments, has been widely used in many research fields, such as Atmospheric science and Environmental science. There is no any detecting tool as lidar remote sensing, with a unique technical advantage of providing high temporal and spaitial resolution, long measured range and successive measurements. In this paper, study on atmospheric aerosols is performed based on lidar measurements, including improvments of lidar techniques, algorithm and aplications in remote sensing of the atmosphere.
     Characterizations of physical and properties of atmospheric aerosols over Northwest China were discussed in detail from lidar measurements, based on the field observation that was conducted at four sites by Semi-Arid Climate observatory&Laboratory (SACOL) of Lanzhou University since2007. The results also were compared with measurements of aerosols in Tsukuba, Japan by Asian dust lidar network. The study indicated that there is a large difference in vertical structure of atmospheric aerosols at those sites. Furthermore, seasonal variations of aerosols scattering ratio is the following smaller order, winter, spring, autumn and summer at SACOL, but spring, summer, autumn and winter at Tsukuba. Also, depolarization ratio at SACOL was much higher, and scattering ratio is almost four times of the result at Tsukuba.
     Long-range transport of dust aerosols during two severe dust storms was studied combing several ground-based and space-borne lidar systems, ground-based sun-photometer, NCEP reanalysis data, and Aura/OMI and HYSPLIT trajectory model etc. Multi-layers of dust vertical structure were observed by a lidar at Zhangye for the dust events on May2,2008, however the phenomenon didn't occur at Jingtai and SACOL. One of the reasons is that dust aerosols would not mix well at Zhangye due to closer to dust sources. A thick dust layer with~550km horizontal scale below 2km over Northwest was detected clearly by space-borne CALIPSO lidar. The results also found that there was a fast path of Asian dust long-range transported to the Arctic region for the dust events occurred on March19,2010.
     Several different kinds of depolarization ratios (DR), e.g., linear DR, circular DR and MPL special DR, were calculated using Mueller matrix and theory of laser remote sensing, then were verified by observation data sets measured at SACOL. The results showed that relationship between linear and MPL special DR was very complicated for complex particles like dust and cirrus, depending on their shape, aspect ratio and orientation of ice particles. Besides, aerosol volume concentration and effective radius derived from sun-photometer measurements at SACOL, was analyzed with the optical properties, such as attenuated backscattering coefficient, linear depolarization ratio and color ratio, from measurements of a dual-wavelength polarization lidar system. The results showed there are obvious interesting relations between lidar and sun-photometer observation. A new method for retrieving volume concentration and effective radius from lidar measurements was proposed based on Partial Least-Squares Regression method (PLSR). It was proved that the proposed simple retrieval method is practical and effective and could be widely used.
     To obtain more information of atmospheric aerosols, a powerful polarization UV lidar was developed for detecting Mie scattering, Raman scattering and laser-induced fluorescence simultaneously. Strong fluorescence signals could be observed from aerosols by the developed lidar on August29,2011in Tsukuba, Japan. Total fluorescence intensity between420nm and520nm could be a threshold value for distinguishing fluorescent aerosols from others. Also, fluorescent aerosols showed small depolarization ratio (<0.1) and color ratio (0.25-0.45), that means they were spherical fine particles. Trajectories analysis from HYSPLIT simulations interpreted that the observed aerosols could be probably attributed to bioaerosols transported from the western Pacific Ocean. It has been shown that developed lidar could effectively improve the ability of lidar remote sensing of the atmosphere.
引文
Ackerman, A. S.,O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan and E. J. Welton (2000), Reduction of tropical cloudiness by soot, Sciences,288,1042-1047.
    Albrecht, B. A. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science,245, 1227-1230.
    Amato P, Hennebelle R, Magand O, Sancelme M, Delort A-M, Barbante C, Boutron C, Ferrari C(2007), Bacterial characteriza-tion of the snow cover at Spitzberg, Svalbard. FEMS Microbiol Ecol 59(2):255-264
    Ariya, P. A., M. Amyot, (2004), New directions: The role of bioaerosols in atmospheric chemistry and physics. Atmospheric Environment,38,1231-1232.
    Bowers, R.M., Lauber, C.L., Wiedinmyer, C., Hamady, M., Hallar, A.G., Fall, R., Knight, R., Fierer, N. (2009), Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Applied and Environmental Micro-biology 75,5121-5130.
    Breon, F. M., D. Tanre and S. Generoso (2002), Aerosol effect on cloud droplet size monitored from satellite, Science,295,834-838.
    Chen, B., F., Kobayashi, M., Yamada, Y.-H., Kim, Y., Iwasaka, and G.-Y. Shi, (2011), Identification of Culturable Bioaerosols Collected over Dryland in Northwest China: Observation using a Tethered Balloon. Asian Journal of Atmospheric Environment, Vol5-3, 172-180.
    Chen, B., Yamada, M., Shi, G., Zhang, D., Matsuki, A., Iwasaka, Y. (2010) Vertical changes in mixing state of aerosol particles in the boundary layer in Beijing, China: Balloon-borne measurements in summer and spring. Journal of Ecotechnology, in press.
