用户名: 密码: 验证码:
黄铁矿氧化机理及表面钝化行为的电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄铁矿作为一种最为常见的硫化物矿物,普遍存在于各种矿石及尾矿堆中,同时也常见于各种贵金属伴生矿中。黄铁矿的氧化能引起矿山酸性废水AMD (acid mine drainage)的产生,而AMD将会造成生态环境的重金属及酸污染。为了从源头上控制酸性废水的产生,有必要先了解黄铁矿的氧化机理,从而找出有效的钝化处理方法以减少黄铁矿的氧化程度。
     本文利用开路电位(OCP)、循环伏安(CV)、Tafel极化曲线、交流阻抗(EIS)等电化学分析技术研究黄铁矿在无菌体系和有菌体系中的电化学行为,从电化学角度揭示黄铁矿的化学和生物氧化机理。在此基础上,探讨了三乙烯四胺(TETA)抑制黄铁矿化学氧化和生物氧化的可能性。得到如下主要结果与结论:
     黄铁矿在酸性溶液中的氧化过程是通过两个步骤完成:第一步是铁溶出而被氧化为亚铁或Fe(Ⅲ),此时将会在黄铁矿表面形成中间产物如单质硫、多硫化物(FeSn)和缺铁硫化物(Fe_(1-x)S_2)。第二步为黄铁矿表面中间产物的进一步氧化成SO_4~(2-)。当溶液中不含氧化亚铁硫杆菌(A.f菌)时,Fe~(3+)离子对黄铁的氧化将起非常重要的作用。Fe~(3+)离子的加入不会改变黄铁矿的氧化机理,但却能大大加速黄铁矿的第一步氧化速率。同时Fe~(3+)离子对黄铁矿表面形成的硫膜的氧化并不明显。Tafel极化曲线和EIS的测量表明随着Fe~(3+)离子浓度的增加,黄铁矿的表面越容易产生钝化层。
     微生物浸矿实验表明氧化亚铁硫杆菌的存在能极大的促进了黄铁矿的氧化溶解。浸矿实验结束时,有菌体系中的铁离子的浓度可达到无菌体系中铁离子浓度的8倍。而且经黄铁矿驯化培养后的A.f菌对黄铁矿的氧化能力要高于未经驯化的细菌。黄铁矿细菌浸出过程中体系的氧化还原电位上升较快,这是因为细菌可以迅速的促进溶液中的亚铁离子氧化为Fe(Ⅲ)离子,从而对黄铁矿保持较高的氧化速率。另外黄铁矿细菌氧化后浸出液的pH值会降低,这可能也是黄铁矿氧化速率较快的一个重要原因。
     同时电化学测量结果也表明,A.f菌的存在能显著提高黄铁矿电极的腐蚀电流密度。通过对黄铁矿在无菌及有菌体系中的交流阻抗的测量,发现氧化亚铁硫杆菌的存在不仅加速了黄铁矿中铁离子的浸出,更重要的是能将富集在黄铁矿表面的硫元素进一步氧化,从而使黄铁矿的氧化程度进行得比较彻底。在黄铁矿细菌氧化的中后期,黄铁矿中铁元素的浸出速率非常快,而对黄铁矿氧化速度起控制作用的步骤是矿物表面硫膜的氧化过程。在无菌体系中,黄铁矿表面富集的硫元素很难被氧化,从而会在矿物表面形成一层钝化层,限制着黄铁矿的进一步氧化。而且黄铁矿氧化前后的表面化学性质及形貌的观察也证实了这一点。
     利用电化学方法研究硫酸溶液中TETA对黄铁矿氧化的钝化效果。结果表明,TETA是能有效的抑制黄铁矿的化学氧化,经包膜处理后的黄铁矿电极阴极还原速率和阳极氧化速率都会受到不同程度的抑制。且其对黄铁矿氧化的抑制效率会随其浓度的增加而增大。Tafel极化曲线的测量结果显示:TETA浓度由1%增加到5%时其对黄铁矿的钝化效率也相应的由42.08%增加到80.98%。这个结果与EIS法测得的结果有很好的一致性(EIS结果为43.09% to 82.55%)。另外由Tafel极化曲线也可得知TETA是属于混合型的钝化剂,它可以同时对发生在矿物表面的的阴极还原及阳极氧化过程产生抑制作用。而TETA之所以能降低黄铁矿的化学氧化速率,主要原因是它可以通过化学吸附牢固的吸附在黄铁矿表面而形成一层比较稳定的保护层。
     最后,TETA抑制黄铁矿生物氧化的能力也通过电化学方法进行了测量。用黄铁矿碳糊电极作为指示电极监测钝化和未钝化的黄铁矿底物受A.f菌氧化时的氧化速率。通过比较黄铁矿碳糊电极在不同体系中的电化学活性随时间的变化,发现TETA在有菌体系中也能显著降低黄铁矿的氧化速度。TETA钝化法不但能同时抑制黄铁矿的化学和生物氧化,还具有操作简单、实用性强等特点。因此TETA在源头上抑制黄铁矿氧化,控制AMD污染方面具有很好的前景。
Pyrite (FeS2) is a common iron sulfide mineral in tailings and waste rock dumps; it is also present in many valuable mineral raw materials. The oxidation of pyrite can produce acid mine drainage, which is then a cause of pollution by heavy metals and acidity. For the control of acid mine drainage at source, it’s essential to understand the oxidation mechanism of pyrite. Then we could find an effective passivation method to suppression the oxidation process of pyrite.
     Electrochemical analysis methods, such as open circuit potential (OCP), cyclic voltammetry (CV), Tafel polarization curves and electrochemical impedance spectroscopy (EIS) were used to investigate electrochemical behavior of pyrite in systems with and without bacteria, revealing the mechanism of pyrite’s chemical and biological oxidation. On these bases, the feasibility of triethylenetetramine (TETA) to inhibit the chemical and biological oxidation of pyrite had also been investigated. The major conclusions are given below:
     The oxidation process of pyrite in acid solution is via a two-step reaction occurring at the surface of pyrite: the first step is the dissolution of iron moiety and that a passivation film composed of elemental sulphur,polysulfides and metal-deficient sulfide is formed during the process of the first-step reaction. The second step is the further oxidation of these intermediate products to SO_4~(2-). In sterile solution, Ferric iron plays an important role in the dissolution of pyrite by enhancing the direct oxidation. The Tafel polarization curves indicate that the polarization current of the pyrite electrode increases with an increase in Fe~(3+) concentration. The results of polarization curves and EIS had also been shown that the higher concentration of Fe~(3+), the more easily the pyrite can be transformed into the passivation region.
