用户名: 密码: 验证码:
陕西黄土高原固氮植物沙棘根际微生物多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探索黄土高原地区非豆科固氮植物沙棘(Hippophae rhamnoides)根际促生菌在促进植被恢复和生态系统重建过程中的作用,以陕西关中地区结瘤沙棘根际土壤和根瘤为研究材料,通过对其微生物种群结构与土壤肥力之间关系的检测,以及根际氢氧化细菌、弗兰克氏菌(Frankia)和VA菌根(Vesicular-Avbuscular mycorrhiza)真菌多样性的研究,了解非豆科植物根际氢氧化细菌的种属分布情况,丰富现有关于氢氧化细菌分类的研究,并探索沙棘根际多种微生物联合促生的关系和机制。主要实验内容和结果如下:
     本实验采用气体循环体系,电解水产生微量H2处理根际土壤,结果显示处理后的土壤中微生物种群结构发生改变,细菌和放线菌数量增加,其中氢氧化细菌数量显著增加,而真菌数量却有所减少;处理后土壤中微生物呼吸作用强度以及土壤酶的活性均有不同程度的提高,土壤有机质含量增加,植物激素类物质增多,说明H2处理后土壤的肥力有所提高。
     采用持续通H2的气体循环培养体系和矿质盐(MSA)培养基分离出59株细菌。通过TTC试验、气相色谱法测定氧化H2能力以及自养生长检测,筛选出12株含氢化酶且氧化H2能力较强的菌株,初步确定为氢氧化细菌,其中菌株FS2的的氧化H2能力可达35.43μmol/L。根据菌株的形态特征、培养特征和生理生化特征,初步将这12株菌分属于芽孢杆菌属(Bacillus)、气单胞菌属(Aeromonas)、假单胞菌属(Pseudomonas)、微球菌属(Micrococcus)、黄单胞菌属(Xanthomonas)、短状杆菌属(Brachybacterium)、诺卡氏菌属(Nocardia)和脂肪杆菌属(Pimelobacter)。菌株FS2的16S rRNA基因序列(GenBank登录号为GU084156)与芽孢杆菌属同源性为99%,在系统发育树上位于同一分支,进一步将菌株FS2归为芽孢杆菌属(Bacillus)。
     利用薄层层析的方法筛选出2株具有ACC脱氨酶的菌株FS2和WS4,并检测了对两株菌ACC脱氨酶活性的影响因素。结果表明两株菌在培养24h时可分解近90%的ACC,最适温度为30-35℃,最适pH为7-7.5。
     从沙棘根瘤中分离出3株内生菌SY1,SY2,SY3,其属于慢生长型放线菌,在BAP液体培养基中形成颗粒状或絮状沉淀;在光学显微镜下,菌丝有分枝且粗细不一,无氮培养基诱导可产生泡囊,这些特征均符合弗兰克氏菌的一般性质,可将3株内生菌初步断定为弗兰克氏菌。通过对3株内生菌的生物学特性研究发现,菌株SY1和SY2为生理A型,菌株SY 3为生理AB型,利用较好的碳源是葡萄糖和Tween-80,利用较好的氮源是硫酸铵和硝酸钾。
     利用酸性品红对沙棘根段染色,结果可见3批样品沙棘根系都有VA菌根(Vesicular-Avbuscular mycorrhiza)真菌侵染,侵染率分别为55.6%,72%,65%。采用湿筛倾析法从沙棘根际土壤鉴定出2属7种VA菌根真菌,包括球囊霉属(Glomus)6种:缩球囊霉(Glomus constrictum Trappe)、近明球囊霉(Glomus claroideum Schenck & Smith)、根内球囊霉(Glomus intraradices Schenck & Smith)、地球囊霉(Glomus geosporum Walker)、透光球囊霉(Glomus diaphanum Marton & walker)、网状球囊霉,(Glomus reticulatum Bhattacharjee & Mukerji);巨囊霉属(Gigaspora)1种:巨大巨孢囊霉(Gigaspora gigantean Gerd.Trappe)。
In order to explore the role of non-leguminous nitrogen fixing plant Hippophae rhamnoides'growth-promoting rhizobacteria in promoting vegetation restoration and ecosystem reconstruction in Loess Plateau, the soil and root nodule in Hippophae rhamnoides rhizosphere in Shaanxi province was used to detect the relationship between microbial population structure and soil fertility and to study the diversity of hydrogen-oxidizing bacteria, Frankia and Vesicular-Avbuscular mycorrhiza fungi. According to the analysis of the result of above experiments, we can realize the generic distribution of hydrogen-oxidizing bacteria, enrich the existing research about sort of hydrogen-oxidizing bacteria and explore the relationship and mechanism of polymicrobic growth-promoting in Hippophae rhamnoides rhizosphere. The main experimental content and results were as follows:
     We used gas cycle incubation system to treated rhizosphere soils with H2 produced by water electrolysis. The result showed that the microbial population structure of the soil treated with H2 had changed:the number of bacteria and actinomyces had increased,and the number of hydrogen-oxidizing bacteria had increased significantly, but the number of fungi had declined. The microbes'respiration intensity and activity of soil enzyme in soil treated by H2 had enhanced to varying degrees; organic matter content of soil and planthormones in soil had grown in number, which explained that the soil fertility had enhanced with the treatment of H2.