    Chen, W., H. Kuzea, A. Uchiyama, et al,2001:One-year observation of urban mixed layel characteristics at Tsukuba, Japan using a micro-pulse lidar, Atmospheric Environment,35(42), pp:73-80
    DeMott, P. J., K. Sassen, M. Poellot, D. Baumgardner, D. C. Rogers, S, Brooks, A. J. Prenni and S. M. Kreidenweis (2003), African dust aerosols as atmospheric ice nuclei, Geophy. Res. Lett.,30,1732, doi:10.1029/2003GL017410.
    Diehl, K., and S. K. Mitra (1998), A laboratory study of the effects of a kerosene burner exhaust on ice nucleation and the evaporation rate of ice crystals, Atmos, Environ.,32,3145-3151, doi:10.1016/S1352-2310 (97)00467-6.
    Diehl, K., and S. Wurzler (2010), Air parcel model simulations of a convec-tive cloud: Bacteria acting as immersion ice nuclei, Atmos. Environ.,44,4622-4628, doi:10.1016/j.atmosenv.2010.08.003.
    Fam Parungo. Asian dust storms and their effects on radiation and climate, Part II. STC Technical Report 2959 (Science and Technology corperation 101 Research Drive),1993.
    Franc G., Demott P. (1998):Cloud Activation Characteristics of Airborne Erwinia carotovora Cells, Journal of Applied Meteorology,37,1293-1300.
    Fridlind, A. M., A. S. Ackerman, G. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield (2007), Ice properties of single layer stratocumulus during the Mixed Phase Arctic Cloud Exper-iment: 2. Model results, J. Geophys. Res.,112, D24202, doi:10.1029/2007JD008646.
    Fridlind, A.M., A.S. Ackerman, G. McFarquhar, G. Zhang, M.R. Poellot, P.J. DeMott, A.J. Prenni, and A.J. Heymsfield (2007), Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment (M-PACE): Part II, Model results. J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008646.
    Gong W., J. Zhang, F. Mao, and J. Li, (2010), Measurement of aerosol extinction, backscatter, and lidar ratio profiles at Wuhan in China with Raman/Mie lidar. Chinese optic letter. 8(6):533-536.
    Griffin, D.W., Garrison, V.H., Herman, J.R., Shinn, E.A.(2001) African desert dust in the Caribbean atmosphere:Microbiology and public health. Aerobiologia 17,203-213.
    Griffin, D.W., Kellogg, C.A., Garrison, V.H., Lisle, J.T., Borden, T.C., Shinn, E.A. (2003) Atmospheric micro-biology in the northern Caribbean during African dust events. Aerobiologia 19,143-157.
    Griffin, D.W., Kubilay, N., Kocak, M., Gray, M.A., Bor-den, T.C., Shinn, E.A. (2007) Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coa-stline. Atmospheric Environment 41,4050-4062.
    Hallar, A. G., G. Chirokova, I. McCubbin, T. H. Painter, C. Wiedinmyer, and C. Dodson (2011), Atmospheric bioaerosols transported via dust storms in the western United States, Geophys. Res. Lett.,38, L17801, doi:10.1029/2011GL048166.
    Hara K., D.Zhang (2012), Bacterial abundance and viability in long-range transported dust, Atmospheric Environment,47,20-25.
    Houghton J. T., L. G. Meira Filho, J. Bruce et al. (1994), IPCC, Radiative forcing of climate change. In:Climate Change 1994 (eds. Lee Callendar B. A., Haites E., Harris N. et al.). New York, Cambridge University Press,137-157.
    Hua D. and T. Kobayashi, (2005), UV Rayleigh-Mie Raman lidar for simultaneous measurement of atmospheric temperature and relative humidity profiles in the troposphere, Japanese Journal of Applied Physics (JJAP), Vol.44, No.3, pp.1287-1291.
    Hua, N.-P., Kobayashi, F., Iwasaka, Y., Shi, G.-Y., Naga-numa, T. (2007) Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia,23, 291-298.
    Huang Z., N. Sugimoto, J. Huang, T. Hayasaka, T. Nishizawa, J. Bi, and I. Matsui (2010a), Comparison of depolarization ratio measurements with Micro-pulse Lidar and a linear polarization lidar in Lanzhou, China, Proc. of 25th International Laser Radar Conference,1, pp.528-531.
    Huang, J., B. Lin, P. Minnis, T. Wang, X. Wang, Y. Hu, Y. Yi, and J. K. Ayers (2006b): Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia, Geophys. Res. Lett.,33, L19802, doi:10.1029/2006GL026561.
    Huang, J., J. Ge, and F. Weng (2007):Detection of Asia dust storms using multisensor satellite measurements, Remote Sensing of Environment,110,186-191.
    Huang, J., P. Minnis, Y.Yi, Q.Tang, X. Wang, Y. Hu, Z. Liu, K. Ayers, C. Trepte, and D. Winker, (2007b):Summer dust aerosols detected from CALIPSO over the Tibetan Plateau, Geophys. Res. Lett.,34, L18805, doi:10.1029/2007GL029938.
    Huang, J., P. Minnis, B. Chen, Z. Huang, Z. Liu, Q. Zhao, Y. Yi, and J. K. Ayers (2008): Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX, J. Geophys. Res.,113, D23212, doi:10.1029/2008JD010620.