     The results of bioleaching tests showed that Acidithiobacillus ferrooxidans (A.f) can significantly improved the leaching rate of pyrite. At the end of the experiment, the concentration of total soluble iron in bioleaching solution was 8 times of that in sterile solution. Moreover, the leaching efficient of A.f bacteria after domestication was increased compared with that before domestication. The redox potential in the system with bacteria was increased much faster than that in sterile solution, which resulted from the fast oxidation of ferrous ions to ferric ions. The leached Fe~(3+) could in turn accelerate the oxidation of the pyrite. In addition, the pH of bioleaching solution was decreased with times. This may also be an important canse of the fast dissolution of pyrite in bioleaching system.
     The electrochemical behavior of a pyrite-carbon paste electrode in system with and without Acidithiobacillus ferrooxidans was also investigated. The results showed that the addition of A.f bacteria could enhance the corrosion current of pyrite electrode greatly. The corrosion of pyrite electrode became more serious with the increase of bioleaching time. The EIS responses were different with time in both inoculated and sterile solution, which suggested the kinetic processes occurring in the pyrite–solution interface were changed during the leaching process. In the initial stage of pyrite oxidation, the corrosion rate of the pyrite was mainly controlled by the process of iron moiety dissolution in both of the systems with and without bacteria, which results in the formation of some intermediate products such as elemental sulfur and polysulfide on the surface of pyrite. In the presence of bacteria, these intermediate products could be continuously oxidized to SO_4~(2-). But in the sterile solution, the further oxidation of S was difficult to be detected by EIS measurement. These results were also confirmed by surface analysis and which showed that the principal advantage of the presence of microorganisms was to continuously remove the elemental sulfur from the surface of pyrite.
     The potential of triethylenetetramine (TETA) to inhibit the oxidation of pyrite acid solution has been investigated using the open circuit potential (OCP), cyclic voltammetry (CV), potentiodynamic polarization and electrochemical impedance (EIS) respectively. Experimental results indicate that TETA is an efficient coating agent in preventing the oxidation of pyrite and the inhibition efficiency is more pronounced with the increase of TETA. The data from potentiodynamic polarization show that the inhibition efficiency (η%) increases from 42.08% to 80.98% with the concentration of TETA increasing from 1% to 5%. These results are consistent with the measurement of EIS (43.09% to 82.55%). The information obtained from potentiodynamic polarization also display the TETA is a kind of mixed type inhibitor, both cathodic and anodic process can be inhibited by the coating of TETA. The coating treatment of pyrite with TETA can be described as chemisorption of TETA molecules on the surface of sample particles and lead to the formation of a protective film, and this film prevent from the oxidation of pyrite.
     At the end of this paper, the feasibility of using triethylenetetramine (TETA) as protecting agent to reduce the biological oxidation of pyrite had also been studied by methods of electrochemical techniques. A pyrite-carbon paste electrode was utilized to monitor the oxidation rate of pristine and TETA coated pyrite oxidation in the presence of Acidithiobacillus ferroxidans bacterium. By comparing the changes of the electrochemical activity for the pyrite-carbon paste electrode, reflected by the measurements of open circuit potential (OCP), cyclic voltammetry(CV), Tafel polarization analysis and electrochemical impedance spectroscopy (EIS), in different bioreactor with pyrite samples coated by various concentrations of TETA, we could find that TETA is an efficient coating agent in preventing the oxidation of pyrite in the presence of bacteria. Compared to other coatingt reatments, the coating by TETA can limit both the chemical and biological oxidation of pyrite; meanwhile, it could represent a simple, cost-eficient method to control the oxidation of pyrite.
引文
[1]杨永杰.环境保护与清洁生产[M].北京:化学工业出版社, 2002: 56-78
    [2]武强,刘伏昌,李铎.矿山环境研究理论与实践[M]:北京:地质出版社, 2005: 25-26
    [3]庞春勇,周红杰.矿业开发中环境影响的生态环境地质评价[J].矿产与地质, 2003,17(5):641-644
    [4] Bhattacharya A.,Routh J.,Jacks G., et al. Environmental assessment of abandoned mine tailings in Adak, V sterbotten district (northern Sweden)[J]. Applied Geochemistry, 2006,21(10):1760-1780
    [5] Lee J., Chon H. Hydrogeochemical characteristics of acid mine drainage in the vicinity of an abandoned mine, Daduk Creek[J]. Korea Journal or Geochemical Exploration, 2005,33(12):345-567
    [6] McGregor R.,Blowes D.,Jambor J., et al. The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada[J]. Journal of Contaminant Hydrology, 1998,33(3-4):247-271