     Fifty nine bacterial strains were isolated by gas-cycle incubation system and MSA medium. Twelve strains among them which contained hydrogenase and had strong ability to oxidize hydrogen was selected by TTC test, gas chromatograph and autotrophic gowth detection, suggesting that they might be hydrogen-oxidizing bacteria initially. Hydrogen-oxidizing ability of strain FS2 was about 35.430μmol/L.Based on their morphological, cultural,and physiological and biochemical characteristics, these 12 strains were identified as members of genera Bacillus, Aeromonas, Pseudomonas, Micrococcus, Xanthomonas, Brachybacterium, Nocardia and Pimelobacter,respectively. The 16S rRNA gene sequence analysis suggested that strain FS2 (GenBank accession number GU084156) was clustered together with Bacillus in phylogenetic tree, with sequence similarity more than 99%.
     We used thin layer chromatography to find out that strain FS2 and WS4 could consum-ed ACC and contained ACC deaminase.Then we detectd the influence factors about the activity of the ACC deaminase. The result showed that the two strains could decompose nearly 90% ACC in 24h and the optimal temperature was 30-35℃and the optimal pH was7.0-7.5.
     Three endophyte strains SY1, SY2 and SY3 were isolated from root nodule of Hippophae rhamnoides,.They belonged to slow-growing actinomyces and formed flocculent or granular precipitate in the BAP liquid medium; their hyphae was filamentous with different diameters under microscope and could produce vesicle when growing in the nitrogen-free medium. Above characteristics was in line with general characteristics of Frankia, therefore the 3 strains could be identified as a member of Frankia preliminarily. The study of 3 Endophyte's biological property showed that strain SY1 and SY2 were divided into physiological group A and strain SY3 was divided into physiological group AB.Their optimal carbon sources were tween-80 and glucose, and optimal nitrogen sources were ammonium sulfate and nitre.
     Acid fuchsin was used to dye root segment of Hippophae rhamnoides and the result showed that the Hippophae rhamnoides root system was infected by Vesicular-Avbuscular mycorrhiza fungi and the infecting rate were 55.6%,72% and 65%, respectively. SevenVA fungi species belonging to 2 genus were isolated and identified by sieving and deeanting proeedure from Hippophae rhamnoides rhizosphere soil.Six species were belonged to genus Glomus, including Glomus claroideum, Glomus consrictum, Glomus intraradices, Glomus geosporum, Glomus diaphanum and Glomus reticulatum,and Gigaspora gigantean was belonged to genus Gigaspora.