    Huang, J., P. Minnis, B. Lin, T. Wang, Y. Yi, Y. Hu, S. Sun-Mack, and K. Ayers (2006a): Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES, Geophys. Res. Lett.,30,6824, doi:10.1029/2005GL024724.
    Huang, J., Y. Wang, T. Wang, and Y. Yi (2006c):Dusty cloud radiative forcing derived from satellite data for middle latitude regions of East Asia, Progress in Natural Science.16 (10), 1084-1089,
    Huang, J., Z. Huang, J. Bi, W. Zhang, and L. Zhang (2008), Micro-pulse Lidar measurements of aerosol vertical structure over the Loess Plateau, Atmos. and Oceanic Sci. Lett.,1,8-11.
    Huang, Z., J. Huang, J. Bi, G. Wang, W. Wang, Q. Fu, Z. Li, S.-C. Tsay, and J. Shi (2010a), Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment, J. Geophys. Res.,115, D0OK15, doi:10.1029/2009JD013273.
    Huffman, J. A., B. Treutlein, and U. Poschl (2010), Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in central Europe, Atmos. Chem. Phys.,10,3215-3233, doi:10.5194/acp-10-3215-2010.
    Ichinose, T., Yoshia, S., Hiyoshi, K., Sadakane, K., Taka-no, H., Nishikawa, M., Mori, I., Yanagisawa, R., Ka-wazato, H., Yasuda, A., Shibamoto, T. (2008) The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation. Archives of Environ-mental Contamination and Toxicology 55,348-357.
    Iwasaka Y., G.Y. Shi, Y.S. Kim et al. (2004): Pool of dust particles over the Asian continent: balloon-borne optical particle counter and ground-based lidar measurements at Dunhuang, China, Environmental Monitoring and Assessment,92 (13),5-24.
    Iwasaka, Y., Kobayashi, F., Minami, Y. (2010) Studies of KOSA-bioaerosol: Micro-biota floating in the atmosphere. Earozoru Kenkyu,25,4-12.
    Iwasaka, Y., Shi, G.-Y., Yamada, M., Kobayashi, F., Ka-kikawa, M., Maki, T., Naganuma, M., Chen, B., Tobo, Y., Hong, C.S. (2009) Mixture of Kosa (Asian dust) and bioaerosols detected in the atmosphere over the Kosa particles source regions with balloon-borne mea-surements, Possibility of long-range transport. Air Quality Atmosphere and Health 2,29-38.
    Jacobson M Z. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming[J]. J Geophys Res.,2002.16:1-22.
    Jaenicke, R. (2005), Abundance of cellular material and proteins in the atmosphere, Science,308 (5718), p.73.
    JAMES R. CAMPBELL, DENNIS L. HLAVKA etc, Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites:Instruments and Data Processing, JOURNAL OF ATMOSPHEREIC AND OCEANIC TECHNOLOGY. April 2002 pp:431-441;
    Jeon, E., H. Kim, K. Jung, J. Kim, M. Kim, Y. Kim, J. Ka (2011), Impact of Asian dust events on airborne bacterial community assessed by molecular analyses, Atmospheric Environment,45, 4313-4321.
    Kakikawa, M., Kobayashi, F., Maki, T., Yamada, M., Higashi, T., Chen, B., Shi, G.-Y., Hong, C.-S., Tobo, Y., Iwasaka, Y. (2008), Dust borne microorganisms in the atmosphere over an Asian dust source region, Dunhuang. Air Quality Atmosphere and Health 1,195-202.
    Kawamoto, K. and T. Nakjima (2003), Seasonal variation of cloud particle size from AVHRR remote sensing. Geophys. Res. Lett.,30,1810-1813.
    Kobayashi, F., S. Morosawa, T. Maki, M. Kakikawa, M. Yamada, Y. Tobo, C.-S. Hon, A. Matsuki and Y. Iwasaka (2011), Atmospheric Bioaerosol, Bacillus sp., at an Altitude of 3,500 m over the Noto Peninsula:Direct Sampling via Aircraft, Asian Journal of Atmospheric Environment,Vol.5-3,164-171.
    Levi, Y. and D. Rosenfeld (1996), Ice nuclei, rainwater chemical composition, and static cloud seeding effects in Israel, J. Appl. Meteorol.,35,1494-1501.
    Liu, D., Z. Wang, Z. Liu, D. Winker, and C. Trepte (2007), A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements, J. Geophys. Res.,113, D16214, doi:10.1029/2007JD009776.
    Liu, Z., B. Liu, S. WU et al., (2008), High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements [J], OPTICS LETTERS.33(13),1485-1487.
    Ma, Y., W. Gong, P. Wang, X. Hu (2011), New dust aerosol identification method for spaceborne lidar measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol.112, Issue 2,338-345.
    Maki, T., A. Ishikawa, F. Kobayashi, M. Kakikawa, K. Aoki, T. Mastunaga, H. Hasegawa and Y. Iwasaka (2011), Effects of Asian Dust (KOSA) Deposition Event on Bacterial and Microalgal Communities in the Pacific Ocean, Asian Journal of Atmospheric Environment, Vol.5-3,157-163.