    [7] Gunsinger M.,Ptacek C.,Blowes D., et al. Evaluation of long-term sulfide oxidation processes within pyrrhotite-rich tailings, Lynn Lake, Manitoba[J]. Journal of Contaminant Hydrology, 2006,83(3-4):149-170
    [8] Schippers A.,Kock D.,Schwartz M., et al. Geomicrobiological and geochemical investigation of a pyrrhotite-containing mine waste tailings dam near Selebi-Phikwe in Botswana[J]. Journal of Geochemical Exploration, 2007,92(2-3):151-158
    [9] Sasaki K.,Tsunekawa M.,Hasebe K., et al. Effect of anionic ligands on the reactivity of pyrite with Fe (III) ions in acid solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995,101(1):39-49
    [10] Evangelou V., Zhang Y. A review: Pyrite oxidation mechanisms and acid mine drainage prevention[J]. Critical Reviews in Environmental Science and Technology, 1995,25(2):141-199
    [11]蔡美芳,刘玉荣,党志.植物修复重金属污染土壤的研究进展[J].重庆环境科学, 2003,25(11):174-176
    [12]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报, 2004,35(3):366-370
    [13] Janzen M.P.,Nicholson R.V.,Scharer J.M. Pyrrhotite reaction kinetics: reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution[J]. Geochimica et Cosmochimica Acta, 2000,64(9):1511-1522
    [14] Long H., Dixon D.G. Pressure oxidation of pyrite in sulfuric acid media: a kinetic study[J]. Hydrometallurgy, 2004,73(3-4):335-349
    [15] Long H., Dixon D. Pressure oxidation of pyrite in sulfuric acid media: a kinetic study[J]. Hydrometallurgy, 2004,73(3-4):335-349
    [16] Mazumdar A.,Goldberg T.,Strauss H. Abiotic oxidation of pyrite by Fe(III) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments[J]. Chemical Geology, 2008,253(1-2):30-37
    [17] Moses C.,Nordstrom D.,Herman J., et al. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron[J]. Geochimica et Cosmochimica Acta, 1987,51:1561-1571
    [18] Sracek O.,Gélinas P.,LefebvréR., et al. Comparison of methods for the estimation of pyrite oxidation rate in a waste rock pile at Mine Doyon site, Quebec, Canada[J]. Journal of Geochemical Exploration, 2006,91(1-3):99-109
    [19] Hu G.,Dam-Johansen K.,Wedel S., et al. Decomposition and oxidation of pyrite[J]. Progress in Energy and Combustion Science, 2006,32(3):295-314
    [20] Wiersma C., Rimstidt J. Rates of reaction of pyrite and marcasite with ferric iron at pH 2[J]. Geochimica et Cosmochimica Acta, 1984,48:85-92
    [21] Murphy R., Strongin D.R. Surface reactivity of pyrite and related sulfides[J]. Surface Science Reports, 2009,64(1):1-45
    [22] Luther G.,Kostkaa J.,Churcha T., et al. Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe (II) and Fe (III) in the dissolution of Fe (III) minerals and pyrite, respectively[J]. Marine chemistry, 1992,40:81-103
    [23]兰叶青,黄骁.不同pH时磷酸盐对黄铁矿氧化的影响[J].南京农业大学学报, 1998,21(3):102-106
    [24]兰叶青,刘正华.用电化学研究表面膜抑制黄铁矿氧化效果[J].南京农业大学学报, 2000,23(3):93-96
    [25]兰叶青,黄骁.磷酸铁膜对黄铁矿氧化动力学行为的影响[J].环境化学, 1999,18(1):52-56
    [26] Rudolfs W. Oxidation of iron pyrites by sulfur-oxidizing organisms and their use for making mineral phosphates available[J]. Soil Science, 1922,14(2):135-174
    [27] Rudolfs W., Helbronner A. Oxidation of zinc sulfide by microorganisms[J]. Soil Science, 1922,14(6):459-473
    [28] Colmer A., Hinkle M. The Role of Microorganisms in Acid Mine Drainage: A Preliminary Report[J]. Science, 1947,106(2751):253-374
    [29] Temple K., Delchamps E. Autotrophic bacteria and the formation of acid in bituminous coal mines[J]. Applied and Environmental Microbiology, 1953,1(5):255-271
    [30] Leathen W.,Kinsel N.,Braley Sr S. Ferrobacillus ferrooxidans: a chemosynthetic autotrophic bacterium[J]. J Bacteriol, 1956,72(5):700-704
    [31] Bryner L.,Beck J.,Davis D., et al. Microorganisms in leaching sulfide minerals[J]. Industrial and Engineering Chemistry, 1954,46(12):2587-2592
    [32] Silverman M., Lundgren D. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. An improved medium and a harvesting procedure for securing high cell yields[J]. Journal of Bacteriology, 1959,77(5):642-667
    [33] Silverman M., Ehrlich H. Microbial formation and degradation of minerals[J]. Advances in Applied Microbiology, 1964,6:153-206
    [34] Dugan P., Lundgren D. Energy supply for the chemoautotroph Ferrobacillus ferrooxidans[J]. Journal of Bacteriology, 1965,89(3):825-845
    [35] Sinha D., Walden C. Formation of polythionates and their interrelationships during oxidation of thiosulfate by Thiobacillus ferrooxidans[J]. Canadian Journal of Microbiology, 1966,12(5):1041-1054
    [36] Silverman M. Mechanism of bacterial pyrite oxidation[J]. Journal ofBacteriology, 1967,94(4):1046-1061
    [37] Brunner B.,Yu J.Y.,Mielke R.E., et al. Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth strategy[J]. Earth and Planetary Science Letters, 2008,270(1-2):63-72
    [38] Gleisner M.,Herbert J.R.B.,Frogner Kockum P.C. Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen[J]. Chemical Geology, 2006,225(1-2):16-29
    [39] Yu J.Y.,McGenity T.J.,Coleman M.L. Solution chemistry during the lag phase and exponential phase of pyrite oxidation by Thiobacillus ferrooxidans[J]. Chemical Geology, 2001,175(3-4):307-317