引文
[1]李坤,都桂芳,张秀荣.浅议沙棘属植物的起源与演化[J].沙棘,1994,7(3):1-3
    [2]徐铭渔,孙小萱,童文新.沙棘的医药研究和开发[J].沙棘,1994,7(1):32-40
    [3]弓明钦,陈应龙,仲崇禄.菌根研究及应用[M].北京:中国林业出版社,1997
    [4]陈文新,李阜隶.我国土壤微生物学和生物固氮研究的回顾和展望[J].世界科技研究与发展,2003,24(4):6-12
    [5]杨海君,肖启明,刘安元.土壤微生物多样性及其作用研究进展[J].南华大学学报(自然科学版),2005,19(4):21-26,31
    [6]黄艳霞.土壤微生物多样性分析技术研究进展[J].安徽农业科学,2009,37(32):15924-15925,15943
    [7]王卫卫,胡正海.几种生态因素对西北干旱地区豆科植物结瘤固氮的影响[J].西北植物学报,2003,23(7):1163-1168
    [8]王卫卫,胡正海,关桂兰,等.甘肃、宁夏部分地区根瘤菌资源及其共生固氮特性[J].自然资源学报,2002,27(1):48-54
    [9]王卫卫,胡正海.阿拉善荒漠区豆科植物共生固氮资源初步研究[J].水土保持通报,2001,21(5):30-33
    [10]VanArles I.M.. Growth and Interaction of arbuscularmycorrhizal fungi in soils from limestone and acid rock [J]. Geomicrobiology,1991,9:1-11
    [11]Amaral J.R., Knowles R.. Atmosphericmethane consumption by forestsoils and extraction bacteria atdifferentpH value [J]. Applenviron Microbiol,1998,64:2397-2402
    [12]Kumar J.D. Sharma G.D., Mishra P.R.. Soil microbial population numbers and enzyme activities in relation to altitude and forest degradation [J]. Soil Bio Biochem,1992,24:761-767
    [13]Anna K.B., Richard P.D.. Field management effects on soil enzyme activities [J]. Soil Bio Biochem, 1999,31:1471-1479
    [14]单敏.毒百蜱、百菌清、丁草胺对土壤微生物和土壤酶的影响[D].杭州:浙江大学,2006
    [15]Wang X.B., Xin J.F., Grant C.A., et al. Effects of placement of urea with a urease inhibitor on seeding emergence, N uptake and dry matter yield of wheat [J]. Canadian Journal of Plant Science,1995,75: 449-452
    [16]何念祖.浙江省几种水稻土的酶活性及其与土壤肥力的关系[J].浙江农业大学学报,1986,12(1): 43-47
    [17]祝惠.DEP和DOP对土壤酶、土壤呼吸及土壤微生物量碳的影响[D].长春:东北师范大学,2008
    [18]李军.黑土酶的活性与施肥和产量相关性分析[J].土壤通报,986,(6):280-282
    [19]刘凯.有机-无机肥配合施用对土壤酶活性的影响[A].全国土壤酶研究文集[C].沈阳:辽宁科学技术出版社,1988:130-135
    [20]万忠梅.土壤酶活性因子研究进展[J].西北农林科技大学学报,2005,33(6):87-90
    [21]张咏梅.土壤酶学研究进展[J].热带亚热带植物学学报,2004,12(1):83-90
    [22]郭继勋,姜世成,林海俊,等.不同草原植被碱化草甸土的酶活性[J].应用生态学报,1997,8(4):412-416
    [23]关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986:274-340
    [24]和文祥.土壤酶与重金属关系的现状[J].土壤与环境,2000,9(2):139-142
    [25]李永红,高玉葆.单嘧磺隆对土壤呼吸脱氢酶和转化酶活性的影响[J].农业环境科学学报,2005,24(6):1176-1181
    [26]Zelles L., Bahig M.E.. Measurement of bioactivity based on CO2-release and ATP content in soil after different treatments [J]. Chemosphere,1984,13(8):899-913
    [27]Brown M.E.. Seed and root bacterization.Annual [J]. Review of Phytopathology,1974,12:181-197
    [28]Shafiq H., Mirza M.S., Malik K.A.. Production of phytohormones by the nitrogen fixation bacteria isloated from sugarcane [J]. Biohorizons,1999,2(1-4):61-76
    [29]康贻军,程洁,梅丽娟,等.植物根际促生菌作用机制研究进展[J].应用生态学报,2010,21(1):232-238
    [30]Robertson L.A.. Bacteria from the Beijerinck collection [J]. Trends inMicrobiology,1998,6:353