    Maki, T., Susuki, S., Kobayashi, F., Kakikawa, M., Yamada, M., Higashi, T., Chen, B., Shi, G.-Y., Hong, C.-S., Tobo, Y., Hasegawa, H., Ueda, K., Iwasaka, Y. (2008) Phylogenetic diversity and vertical distribution of a halobacterial community in the atmosphere of an Asian dust (KOSA) source region, Dunhuang City. Air Quality Atmosphere and Health 1,81-89.
    Matthias-Maser S., R. Jaenicke (1995), Size distribution of primary biological aerosol particles with radii> 0.2 mm in an urban/rural influenced region. Atmospheric Research,39,279-286.
    Measures, R. (1992), Laser Remote Sensing, Fundamentals and Applications. Wiley, New York, USA.
    Mohler, O., P. J. DeMott, G. Vali, and Z. Levin (2007), Microbiology and atmospheric processes: the role of biological particles in cloud physics, Biogeosciences,4,1059-1071.
    Nobuo Sugimoto, Matsui Ichiro et al.,2008:Lidar Network Observations of Tropospheric Aerosols, Lidar Remote Sensing for Environmental Monitoring IX, Proceedings of the SPIE, Volume 7153, pp.71530A-71530A-13.
    Pratt, K. A., P. J. DeMott, J. R. French, Z. Wang, D. L. Westphal, A. J. Heymsfield, C. H. Twohy, A. J. Prenni, and K. A. Prather (2009), In situ detection of biological particles in cloud ice-crystals, Nat. Geosci.,2,398^*01, doi:10.1038/ngeo521.
    Prospero, J., E. Blades, G. Mathison, R. Naidu (2005), Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust, Aerobiologia,21,1-19.
    Qian, W., L. Quan, and S. Shi (2002), Variations of the dust storm in China and its climatic control, J. Clim.,15,1216-1229.
    Reagan, J., M. McCormick, J. Spinhime (1989), Lidar sensing of aerosols and clouds in troposphere and stratosphere, Proc. IEEE, vol.77,433-448.
    Rosenfeld, D., Y. Rudich and R. Lahav (2001), Desert dust suppressing precipitation:a possible desertification feedback loop, Proceedings of National Academy of Sciences,98(11), 5975-5980.
    Satheesh, S. K., V. Vinoj, and K. Krishna Moorthy, Vertical distribution of aerosols over an urban continental site in India inferred using a micro pulse lidar, GEOPHYSICAL RESEARCH LETTERS, VOL.33, L20816, doi:10.1029/2006GL027729,2006;
    Sassen, K. (2002):Indirect climate forcing over the western US from Asian dust storms. Geophys. Res. Lett.,29,1029, doi:10.1029/2001GL014034.
    Shen F., M. Tan, Z. Wang, M. Yao, Z. Xu, Y. Wu, J. Wang, X. Guo, and T. Zhu (2011), Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques For Real-Time Monitoring Biological Aerosols. Environ. Sci. Technol.,45 (17), 7473-7480, DOI:10.1021/es 1043547.
    Shindell D, Faluvegi G. Climate response to regional radiative forcing during the twentieth century. Nature Geoscience,2009,2:294-300, do:i 210.238/NGE0473.
    Skidmore ML, Foght JM, Sharp MJ (2000), Microbial life beneath a high Arctic glacier. Appl Environ Microbiol 66:3214-3220 doi:10.1128/AEM.66.8.3214-3220.2000
    Sokolik I. N. and O. B. Toon (1996), Direct radiative forcing by anthropogenic mineral aerosols. Nature,381,681-683.
    Su, J., J. Huang, Q. Fu, P. Minnis, J. Ge, and J. Bi (2008):Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements, Atmos. Chem.Phys.,8,2763-2771.
    Sun J, Ariya PA (2006), Atmosphericorganic and bioaerosols as cloud condensation nuclei (CCN): a review. Atmos Environ 40:795-820 doi:10.1016/j.atmosenv.2005.05.052
    Toom-Sauntry D, Barrie LA (2002), Chemical composition of snowfall in the high Arctic: 1990-1994. Atmos Environ 36:2683-2693 doi:10.1016/S1352-2310(02)00115-2
    Twomey, S. (1977), Developments in Atmospheric Science, Atmospheric Aerosols, Elsevier, Elsevier scientific Publications, New York, USA.
    Voss K. J., Welton, E. J., Quinn, P. K.,et al,2001:Lidar measurements during Aerosols99,J. Geophy. Res.,106(D18):pp:21-31
    Wang, W., Ma, Y., Ma, X., Wu, F., Ma, X., An, L., Feng, H. (2010) Seasonal variations of airborne bacteria in the Mogao Grottoes, Dunhuang, China. International Bio-deterioration and Biodegradation doi:10.1016/j. ibiod.2010.03.004.
    Welton, E. J., K. J. Voss, H. R. Gorden, H. Maring et al., (2000), Ground-based lidar measurements of aerosols during ACE-2:instrument description, results, and comparisonswith other ground-based and airborne measurements, Tellus,52B,636-651.
    Xie, C, T. Nishizawa, N. Sugimoto, I. Matsui and Z. Wang (2008), Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China, Appl. Opt.47(27), 4945-4951.
    Yin, Y. and L. Chen (2007):The effects of heating by transported dust layers on cloud and precipitation: a numerical study, Atmos. Chem. Phys.,7,3497-3505.