    [40] Baldi F.,Clark T.,Pollack S., et al. Leaching of pyrites of various reactivities by Thiobacillus ferrooxidans[J]. Applied and Environmental Microbiology, 1992,58(6):1853
    [41] Sasaki K.,Tsunekawa M.,Ohtsuka T., et al. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998,133(3):269-278
    [42] Fowler T.,Holmes P.,Crundwell F. On the kinetics and mechanism of the dissolution of pyrite in the presence of Thiobacillus ferrooxidans[J]. Hydrometallurgy, 2001,59(2-3):257-270
    [43] Samposn M.,Phllips C.,Blake R. Influence of the attachment of acidophlic bacteria during the oxidation of sulfides[J]. Minerals Engineering, 2000,13:373-389
    [44] Labrenz M., Banfield J. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system[J]. Microbial Ecology, 2004,47(3):205-217
    [45] Doye I., Duchesne J. Neutralisation of acid mine drainage with alkaline industrial residues: laboratory investigation using batch-leaching tests[J]. Applied Geochemistry, 2003,18(8):1197-1213
    [46] Benzaazoua M.,Marion P.,Picquet I., et al. The use of pastefill as a solidificationand stabilization process for the control of acid mine drainage[J]. Minerals Engineering, 2004,17(2):233-243
    [47] Dugan P. Bacterial ecology of strip mine areas and its relationship to the production of acidic mine drainage[J]. Ohio Journal of Science, 1975,75(6):266-279
    [48] Costigan P.,Bradshaw A.,Gemmell R. The reclamation of acidic colliery spoil. I. Acid production potential[J]. Journal of Applied Ecology, 1981:865-878
    [49] Alpers C., Blowes D. Environmental geochemistry of sulfide oxidation[M]: American Chemical Society Columbus, OH, 1994
    [50] Kleinmann R., Erickson P. Control of acid drainage from coal refuse using anionic surfactants[J]. Bureau of Mines Report of Investigation, 1983:321-334
    [51] Dugan P. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in―run of mine‖refuse under simulated field conditions[J]. Biotechnology and Bioengineering, 1987,29(1):49-54
    [52] Pichtel J., Dick W. Influence of biological inhibitors on the oxidation of pyritic mine spoil[J]. Soil Biology and Biochemistry, 1991,23(2):109-116
    [53] Duncan D.,Landesman J.,Walden C. Role of Thiobacillus ferrooxidans in the oxidation of sulfide minerals[J]. Canadian Journal of Microbiology, 1967,13(4):397-403
    [54] Arkesteyn G. Pyrite oxidation by Thiobacillus ferrooxidans with special reference to the sulphur moiety of the mineral[J]. Antonie Van Leeuwenhoek, 1979,45(3):423-435
    [55] Backes C.,Pulford I.,DUNCAN H. Studies on the oxidation of pyrite in colliery spoil. I: the oxidation pathway and inhibition of the ferrous-ferric oxidation[J]. Reclamation and revegetation research, 1986,4(4):279-291
    [56] Perdicakis M.,Geoffroy S.,Grosselin N., et al. Application of the scanning reference electrode technique to evidence the corrosion of a natural conducting mineral: pyrite. Inhibiting role of thymol[J]. Electrochimica Acta, 2001,47(1-2):211-216
    [57]阳正熙.矿区酸性废水的成因及其防治[J].世界采矿快报, 1999,15(10):42-45
    [58] Romano C.,Ulrich Mayer K.,Jones D., et al. Effectiveness of various cover scenarios on the rate of sulfide oxidation of mine tailings[J]. Journal of Hydrology, 2003,271(1-4):171-187
    [59] Peppas A.,Komnitsas K.,Halikia I. Use of organic covers for acid mine drainage control[J]. Minerals Engineering, 2000,13(5):563-574
    [60] Mudd G.,Chakrabarti S.,Kodikara J. Evaluation of engineering properties for the use of leached brown coal ash in soil covers[J]. Journal of Hazardous materials, 2007,139(3):409-412
    [61]朱继保,陈繁荣,卢龙,等.广东凡口Pb-Zn尾矿中重金属的表生地球化学行为及其对矿山环境修复的启示[J].环境科学学报, 2005,25(3):414-422
    [62] Nicholson R.,Gillham R.,Cherry J. Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers[J]. 1989,32(435-440)
    [63] Georgopoulou Z.,Fytas K.,Soto H., et al. Feasibility and cost of creating an iron-phosphate coating on pyrrhotite to prevent oxidation[J]. Environmental Geology, 1996,28(2):61-69
    [64] Belzile N.,Maki S.,Chen Y., et al. Inhibition of pyrite oxidation by surface treatment[J]. Science of the Total Environment, 1997,196(2):177-186
    [65] Evangelou V. Pyrite microencapsulation technologies: Principles and potential field application[J]. Ecological Engineering, 2001,17(2-3):165-178
    [66] Baker B. The evaluation of unique acid mine drainage abatement techniques[D]: West Virginia University, 1983
    [67] Demchak J.,McDonald Jr L.,Skousen J. Water quality from underground coal mines in northern West Virginia (1968-2000) [M]. 2002.
    [68] Nyavor K., Egiebor N. Control of pyrite oxidation by phosphate coating[J]. Science of the Total Environment, 1995,162(2-3):225-237
    [69] Evangelou V., Huang X. A new technology for armoring and deactivating pyrite: proceedings of, 1992[C].
    [70] Evangelou V. Infrared spectroscopic evidence of an iron (II)---carbonate complex on the surface of pyrite[J]. Spectrochimica Acta Part A: Molecular Spectroscopy, 1994,50:1333-1340
    [71] Huang X., Evangelou V. Iron phosphate coating: A novel approach to controlling pyrite oxidation[J]. Pedosphere, 1997,7:103-110
    [72] Huang X. Suppressing pyrite oxidation via iron phosphate coating: proceedings of, 2004[C]. Taylor and Francis.