    [31]胡江春,薛德林,马成新,等.植物根际促生菌(PGPR)的研究与应用前景[J].应用生态学报,2004,15(10):1963-1966
    [32]赵秉强,张福锁,廖宗文,等.我国新型肥料发展战略研究[J].植物营养与肥料学报,2004,10(5):536-545
    [33]Tandon H.L.S.. Fertilizers,organic manures, recyclable wastes and bio-fertilizers [M]. New Delhi (India):Fertilizer Development and Consulation Organization,1992
    [34]Hafeez F.Y., Yasmin S., Ariani D., et al. Plant growth-promoting bacteria as biofertilizer [J]. Agrono-my Sustainable Development,2006,26:143-150
    [35]Suneja P., Dudeja S. S., Narula N.. Development of multiple co-inoculants of different biofertilizers and their interaction with plants [J]. Archives of Agronomy and Soil Science,2007,53(2):221-230
    [36]Esitken A., Pirlak L., Turan M., et al. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry [J]. Scientia Horticulturae,2006,110: 324-327
    [37]Kloepper J.W., Lifshita R., Zablotowica R.M.. Free-living bacterial inoculation for enhancing crop productivity [J]. Trends in Biotech,1998,7:39-43
    [38]Backer J.O., Cook R.J.. Role of siderophores in suppression of phythiumspecies and production of increased-growth response of wheat by fluorecent pseudomonads [J]. Phytopathology,1998,78:778-782
    [39]梁建根,张炳欣,喻景权,等.植物根围促生细菌(PGPR)对黄瓜生长及生理生化特性的影响[J].浙江大学学报,2007,33(2):202-206
    [40]龙伟文,王平,冯新梅.PGPR与AMF相互关系的研究进展[J].应用生态学报,2000,11(2):311-314
    [41]Glick B.R, Patten C.L., Holguingdm, et al. Biochemical and genetic mechanisms used by plant growth-promotingbacteria [M]. London:Imperial College Press,1999
    [42]吉云秀,黄晓东.植物促生菌对燕麦出生苗盐分胁迫下的促生效应[J].大连海事大学学报,2007,33(3):86-89
    [43]Penrose D.M., Glick B.R.. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria [J]. Physiol Plant,2003,118:10-15
    [44]Glick B.R.. Biochemical and genetic mechanisms used by plant growth-promoting bacteria [M]. London:Imperial College Press,1999
    [45]Hontzeas N., Zoidakis J., Glick B.R., et al. Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas Putida UW4:a key enzyme in bacterial plant growth promotion [J]. Biochimica et Biophysica Acta,2004, (1703):11-19
    [46]Jacobson C.B., Pastemak J.J., Glick B.. Partial purification and characterization of the enzyme ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR 12-2 [J]. Canadian Journal of Chemistry,1994,40(2):1019-1025
    [47]Honma M., Shimomura T.. Metabolism of 1-aminocyclopropance-1-carboxylic acid [J]. Agric Biol Chem,1978,42:1825-1831
    [48]Shah S., Li J., Moffatt B.A., et al. Isolation and characterization of ACC deaminase genes from two different plant grow-promoting rhizobacteria [J]. Can J Microbiol,1998,44:833-843