    Zhang L., M. Chen, and L. Li,2007:Dust aerosol radiative effect and influence on urban atmospheric boundary layer, Atmos. Chem. Phys. Discuss.,7,15565-15580.
    Zhang S, Hou S, Ma X, Qin D, Chen T (2007), Culturable bacteria in Himalayan glacial ice in response to atmospheric circulation.Biogeosciences 4:1-9
    Zhang X., R. Arimoto, Z.S. An (1997):Dust emission from Chinese desert sources linked to variations in atmospheric circulation, Journal of Geophysical Research,102 (D23), 28041-28047.
    Zhou, J, G. Yu, C. Jin, F. Qi, D. Liu, H. Hu, Z. Gong, G. Shi, T. Nakajima and T. Takamura (2002), Lidar Observations of Asian Dust over Hefei, China in the Spring of 2000, Journal of Geophysical Research,107, D15, AAC51-58.
    LIOU K.N著,郭彩丽,周诗健,译.大气辐射导论(第二版)[M].气象出版社,2004:362.
    白宇波,石广玉等.拉萨上空大气气溶胶光学特性的激光雷达探测[J].大气科学,2000,24(4):559-567.
    车凤翔,胡庆轩,张松乐,等.京津地区大气微生物的时空分布[J].中国公共卫生学报,1988,8(3):151-154.
    陈皓文.吐鲁番市空气微生物浓度状况[J].干旱环境监测,2003,17(4):211-214.
    陈铭夏,金龙山,孙振海,等.生物气溶胶浓度、通量及环境因素的影响[J].自然科学进展,2001a,11:939-944.
    陈铭夏,金龙山,孙振海,等.南京市生物气溶胶浓度垂直分布和日变化规律[J].中国环境科学,2001b,21(2):97-100.
    杜睿.大气生物气溶胶的研究进展[J].气候与环境研究,2006,11(4):546-552,doi:10.3878.
    杜睿,王亚玲,李梓铭,等.一种新型空气花粉采集仪器的实验研究[J].河南大学学报(自然科学版),2012,42(1):56-61.
    杜睿,周宇光.北京及周边地区大气近地面层真菌气溶胶的变化特征[J].中国环境科学,2010,30(3):296-301.
    方治国,欧阳志云,胡利锋,等.北京市夏季空气微生物粒度分布特征[J].环境科学,2004,25(6):1-5.
    符涂斌,温刚.中国北方干旱化的几个问题[J].气候与环境研究,2002,7(1):22-29.
    胡庆轩,徐秀芝,董咏仪,等.沈阳市大气微生物的研究Ⅳ大气真菌粒数中值直径及粒度分布[J].微生物学通报,1994,21(6):353-356.
    胡庆轩,徐秀芝,陈梅玲,等.沈阳市大气微生物的研究:Ⅲ.大气真菌粒子浓度及其分布[J].微生物学通报,1994,20(1):10-14.
    华灯鑫,宋小全,先进激光雷达探测技术研究进展,2008,37,21-27.
    李韧,季国良.敦煌地区大气气溶胶光学厚度的季节变化[J].高原气象,2003,22(1):84-87.
    刘菲,牛生杰.北方沙尘气溶胶光学厚度和粒子谱的反演[J].南京气象学院学报,2006,29(6):775-781.
    刘金涛,陈卫标,刘智深,等.高光谱分辨率激光雷达同时测量大气风和气溶胶光学性质的模拟研究[J].大气科学,2003,27(1):115-122.
    刘立超,沈志宝,王涛,等.敦煌地区沙尘气溶胶质量浓度的观测研究[J].高原气象,2005,24(5)::765-771.
    吕爱华,王庆艳,苏君,等.乌鲁木齐市大气微生物浓度变化规律[J].中国环境监测,1996,12(3):50-53.
    罗云峰,吕达仁,周秀骥,等.30年来我国大气气溶胶光学厚度平均分布特征分析[J].大气科学,2002,26(6):721-730.
    马井会,张华,郑有飞,等.沙尘气溶胶光学厚度的全球分布及分析[J].气候与环境研究,2007,12(2):156-164.
    毛建东,华灯鑫,何廷尧,等.银川上空大气气溶胶光学特性激光雷达探测研究[J].光谱学与光谱分析,2010,30(7):2006-2010.
    毛节泰,王强,赵柏林.大气透明度光谱和浑浊度的观测[J].气象学报,1983,41(3):322-331.
    毛节泰,张军华,王美华.中国大气气溶胶研究综述[J].气象学报,2002,60(5):625-634.
    牛生杰,章澄昌,孙继明,贺兰山地区沙尘气溶胶粒子谱分布的观测研究[J].大气科学,2001, 25(2):243-252.
    牛世全.兰州市城区春季大气微生物动态变化规律研究[J].西北师范大学学报(自然科学版),1999,7(2):54-57.
    祁栋林,黄建青,赵玉成.瓦里关山大气浑浊度的初步分析[J].青海环境,1999,9(1):18-21.
    祁建华,高会旺,生物气溶胶研究进展:环境与气候效应[J].生态环境,2006,15(4):854-861.
    秦世广,汤洁,温玉璞.黑碳气溶胶及其在气候变化中的意义[J].气象,2001,27(11):3-7.