    [73] Smith F. Variation in the properties of pyrite[J]. Am Mineralogist, 1942,27:1-19
    [74] Vlek P., Lindsay W. Potential use of finely disintegrated iron pyrite in sodic and iron-deficient soils[J]. Journal of Environmental Quality, 1978,7(1):111-132
    [75]兰叶青,黄骁.柱子淋洗模拟研究磷酸铁膜抑制黄铁矿氧化效果[J].地球化学, 2000,29(5):485-489
    [76] Lan Y.,Huang X.,Deng B. Suppression of pyrite oxidation by iron 8-hydroxyquinoline[J]. Archives of Environmental Contamination and Toxicology, 2002,43(2):168-174
    [77] Belzile N.,Maki S.,Chen Y., et al. Inhibition of pyrite oxidation by surface treatment[J]. Science of the Total Environment, The, 1997,196(2):177-186
    [78] Lalvani S.,DeNeve B.,Weston A. Passivation of pyrite due to surface treatment[J]. Fuel, 1990,69(12):1567-1569
    [79] Lalvani S., DeNeve B. Prevention of pyrite dissolution in acidic media[J]. Corrosion, 1991,47(1):55-61
    [80] Belzile N.,Maki S.,Chen Y.W., et al. Inhibition of pyrite oxidation by surface treatment[J]. Science of the Total Environment, 1997,196(2):177-186
    [81] Jiang C.L.,Wang X.H.,Parekh B.K. Effect of sodium oleate on inhibiting pyrite oxidation[J]. International Journal of Mineral Processing, 2000,58(1-4):305-318
    [82] Elsetinow A.R.,Borda M.J.,Schoonen M.A.A., et al. Suppression of pyrite oxidation in acidic aqueous environments using lipids having two hydrophobic tails[J]. Advances in Environmental Research, 2003,7(4):969-974
    [83]兰叶青,黄骁.有机难溶盐膜抑制黄铁矿氧化的研究[J].环境科学学报, 1999,19(4):405-409
    [84]兰叶青,周刚.废矿堆中黄铁矿氧化控制新技术:有机盐包膜法[J].环境化学, 2000,19(5):455-459
    [85] Liu R.,Wolfe A.L.,Dzombak D.A., et al. Electrochemical study of hydrothermal and sedimentary pyrite dissolution[J]. Applied Geochemistry, 2008,23(9):2724-2734
    [86] Tan H.,Feng D.,van Deventer J.S.J., et al. An electrochemical study of pyrite oxidation in the presence of carbon coatings in cyanide medium[J]. International Journal of Mineral Processing, 2006,80(2-4):153-168
    [87] Giannetti B.F.,Almeida C.M.V.B.,Bonilla S.H. Electrochemical kinetic study of surface layer growth on natural pyrite in acid medium[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006,272(1-2):130-138
    [88] Tao D.P.,Richardson P.E.,Luttrell G.H., et al. Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes[J]. Electrochimica Acta, 2003,48(24):3615-3623
    [89] Giannetti B.F.,Bonilla S.H.,Zinola C.F., et al. A study of the main oxidation products of natural pyrite by voltammetric and photoelectrochemical responses[J]. Hydrometallurgy, 2001,60(1):41-53
    [90] Hamilton I., Woods R. An investigation of surface oxidation of pyrite and pyrrhotite by linear potential sweep voltammetry[J]. 5 th Australian Electrochemistry, 1980:327-343
    [91] Michell D., Woods R. Analysis of oxidized layers on pyrite surfaces by X-ray emission spectroscopy and cyclic voltammetry[J]. Australian Journal of Chemistry,31(1):27-34
    [92] Lin H.K., Say W.C. Study of pyrite oxidation by cyclic voltammetric, impedance spectroscopic and potential step techniques[J]. Journal of Applied Electrochemistry, 1999,29(8):987-994
    [93] Almeida C.M.V.B., Giannetti B.F. Comparative study of electrochemical and thermal oxidation of pyrite[J]. Journal of Solid State Electrochemistry, 2002,6(2):111-118
    [94] Kelsall G.H.,Yin Q.,Vaughan D.J., et al. Electrochemical oxidation of pyrite(FeS2) in aqueous electrolytes[J]. Journal of Electroanalytical Chemistry, 1999,471(2):116-125
    [95] Tan H.,Feng D.,van Deventer J., et al. An electrochemical study of pyrite oxidation in the presence of carbon coatings in cyanide medium[J]. International Journal of Mineral Processing, 2006,80(2-4):153-168
    [96] Antonijevi? M.M.,Dimitrijevi? M.D.,?erbula S.M., et al. Influence of inorganic anions on electrochemical behaviour of pyrite[J]. Electrochimica Acta, 2005,50(20):4160-4167
    [97] Arce E.M., González I. A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution[J]. International Journal of Mineral Processing, 2002,67(1-4):17-28
    [98] Cruz R.,González I.,Monroy M. Electrochemical characterization of pyrrhotite reactivity under simulated weathering conditions[J]. Applied Geochemistry, 2005,20(1):109-121
    [99] Becking L.,Kaplan I.,Moore D. Limits of the natural environment in terms of pH and oxidation-reduction potentials[J]. The Journal of Geology, 1960,68(3):243-284
    [100] Pesic B.,Oliver D.,Wichlacz P. An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans[J]. Biotechnology and Bioengineering, 1989,33(4):428-439
    [101] Yunker S., Radovich J. Enhancement of growth and ferrous iron oxidation rates of T. ferrooxidans by electrochemical reduction of ferric iron[J]. Biotechnology and Bioengineering, 1986,28(12):1867 - 1875
    [102] Blake R.,Howard G.,McGinness S. Enhanced yields of iron-oxidizing bacteria by in situ electrochemical reduction of soluble iron in the growth medium[J]. Applied and Environmental Microbiology, 1994,60(8):2704-2710
    [103] Gottschalk V., Buehler H. Oxidation of sulphides (second paper)[J]. Economic Geology, 1912,7(1):15-34
    [104] Dutrizac J., MacDonald R. The effect of some impurities on the rate ofchalcopyrite dissolution[J]. CAN MET Q, 1973,12(4):409-420
    [105] Hiskey J., Wadsworth M. Galvanic conversion of chalcopyrite[J]. Metallurgical and Materials Transactions B, 1975,6(1):183-190
    [106] Nicol M. Mechanism of aqueous reduction of chalcopyrite by copper, iron and lead[J]. Transactions of the Institution of Mining and Metallurgy 1975,84(829):1222-1232
    [107] Berry V.,Murr L.,Hiskey J. Galvanic interaction between chalcopyrite and pyrite during bacterial leaching of low-grade waste[J]. Hydrometallurgy, 1978,3(4):309-326