    [49]Belimov A.A., Hontzeas N., Safronova V.I., et al. Cadmium-tolerant plant growth promoting bacteria associated with the roots of Indian mustard [J]. Soil Biol Biochem,2005,37:241-250'
    [50]夏铁骑.植物根际促生菌及其应用研究[J].济源职业技术学院学报,2008,7(3):7-11
    [51]陈绍兴.假单胞菌SPF-1产铁载体条件及其铁载体性质研究[D].武汉:武汉大学,2005
    [52]杨海莲,孙晓璐,宋未.植物促生细菌诱导水稻对白叶枯病抗性的初步研究[J].植物病理学报,1999,29(3):286-287
    [53]姚拓.促进植物生长菌的研究进展[J].草原与草坪,2002,(4):3-5
    [54]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥力,2001,3:7-11
    [55]Hamdali H., Ouhdouch Y.. Rock phosphate-solubilizing Actinomycetes:Screening for plant growth-promoting activities [J]. World J Microbiol Biotechnol,2008,24:2565-2575
    [56]粱绍芬,姜瑞波.解磷微生物肥料的作用和应用[J].土壤肥料,1994,2:46-48
    [57]尹瑞龄.旱地土壤的溶磷微生物[J].土壤,1988,20(5):243-246
    [58]冯瑞章,冯月红,姚拓,等.春小麦和苜蓿根际溶磷菌筛选及其溶磷能力测定[J].甘肃农业大学学报,2005,5:23-25
    [59]Weller D.M.. Colonization of wheat roots by a fluorescent pseudomonad on suppressive to take-all [J]. Phytopathology,1983,(73):1548-1553
    [60]Pierson L.S., Gaffney T., Lam S., et al. Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomona aureofaciens 30-84 [J]. FEMS Microbiol Lett,1995, (134): 299-307
    [61]Hart T.D.. Transaction of 15th world congress of soil science Acapulco [M]. Mexico,1994
    [62]Fyson A., Oaks A.. Growth promotion of maize by leguminous soils [J]. Plant and Soil,1990,122: 259-266
    [63]Dong Z., Layzell D.B. H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soils [J]. Plant and Soil,2001,229:1-12
    [64]Mclearn N., Dong Z.. Microbial nature of the hydrogen-oxidizing agent in hydrogen treated soil [J]. Biology and Fertility of Soils,2002,35:465-469
    [65]Dong Z., Wu L., Kettlewell B.C., et al. Hydrogen fertilization of soils-is this a benefit of legumes in rotation? [J]. Plant, Cell and Enviroment,2003,26:1875-1879
    [66]Bae S., Kwak K., Kim S., et al. Isolation and Characterization of CO2-Fixing Hydrogen-Oxidizing Marine Bacteria [J]. Journal of bioscience and bioengineering,2001,91(5):442-448
    [67]Irvine P., Smith M., Dong Z. Hydrogen fertilizer:bacteria or fung? [A]. Vavrina C.S.eds. Transplant Production and Stand Establishment [C]. Halifax:CIDA Publishing,2004:239-242
    [68]Dong Z., Layzell D.B. Why do legume nodules evolve hydrogen gas? [A]. Finan T.M., O'Brian M.R., Layzell D.B., et al, eds. Nitrogen Fixation:Global Perspectives [C]. NewYork:CABI Publishing,2002: 331-335
    [69]沈萍.微生物学[M].北京:高等教育出版社,2000:114-115
    [70]陈兴都.大豆根际氢氧化细菌的分离及特性研究[D].西安:西北大学,2007
    [71]林美珍,张吉科,张国伟,等.论沙棘根系与功能Ⅲ——共生固氮机理、条件与初级氮代谢[J].沙棘,2006,19(3):7-14
    [72]Dixon R.O.D.. Hydrogenase in legume root nodule bacteriods [J]. Areh.Mierobiology,1968,62: 272-283