    邱金桓.宽带太阳漫射辐射法反演辐射加权平均的气溶胶一次散射反照率研究[J].大气科学,2006,30(5):767-777.
    邱金桓,郑斯平,黄其荣,等.北京地区对流层中上部云和气溶胶的激光雷达探测[J].大气科学,2003,27(1):1-7.
    邱金桓,郑斯平,黄其荣,等.北京地区对流层中上部云和气溶胶的激光雷达探测[J].大气科学,2003,27(1):1-3.
    石广玉,王标,张华,等.大气气溶胶的辐射与气候效应[J].大气科学,2008,32(4):826-840.
    汤洁,温玉璞,周凌唏.中国两部大气西部地区黑碳气溶胶的观测研究[J].应用气象学报,1999,10(2):160-169.
    王明星,张仁健.大气气溶胶研究的前沿问题[J].气候与环境研究,2001,6(1):119-124.
    王喜红,石广玉.东亚地区人为气溶胶柱含量变化的模拟研究[J].气候与环境研究,2000,5(1):58-66.
    温玉璞,徐晓斌,汤洁,等.青海瓦里关大气气溶胶元素富集特征及其来源[J].应用气象学报,2001,12(4):400-408.
    吴东辉,胡克,王云,等.长春市"2000-04-07"远源沙尘湿沉降携带细菌研究[J].中国沙漠,2003,23(6):652-655.
    夏祥鳌,王普才,陈洪滨,等.中国北方地区春季气溶胶光学特性地基遥感研究[J].遥感学报,2005,9(4):429-437.
    辛金元,张文煜,袁九毅,等.消光法反演腾格里沙漠地区沙尘气溶胶谱分布[J].高原气象,2004,23(5):654-659.
    延昊,矫梅燕,毕宝贵,等.塔克拉玛干沙漠中心的沙尘气溶胶观测研究[J].中国沙漠,2006,26(3):389-393.
    叶笃正,丑纪范,刘纪远,等.关于我国华北沙尘天气的成因与治理对策[J].地理学报,2000,55(5):513-521.
    尹宏.大气辐射学基础[M].北京:气象出版社,1993:144-145.
    于玺华.现代空气微生物学[M].北京:人民军医出版社,2002.
    郁庆福.现代卫生微生物学[M].北京:人民卫生出版社,1995.
    詹建琼,陈立奇,张远辉,等.北极黑碳气溶胶研究现状和展望[J].极地研究,2010,22(1):56-68.
    张立盛,石广玉.全球人为硫酸盐和烟尘气溶胶资料及其光学厚度的分布特征[J].气候与环境研究,2000,5(1):67-74;
    张美根,徐永福,张仁建,等.东亚地区春季黑碳气溶胶源排放及其浓度分布[J].地球物理学报,2005,48(1):46-51.
    张晟,郑坚,付用川,等.重庆市城区空气微生物污染及评价[J].环境与健康杂志,2002,19(3),231-233.
    张文煜,袁九毅,大气探测原理与方法[M],北京:气象出版社.
    赵柏林,王强,毛节泰,等.光学遥感大气气溶胶和水汽的研究[J].中国科学(B),1983,10: 951-962.
    周军,岳古明等.大气气溶胶光学特性激光雷达探测[J].量子电子学报,1998,15(2):140-148.
    Ansmann, A., F. Wagner, D. Althausen, D. Muller, A. Herber and U. Wandinger, (2001), European pollution outbreaks during ACE 2:Lofted aerosol plumes observed with Raman lidar at the Portuguese coast. Journal of Geophysical Research,106(D18), doi: 10.1029/2000JD000091. Issn:0148-0227.
    Ansmann, A., F. Wagner, D. Muller, D. Althausen, A. Herber, W. von Hoyningen-Huene, and U. Wandinger (2002), European pollution outbreaks during ACE 2:Optical particle properties inferred from multi-wavelength lidar and star-Sun photometry, J. Geophys. Res.,107(D15), 4259,doi:10.1029/2001JD001109.
    Ansmann, A., M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, (1992), Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio, Applied Physics B,55, pp.18-28.
    Christesen, S. D., C. N. Merrow, M. S. DeSha, A. Wong, M. W. Wilson and J. C. Butler, (1994), Ultraviolet fluorescence lidar detection of bioaerosols, Proc. SPIE,2222,228-237.
    Collis, R. T. H. and P. B. Russell, (1976), laser monitoring of the atmosphere [J], E. D. Hinkley, Ed. (Spring, New York),117.
    Femald, F. G., (1984), Analysis of atmospheric lidar observations:some comments [J], Applied Optics,23 (5):652-653.
    Franke, K., A. Ansmann, D. Muller, D. Althausen, F. Wagner, and R. Scheele, (2001), One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar, Geophys. Res. Lett.,28,4559-4562.
    Hua, D., M. Uchida and T. Kobayashi, (2004), UV high-spectral-resolution Rayleigh-Mie lidar with dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere, Optics Letters, Vol.29, No.10,1063-1065.
    Klett, J D., (1981), Stable analytical inversion solution for processing lidar returns [J], Applied Optics,20 (2):211-220.
    Kutner, M. L., Astronomy: A Physical Perspective,2nd Edition [M], Cambridge University Press, 2003, pp.15.
    Liu, Z., N. Sugimoto, and T. Murayama (2002), Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar, Appl. Opt.,41,2760-2767.