    [108] Mehta A., Murr L. Kinetic Study of Sulfide Leaching by Galvanic Interaction Between Chalcopyrite, Pyrite, And Sphalerite In The Prsence of T.ferrooxidans and aThermophilic Microorganicsm[J]. Biotechnol Bioeng, 1982,24(4):919-940
    [109] Mehta A., Murr L. Fundamental studies on the contributions of galvanic interactions to the acid-bacteria leaching of mixed metal sulfides[D]: New Mexico Institute of Mining and Technology, 1981
    [110] Natarajan K. Role of Galvanic Interactions in the Bioleaching of Duluth Gabbro Copper--Nickel Sulfides[J]. Separation Science and Technology for Energy Applications, 1983,18(12):1095-1111
    [111]李宏煦.硫化矿细菌浸出过程的电化学机理及工艺研究[D]:中南大学, 2001
    [112] Tributsch H., Bennett J. Semiconductor-electrochemical aspects of bacterial leaching. Pt. 2: survey of rate-controlling sulphide properties[J]. Journal of Chemical Technology and Biotechnology, 1981,31:627-635
    [113] Palencia I.,Wan R.,Miller J. The electrochemical behavior of a semiconducting natural pyrite in the presence of bacteria[J]. Metallurgical and Materials Transactions B, 1991,22(6):765-774
    [114] Pesic B., Kim I. Electrochemistry of Thiobacillus ferrooxidans interactions with pyrite[J]. Metallurgical and Materials Transactions B, 1993,24(5):717-727
    [115] Choi W.,Torma A.,Ohline R., et al. Electrochemical aspects of zinc sulphide leaching by Thiobacillus ferrooxidans[J]. Hydrometallurgy(Amsterdam),1993,33(1-2):137-152
    [116] Riekkola-Vanhanen M., Heimala S. Electrochemical control in the biological leaching of sulfidic ores[J]. Biohydrometallurgical Technologies, 1993,32(4):482-499
    [117] Li H.,Qiu G.,Hu Y., et al. Electrochemical behavior of chalcopyrite in presence of Thiobacillus ferrooxidans[J]. Transactions of Nonferrous Metals Society of China, 2006,16(5):1240-1245
    [118]李宏煦,王淀佐.硫化矿细菌浸出过程的电化学(Ⅱ)[J].矿冶, 2003,12(2):45-48
    [119] Shi S.Y.,Fang Z.H.,Ni J.R. Electrochemistry of marmatite - carbon paste electrode in the presence of bacterial strains[J]. Bioelectrochemistry, 2006,68(1):113-118
    [120] Cabral T., Ignatiadis I. Mechanistic study of the pyrite-solution interface during the oxidative bacterial dissolution of pyrite (FeS2) by using electrochemical techniques[J]. International Journal of Mineral Processing, 2001,62(1-4):41-64
    [121] Bevilaqua D.,Diéz-Perez I.,Fugivara C.S., et al. Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy[J]. Bioelectrochemistry, 2004,64(1):79-84
    [122] Bevilaqua D.,Acciari H.A.,Arena F.A., et al. Utilization of electrochemical impedance spectroscopy for monitoring bornite (Cu5FeS4) oxidation by Acidithiobacillus ferrooxidans[J]. Minerals Engineering, 2009,22(3):254-262
    [123] Bevilaqua D.,Diéz-Perez I.,Fugivara C., et al. Characterization of bornite (Cu5FeS4) electrodes in the presence of the bacterium Acidithiobacillus ferrooxidans[J]. Journal of the Brazilian Chemical Society, 2003,14:637-644
    [124] Prodromidis M.,Veltsistas P.,Karayannis M. Electrochemical Study of Chemically Modified and Screen-Printed Graphite Electrodes with [SbVO(CHL)2]Hex. Application for the Selective Determination of Sulfide[J]. Analytical Chemistry, 2000,72(17):3995-4002
    [125] Hojo M., Peters E. Direct Electrorefining of Chalcocite[J]. 5 th AustralianElectrochemistry, 1980:345-364
    [126] Tkacova K., Balaz P. Structural and temperature sensitivity of leaching of chalcopyrite with iron (III) sulphate[J]. Hydrometallurgy, 1988,21(1):103-112
    [127] Dutrizac J. Elemental sulphur formation during the ferric chloride leaching of chalcopyrite[J]. Hydrometallurgy, 1990,23(2):153-176
    [128] Lázaro I.,Martínez-Medina N.,Rodríguez I., et al. The use of carbon paste electrodes with non-conducting binder for the study of minerals: Chalcopyrite[J]. Hydrometallurgy, 1995,38(3):277-287
    [129] Svancara I.,Vytras K.,Barek J., et al. Carbon paste electrodes in modern electroanalysis[J]. Critical Reviews in Analytical Chemistry, 2001,31(4):311-345
    [130] Tong L.-l.,Jiang M.-f.,Yang H.-y., et al. Dynamic corrosion of copper-nickel sulfide by Acidithiobacillus ferrooxidans[J]. Transactions of Nonferrous Metals Society of China, 2009,19(2):438-445
    [131] Zhang Q.B., Hua Y.X. Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid[J]. Electrochimica Acta, 2009,54(6):1881-1887
    [132] Sathiyanarayanan S.,Marikkannu C.,Palaniswamy N. Corrosion inhibition effect of tetramines for mild steel in 1M HCl[J]. Applied Surface Science, 2005,241(3-4):477-484
    [133] Liu C.,Bi Q.,Leyland A., et al. An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrosion behaviour[J]. Corrosion Science, 2003,45(6):1257-1273
    [134] Bentiss F.,Traisnel M.,Lagrenee M. The substituted 1, 3, 4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media[J]. Corrosion Science, 2000,42(1):127-146
    [135] Moretti G.,Guidi F.,Grion G. Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid[J]. Corrosion Science, 2004,46(2):387-403
    [136]闫莹.新型杂环化合物碳钢酸洗缓蚀剂的合成,评价及机理研究[D].青岛:中国科学院海洋研究所, 2007
    [137] Gonzalez Y.,Lafont M.,Pebere N., et al. A corrosion inhibition study of a carbonsteel in neutral chloride solutions by zinc salt/phosphonic acid association[J]. Corrosion Science, 1995,37(11):1823-1837
    [138] Vishnudevan M., Natesan M. Inhibition of corrosion of mild steel in acidic solutions using N-benzyl dimethylamine[J]. Bulletin of Electrochemistry, 2000,16(2):49-53
    [139] Lebrini M.,Lagrenee M.,Vezin H., et al. Electrochemical and quantum chemical studies of new thiadiazole derivatives adsorption on mild steel in normal hydrochloric acid medium[J]. Corrosion Science, 2005,47(2):485-505