    [73]Lafavre J.S., Focht D.D..Conservationin in soil of H2 liberated from N2 fixation by HUP-nodules [J]. Applied and Envlronmental Mierobiology,1983,13:304-311
    [74]王卫卫,关桂兰,杨玉锁.河西走廊豆科植物结瘤固氮特性研究[J].西北植物学报,1997,17(4):450-457
    [75]关桂兰,王卫卫,杨玉锁.新疆干旱地区固氮生物资源[M].北京:科学出版社,1991:89-123
    [76]Conrad R., Seiler W.. Field measurements of hydrogen evolution by nitrogen-fixation legumes [J]. Soil Biology,1979,11:689-690
    [77]Conrad R., Seiler W..The role of hydrogen bacteria during the decomposition of hydrogen by soil [J]. FEMS Microbiology. Let,1979,6:143-145
    [78]付博,王卫卫,郝莹,等.紫花苜蓿根际氢氧化细菌的分离与鉴定[J].应用与环境生物学报,2009,15(5):650-654
    [79]Bowien B., Schlegel S.G.. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria [J]. Ann Rev Microbiol,1981,35:405-452
    [80]Savelieva N.D., Zhilina T.N., Taxonomy of hydrogen bacteria [J]. Mikrobiologiya,1968,37:84-91
    [81]Meyer O., Schlegel H.G.. Reisolation of the carbon monoxide utilizing hydrogen bacterium pseudomonas carboxydovorans [J]. Archives of Microbiology,1978,118:35-43
    [82]付博.紫花首蓓根际氢氧化细菌的分离鉴定及促生机制研究[D].西安:西北大学,2009
    [83]晋坤贞,殷红,严宜昌.中国沙棘根瘤内生菌的观察和根瘤结构与发育的研究[J].西北大学学报(自然科学版),1995,25(2):155-156
    [84]刘洪章,齐洁,李玉.沙棘根系分布及根瘤研究[J].吉林农业大学学报,2005,27(6):631-633, 638
    [85]赵丽辉,朱筱娟,路红.沙棘根瘤的解剖学研究[J].吉林农业大学学报,2001,23(3):58-60,68
    [86]曲东明,王双,韩善华.沙棘共生固氮根瘤及其内生弗兰克氏菌[J].西北植物学报,1998,18(1):60-65
    [87]周志宏,石彦林,刘志恒.弗兰克氏菌的分类研究进展[J].微生物学通报,1997,24(1):41-43
    [88]Beeking J.H.. Frankiaceae fam.nov.(Aetinomyeetales)with one new combination and six new species of the genus Frankia Brunehorst 1886,174 [J]. Int J Syst Baeteriol,1970,20:201-220
    [89]李志真.福建弗兰克氏菌(Frankia)研究[D].福州:福建农林大学,2002
    [90]Mohapatra A., Leul M., Mattsson U., et al. A hydrogen-evolving enzyme is present in Frankia sp R43[J]. FEMS Microbiology Letters,2004,236 (2):235-240
    [91]Maimaiti J., Zhang Y., Yang J., et al. Isolation and characterization of hydrogen-oxidizing baeteria indueed following exposure of soli to hydrogen gas and their Impact on plant growth [J]. Environmental Microbiology,2007,9(2):435-444
    [92]Madigan M.T., Martink J.M., Paker J..微生物生物学[M].杨文博译.北京:科学出版社,2001
    [93]陈启锋,李志真,黄群策.弗兰克氏菌的研究进展与前景[J].福建农业大学学报,1998,27(4):385-392
    [94]张勇,仲崇禄,陈羽,等.木麻黄共生菌的研究进展[J].广东林业科技,2006,22(1):70-75
    [95]何新华,陈力耕,柴春燕,等.杨梅根瘤Frankia菌的分离和培养特性研究[J].浙江大学学报(农业与生命科学版),2003,29(6):609-613
    [96]谢一青.一株弗兰克氏菌的分离培养基特性研究[J].微生物学通报,2004,31(5):9-13
    [97]吕梅.两种桤木的繁殖与弗兰克氏菌的分离培养与回接研究[D].南京:南京林业大学,2005
    [98]李根前.沙棘的生物学与生态学特性[J].西北植物学报,2000,20(5):892-897
    [99]易时来,温明霞.VA茵根改善植物磷素营养的研究进展[J].中国农学通报,2004,(5):164-166
    [100]刘润进,李晓林.丛枝菌根及其应用[M].北京:科学出版社,2000