    Maiman, T. H., (1960), Stimulated Optical Radiation in Ruby, Nature,187,493-494, doi:10.1038/187493a0.
    Mattis, I., A. Ansmann, D. Mu'ller, U. Wandinger, and D. Althausen (2002), Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust, Geophys. Res. Lett.,29(9),1306, doi:10.1029/2002GL014721.
    Measures, R M., Laser Remote Sensing [M]. Krieger Publishing Company,1992.
    Murayama, T., et al. (2003), An intercomparison of lidar-derived aerosol optical properties with airborne measurements near Tokyo during ACE-Asia, J. Geophys. Res.,108(D23),8651, doi:10.1029/2002JD003259.
    Reagan, J. A., M. V. Apte, A. B. David, and B. M. Herman (1988), Assessment of aerosol extinction to backscatter ratio measurements made at 694.3 nm in Tucson, Arizona, Aerosol Sci. Technol.,8,215-226, doi:10.1080/02786828808959184.
    Wandinger, U., (2005), Introduction to lidar, in Lidar-Range-resolved optical remote sensing of the atmosphere [M], C. Weitkamp (Ed.), Springer, New York.
    Wandinger, U., et al. (2002), Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements, J. Geophys. Res,107(D21),8125, doi:10.1029/2000JD000202.
    Welton, E. J., J. R. Campbell, (2002), Micropulse lidar signals: Uncertainty analysis [J], American Meteorological Society,19, p:2089-2094.
    Whiteman, D. N., S. H. Melfi, and R. A. Ferrare, (1992), Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere, APPLIED OPTICS, Vol.31, No.16, 3068-3082.
    何金海,王振会,银燕等,大气科学(第二版)[M].科学出版社,2008,p:130-133.
    盛裴轩,毛节泰,李建国等,大气物理学[M].北京大学出版社,2003,p:420-425.
    孙景群,激光大气探测[M],科学出版社,1986,p:30-45.
    戴永江,激光雷达原理[M],国防工业出版社,2002,p:39-42.
    王青梅,张以谟.气象激光雷达的发展现状[J],气象科技,2006,34(3):246-249.
    贺千山,毛节泰.微脉冲激光雷达极其应用研究进展[J],气象科技,2004,32(4):219-224.
    Brooks, I. M. (2003), Finding boundary layer top:Application of a wavelet covariance transform to lidar backscatter profiles, J. Atmos. Oceanic Technol.,20,1092-1105, doi:10.1175/1520-0426.
    Campbell, J. R., L. H. DENNIS, and et al., (2002), Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites:Instruments and Data Processing, Jounal of Atmospheric and Oceanic Technology,19,431-441.
    ETOPO2v2 Global Gridded 2-minute Database, National Geophysical Data Center, National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce, http://www.ngdc.noaa.gov/mgg/global/etopo2.html.
    Huang, J., W. Zhang, J. Zuo, and et al., (2008), Development of the semi-arid climate and environment research observatory over Loess Plateau, Advance in Atmospheric Sciences, 25(6),906-921.
    Huang, Z., J. Huang, J. Bi, G. Wang, W. Wang, Q. Fu, Z. Li, S.-C. Tsay, and J. Shi (2010), Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment, J. Geophys. Res.,115, D0OK15, doi:10.1029/2009JD013273.
    Josephine Y. A., M. R. Kuznetsova, C. J. Jahns, P. F. Kemp, (2005), The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols, Aerosol Science,36, 801-812.
    Liu, Z., et al. (2008), CALIPSO lidar observations of optical properties of Saharan dust: A case study of long-range transport, J. Geophys. Res.,113, D07207, doi:10.1029/2007JD008878.
    Spinhirne, J. D., (1993), Micro pulse lidar, IEEE Transaction on Geoscience and Remote Sensing, 31(1),48-55.
    Sugimoto, N., I. Matsui, A. Shimizu, T. Nishizawa, Y. Hara, C. Xie, I. Uno, K. Yumimoto, Z. Wang, S-C. Yoon, (2008), Lidar Network Observations of Troposheric Aerosols, SPIE Vol. 7153, doi:10.1117/12.806540.
    Winker, D. M., W. H. Hunt, and M. J. McGill,2007:Initial performance assessment of CALIOP, Geophys. Res. Lett.,34, L19803, doi:10.1029/2007GL030135.
    Aoki, I., Y. Kurosaki, R. Osada, T. Sato, and F. Kimura (2005), Dust storms generated by mesoscale cold fronts in the Tarim Basin, northwest China, Geophys. Res. Lett.,32, L06807, doi:10.1029/2004GL021776.
    Arimoto, R., R. A. Duce, D. L. Savoie, J. M. Prospero, R. Talbot, J. D. Cullen, U. Tomza, N. F. Lewis, and B. J. Ray (1996), Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A, J. Geophys. Res.,101(D1),2011-2023, doi:10.1029/95JD01071.
    Draxler, R.R., and G.D. Hess, (1998), An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag.,47,295-308
    Eck, T. F., B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O'Neill, I. Slutsker, and S. Kinne, (1999), Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosol, J. Geophys. Res.,104(D24),31,333-31,349, doi:10.1029/1999JD900923.