    [140] Aytac A., .,Kabasakalo?lu M. Investigation of some Schiff bases as acidic corrosion of alloy AA3102[J]. Materials Chemistry and Physics, 2005,89(1):176-181
    [141] Jayaperumal D.,Subramanian P.,Palaniswamy N., et al. Studies on inhibitors for acidization of oil wells[J]. Bulletin of Electrochemistry, 1995,11:313-313
    [142] Quraishi M.,Ansari F.,Jamal D. Thiourea derivatives as corrosion inhibitors for mild steel in formic acid[J]. Materials Chemistry and Physics, 2003,77(3):687-690
    [143] Giacomelli F.,Giacomelli C.,Amadori M., et al. Inhibitor effect of succinic acid on the corrosion resistance of mild steel: electrochemical, gravimetric and optical microscopic studies[J]. Materials Chemistry and Physics, 2004,83(1):124-128
    [144] Ferreira E.,Giacomelli C.,Giacomelli F., et al. Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel[J]. Materials Chemistry & Physics, 2004,83(1):129-134
    [145] Bouklah M.,Benchat N.,Aouniti A., et al. Effect of the substitution of an oxygen atom by sulphur in a pyridazinic molecule towards inhibition of corrosion of steel in 0.5 M H2SO4 medium[J]. Progress in Organic Coatings, 2004,51(2):118-124
    [146] Bentiss F.,Gassama F.,Barbry D., et al. Enhanced corrosion resistance of mild steel in molar hydrochloric acid solution by 1, 4-bis (2-pyridyl)-5H-pyridazino [4, 5-b] indole: Electrochemical, theoretical and XPS studies[J]. Applied Surface Science, 2006,252(8):2684-2691
    [147] Elkadi L.,Mernari B.,Traisnel M., et al. The inhibition action of 3, 6-bis (2-methoxyphenyl)-1, 2-dihydro-1, 2, 4, 5-tetrazine on the corrosion of mild steel in acidic media[J]. Corrosion Science, 2000,42(4):703-719
    [148] Bentiss F.,Traisnel M.,Gengembre L., et al. A new triazole derivative as inhibitor of the acid corrosion of mild steel: electrochemical studies, weight loss determination, SEM and XPS[J]. Applied Surface Science, 1999,152(3-4):237-249
    [149] Morales-Gil P.,Negron-Silva G.,Romero-Romo M., et al. Corrosion inhibition of pipeline steel grade API 5L X52 immersed in a 1 M H2SO4 aqueous solution using heterocyclic organic molecules[J]. Electrochimica Acta, 2004,49(26):4733-4741
    [150] Shokry H.,Yuasa M.,Sekine I., et al. Corrosion inhibition of mild steel by Schiff base compounds in various aqueous solutions: Part 1[J]. Corrosion Science, 1998,40(12):2173-2186
    [151] Hosseini M.,Mertens S.,Ghorbani M., et al. Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media[J]. Materials Chemistry & Physics, 2003,78(3):800-808
    [152]董俊华,宋光铃.硫酸中硫脲影响铁腐蚀行为的机制[J].中国腐蚀与防护学报, 1996,16(1):53-58
    [153] Lalvani S., Shami M. Passivation of pyrite oxidation with metal cations[J]. Journal of Materials Science, 1987,22(10):3503-3507
    [154] Perdicakis M.,Geoffroy S.,Grosselin N., et al. Application of the scanning reference electrode technique to evidence the corrosion of a natural conducting mineral: pyrite. Inhibiting role of thymol[J]. Electrochimica Acta, 2001,47(1-2):211-216
    [155] A?ai P.,Sorrenti E.,Gorner T., et al. Pyrite passivation by humic acid investigated by inverse liquid chromatography[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009,337(1-3):39-46
    [156]吴攀,刘丛强.矿山环境中(重)金属的释放迁移地球化学及其环境效应[J].矿物学报, 2001,21(002):213-218
    [157] Holmes P.R., Crundwell F.K. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study[J]. Geochimica et Cosmochimica Acta, 2000,64(2):263-274
    [158] Cai M.F.,Dang Z.,Chen Y.W., et al. The passivation of pyrrhotite by surface coating[J]. Chemosphere, 2005,61(5):659-667
    [159] Fowler T., Crundwell F. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions[J]. Applied and Environmental Microbiology, 1999,65(12):5285
    [160] da Silva G. Relative importance of diffusion and reaction control during the bacterial and ferric sulphate leaching of zinc sulphide[J]. Hydrometallurgy, 2004,73(3-4):313-324
    [161] Córdoba E.,Mu oz J.,Blázquez M., et al. Leaching of chalcopyrite with ferric ion. Part I: General aspects[J]. Hydrometallurgy, 2008,93(3-4):81-87
    [162] Córdoba E.,Mu oz J.,Blázquez M., et al. Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential[J]. Hydrometallurgy, 2008,93(3-4):88-96
    [163] Kinnunen P.,Heimala S.,Riekkola-Vanhanen M., et al. Chalcopyrite concentrate leaching with biologically produced ferric sulphate[J]. Bioresource Technology, 2006,97(14):1727-1734
    [164] Jiang L.,Zhou H.,Peng X., et al. Bio-oxidation of galena particles by Acidithiobacillus ferrooxidans[J]. Particuology, 2008,6(2):99-105
    [165] da Silva G. Kinetics and mechanism of the bacterial and ferric sulphate oxidation of galena[J]. Hydrometallurgy, 2004,75(1-4):99-110
    [166] Shi S.Y.,Fang Z.H.,Ni J.R. Electrochemical impedance spectroscopy of marmatite-carbon paste electrode in the presence and absence of Acidithiobacillus ferrooxidans[J]. Electrochemistry Communications, 2005,7(11):1177-1182
    [167] Bevilaqua D.,Diéz-Perez I.,Fugivara C., et al. Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemicalimpedance spectroscopy and atomic force microscopy[J]. Bioelectrochemistry, 2004,64(1):79-84
    [168] Giannetti B.,Bonilla S.,Zinola C., et al. A study of the main oxidation products of natural pyrite by voltammetric and photoelectrochemical responses[J]. Hydrometallurgy, 2001,60(1):41-53
    [169] Sasaki K.,Tsunekawa M.,Ohtsuka T., et al. Confirmation of a sulfur-rich layer on pyrite after oxidative dissolution by Fe(lIl) ions around pH2[J]. Geochimica et Cosmochimica Acta, 1995,59(15):3155-3158