    Gao, X., S. Yabuki, Z. Qu, and Z. Qian (2002), Some characteristics of dust storm in northwest China, J. Arid Land Stud.,11(4),235-243.
    Houghton J. T., L. G. Meira Filho, J. Bruce et al. (1994), IPCC, Radiative forcing of climate change. In:Climate Change 1994 (eds. Lee Callendar B. A., Haites E., Harris N. et al.). New York, Cambridge University Press,137-157.
    Huang, J., P. Minnis, B. Lin, T. Wang, Y. Yi, Y. Hu, S. Sun-Mack, and K. Ayers (2006), Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES, Geophys. Res. Lett.,30,6824, doi:10.1029/2005GL024724.
    Huang, Z, J. Huang, J. Bi, G. Wang, W. Wang, Q. Fu, Z. Li, S.-C. Tsay, and J. Shi (2010), Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment, J. Geophys. Res.,115, D0OK15, doi:10.1029/2009JD013273.
    Kalnay E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc, 77,437-470.
    Li, Z. (1998), Influence of absorbing aerosols on the inference of solar sur-face radiation budget and cloud absorption, J. Clim.,11,5-17, doi:10.1175/1520-0442.
    Li, Z., et al. (2007), Aerosol optical properties and their radiative effects in northern China, J. Geophys. Res.,112, D22S01, doi:10.1029/2006JD007382.
    Liu, C, Z. Qian, M. Wu, M. Song, and J. Liu (2004), A composite study of the synoptic differences between major and minor dust storm springs over the China Mongolia Areas, Terr. Atmos. Oceanic Sci.,15(5),999-1018.
    Sassen, K. (2002): Indirect climate forcing over the western US from Asian dust storms. Geophys. Res. Lett.,29,1029, doi:10.1029/2001GL014034.
    Sun, J., M. Zhang, and T. S. Liu (2001), Spatial and temporal characteristics of dust storms in China and its surrounding regions,1960-1999:Relations to source area and climate, J. Geophys. Res.,106(D10),10,325-10,333, doi:10.1029/2000JD900665.
    Torres, O., P. K. Bhartia, J. R. Herman, Z. Ahmad, and J. Gleason, Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis, J. Geophys. Res.,103,17,099-17,110,1998.
    Welton, E. J., J. R. Campbell, J. D. Spinhirne, et al. (2001), Global monitoring of clouds and aerosols using a network of micro pulse LIDAR systems, Proc. LIDAR Remote Sensing for Industry and Environmental Monitoring,4153,151-158.
    Winker, D. M., W. H. Hunt, and C. A. Hostetler,2004:Status and Performance of the CALIOP Lidar, Proc. SPIE vol 5575,8-15
    Zhang X., R. Arimoto, Z.S. An (1997):Dust emission from Chinese desert sources linked to variations in atmospheric circulation, Journal of Geophysical Research,102 (D23), 28041-28047.
    叶笃正,丑纪范,刘纪远等(2000):关于我国华北沙尘天气的成因与治理对策.地理学报,55(5),513-521.
    Connor J. F., A. Mendoza, Y. Zheng, and S. Mathur,2007:Novel polarization-sensitive micropulse lidar measurement technique, OPTICS EXPRESS,15(6),2785-2790.
    Hu, Y., et al. (2007), The depolarization-attenuated backscatter relation:CALIPSO lidar measurements vs. theory, Opt. Express,15,5327-5332, doi:10.1364/OE.15.005327.
    Hulst, H. C. Van De,1981:Light Scattering by Small Particles, Dover, New York.
    Measures, R M., Laser Remote Sensing [M]. Krieger Publishing Company,1992.
    Wold, S., C. Albano, W. Dunn, K. Esbensen, S. Hellberg, E. Johansson, M. Sjostrom, (1983), Food Research and Data Analysis, Applied Science, London, pp.147-188
    LIOU K.N著,郭彩丽,周诗健译.大气辐射导论(第二版)[M].气象出版社,2004:362.
    唐启义,2010,DPS数据处理系统-实验设计、统计分析及数据挖掘[M].北京:科学出版社,第2版.
    王惠文,1999.偏最小二乘回归方法及其应用[M].北京:国防工业出版社.
    David N. Whiteman, (2003), Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations, APPLIED OPTICS, Vol.42, No.15,2571-2592.
    Diehl, K., and S. K. Mitra (1998), A laboratory study of the effects of a kerosene burner exhaust on ice nucleation and the evaporation rate of ice crystals, Atmos. Environ.,32,3145-3151.
    Ferrare, R. A., S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, (1998), Raman lidar measurements of aerosol extinction and backscattering.1. Methods and comparisons, J. Geo-phys. Res.103,19663-19672.
    IPCC WGI 2007 Climate Change 2007 The Physical Science Basis:Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
    Sassen, K. and G. C. Dodd, (1982), Lidar Crossover Function and Misalignment Effects, Appl. Opt,21,3167.
    Velotta, R., B. Bartoli, R. Capobianco, L. Fiorani, and N. Spinelli, (1998), Analysis of the receiver response in lidar measurements," Appl. Opt.,37,6999-7007.
    Wandinger, U. and A. Ansmann, (2002), Experimental determination of the lidar overlap profile with Raman lidar, Appl. Opt.,41,511-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700