    [170] Hiskey J., Pritzker M. Electrochemical behavior of pyrite in sulfuric acid solutions containing silver ions[J]. Journal of Applied Electrochemistry, 1988,18(3):484-490
    [171] Holmes P., Crundwell F. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study[J]. Geochimica et Cosmochimica Acta, 2000,64(2):263-274
    [172] Janzen M.,Nicholson R.,Scharer J. Pyrrhotite reaction kinetics: Reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution[J]. Geochimica et Cosmochimica Acta, 2000,64(9):1511-1522
    [173] Arkesteyn G. Pyrite oxidation in acid sulphate soils: The role of miroorganisms[J]. Plant and Soil, 1980,54(1):119-134
    [174] Nicholson R.,Gillham R.,Reardon E. Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings[J]. Geochimica et Cosmochimica Acta, 1990,54:395-402
    [175] Bevilaqua D.,Leite A.L.L.C.,Garcia O., et al. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks[J]. Process Biochemistry, 2002,38(4):587-592
    [176]张哲.金属硫化物矿山尾矿生物氧化的抑制研究-以广东大宝山多金属硫化物矿山为例[D].广州:华南理工大学, 2010
    [177] Silverman M.P., Lundgren D.G. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. An improved medium and a harvesting procedure for securing high cell yields[J]. Journal of Bacteriology, 1959,77(5):642
    [178] Boon M., Heijnen J. Solid-liquid mass transfer limitation of ferrous iron in the chemical oxidation of FeS2 at high redox potential[J]. Hydrometallurgy, 2001,62(1):57-66
    [179] Boon M.,Luyben K.C.A.M.,Heijnen J. The use of on-line off-gas analyses and stoichiometry in the bio-oxidation kinetics of sulphide minerals[J]. Hydrometallurgy, 1998,48(1):1-26
    [180]朱长见,陆建军,陆现彩,等.氧化亚铁硫杆菌作用下形成的黄钾铁矾的SEM研究[J].高校地质学报, 2005,11(002):234-238
    [181]王长秋,马生凤,鲁安怀,等.黄钾铁矾的形成条件研究及其环境意义[J].岩石矿物学杂志, 2005,24(006):607-611
    [182] Nicol M.J., Lázaro I. The role of EH measurements in the interpretation of the kinetics and mechanisms of the oxidation and leaching of sulphide minerals[J]. Hydrometallurgy, 2002,63(1):15-22
    [183] Mustin C.,Berthelin J.,Marion P., et al. Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans[J]. Applied and Environmental Microbiology, 1992,58(4):1175
    [184] Sasaki K.,Tsunekawa M.,Ohtsuka T., et al. Confirmation of a sulfur-rich layer on pyrite after oxidative dissolution by Fe (lIl) ions around pH2[J]. Geochimica et Cosmochimica Acta, 1995,59(15):3155-3158
    [185] Boulton A.,Fornasiero D.,Ralston J. Characterisation of sphalerite and pyrite flotation samples by XPS and ToF-SIMS[J]. International Journal of Mineral Processing, 2003,70(1-4):205-219
    [186] Naveau A.,Monteil-Rivera F.,Guillon E., et al. XPS and XAS studies of copper (II) sorbed onto a synthetic pyrite surface[J]. Journal of colloid and interface science, 2006,303(1):25-31
    [187] Pratt A.,Muir I.,Nesbitt H. X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation[J]. Geochimica et Cosmochimica Acta, 1994,58(2):827-841
    [188] Fairthorne G.,Fornasiero D.,Ralston J. Effect of oxidation on the collectorless flotation of chalcopyrite[J]. International Journal of Mineral Processing,1997,49(1-2):31-48
    [189] Laajalehto K.,Leppinen J.,Kartio I., et al. XPS and FTIR study of the influence of electrode potential on activation of pyrite by copper or lead[J]. Colloids and surfaces A: Physicochemical and engineering Aspects, 1999,154(1-2):193-199
    [190] Murphy R., Strongin D. Surface reactivity of pyrite and related sulfides[J]. Surface Science Reports, 2009,64(1):1-45
    [191] Bennett J., Tributsch H. Bacterial leaching patterns on pyrite crystal surfaces[J]. Journal of Bacteriology, 1978,134(1):310
    [192] Lowson R. Aqueous oxidation of pyrite by molecular oxygen[J]. Chemical Reviews, 1982,82(5):461-497
    [193] Edwards K.J.,Schrenk M.O.,Hamers R., et al. Microbial oxidation of pyrite: experiments using microorganisms from an extreme acidic environment[J]. American Mineralogist, 1998,83:1444-1453
    [194] Sobek A.,Rastogi V.,Benedetti D. Prevention of water pollution problems in mining: The bactericide technology[J]. Mine Water and the Environment, 1990,9(1):133-148
    [195] Nicholson R.V.,Gillham R.W.,Cherry J.A., et al. Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers[J]. Canadian Geotechnical Journal, 1989,26(1):1-8
    [196] Evngelou H.V.P. Iron phosphate coating: A novel approach to controlling pyrite oxidation[J]. Pedosphere, 1997,7(2):103-110
    [197] Vandiviere M., Evangelou V. Comparative testing between conventional and microencapsulation approaches in controlling pyrite oxidation[J]. Journal of Geochemical Exploration, 1998,64(1-3):161-176
    [198]兰叶青,黄骁,周钢,等.柱子淋洗模拟研究磷酸铁膜抑制黄铁矿氧化效果[J].地球化学, 2000,29(5):126-128
    [199] Nyavor K., Egiebor N.O. Control of pyrite oxidation by phosphate coating[J]. Science of the Total Environment, 1995,162(2-3):225-237
    [200] Zhang Y., Evangelou V. Formation of Ferric Hydroxide-Silica Coatings on Pyrite and Its Oxidation Behavior[J]. Soil Science, 1998,163(1):53
    [201] Lalvani S.B.,DeNeve B.A.,Weston A. Passivation of pyrite due to surface treatment[J]. Fuel, 1990,69(12):1567-1569
    [202] Lalvani S.,Deneve B.,Weston A. Prevention of pyrite dissolution in acidic media[J]. Corrosion, 1991,47(1):55-61
    [203] Chen Y.W.,Li Y.,Cai M.F., et al. Preventing oxidation of iron sulfide minerals by polyethylene polyamines[J]. Minerals Engineering, 2006,19(1):19-27
    [204] Shi S.Y.,Fang Z.H.,Ni J.R. Comparative study on the bioleaching of zinc sulphides[J]. Process Biochemistry, 2006,41(2):438-446
    [205] Zhang X.L.,Jiang Z.H.,Yao Z.P., et al. Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density[J]. Corrosion Science, 2009,51(3):581-587

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700