    [101]何兴元,吴清风,韩桂云,等.沙棘与微生物联合共生体的初步研究[J].应用生态学报,2001,12(6):876-878
    [102]Gerdman J.W., Nicolson T.H.. Spores of mycorrhizal Endgone species extracted from soil by wet sievingand decating [J]. Trans Brith Mycol Soc,1963,46:235-244
    [103]叶文雨.豫西黄土高原主要造林树种菌根研究[D].杨凌:西北农林科技大学,2006
    [104]Unger F.. Beitrage Zur Kenntniess der parasitischen pflanze.Anatomisch-phyciologische Theli. (Contribution to knowledge of parasitic plants, Anatomical-physciological part)Ann [J]. Wien. Mus. Nalurg-eschichte,1840,2:13-60
    [105]迪丽努尔.新疆伊犁地区VA菌根真菌资源、分布及抗旱性研究[D].杨凌:西北农林科技大学,2006
    [106]李瑞雪,薛泉宏,杨淑英,等.黄土高原沙棘、刺槐人工林对土壤的培肥效应及其模型[J].土壤侵蚀与水土保持学报,1998,4(1):14-21
    [107]Benson D.R., silvester W.B.. Biology of Frankia strains, actinomycete symbionts of actinorhizal plant [J]. Microbiol.Rev,1993,57:293-319
    [108]贺露红,王冬梅.不同施肥水平下VA菌根对沙棘改土效应的影响[J].国际沙棘研究与开发,2007,5(1):11-16
    [109]沈萍,范秀容,李广武.微生物学实验[M].第三版.北京:高等教育出版社,2003
    [110]刘萍,李明军.植物生理学实验技术[M].北京:科学出版社,2007:103
    [111]陈兴都,王卫卫,郭利伟,等.大豆根际土壤中氢氧化细菌的分离、筛选和基本特征[J].应用生态学报,2007,18(9):2069-2074
    [112]Friedrich B.. Molecular genetic basis of hydrogen utilization in aerobic chemolithotrophs[J]. Annual Review of Microbiology,1993,47:351-383
    [113]Kluber H.D., Lechner S., Conad R.. Characterization of populations of aerobic hydrogen-oxidizing soil bacteria [J]. FENS Microbiology Ecology,1995,16:167-176
    [114]白俊,任军,王均,等.离心过滤法提取外切体的实验研究[J].第四军医大学学报,2004,25(10):890-892
    [115]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    [116]Buchannan R.E., GibbonrN.E..伯杰细菌鉴定手册[M].第8版.中国科学院微生物研究所翻译组译.北京:科学出版社,1984
    [117]萨姆布鲁克J.,拉塞尔D.W.分子克隆指南(上册)[M].第3版.黄培堂译.北京:科学出版社,2002:27-30
    [118]吴凡,李传荣,崔萍.不同肥力条件下的桑树根际微生物种群分析[J].生态学报,2008,28(6):2674-2681
    [1 19]陈伟,姜中武,胡艳丽,等.苹果园土壤微生物生态特征研究[J].水土保持学报,2008,22(3):168-171
    [120]龙健,李娟,江新荣,等.贵州茂兰喀斯特森林土壤微生物活性的研究[J].土壤学报,2004, 41(4):597-602
    [121]Li L., Li S.M., Sun J.H.. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils [J]. PNAS,2007,3(104):11192-11196
    [122]孟颂东,关桂兰,王卫平.根际微生物产生的植物激素对小麦生长的作用[J].植物生理学通讯,1998,36(6):427-429
    [123]古丽努尔.艾合买提,杨新平,季青.微生物代谢产物中植物激素的分析测定[J].新疆农业科学,1998,2:81-82
    [124]Foster J.F., Litchfield J.H.. A continuous culture apparatus for the microbial utilization of hydrogen produced by electrolysis of water in closed-cycle space [J]. Biotechnology and Bioengineering,1964,6: 441-456
    [125]Litchfield J.H.. The mass cultivation of Hydrogenomonas eutropha in submerged culture [J]. Developments in Industrial Microbiology,1971,13:317-331
    [126]Schlegel H.G.. From electricity via water electrolysis to food [A]. Perlman D. eds. Fermentation advances[C]. New York:Academic Press,1969:807-832
    [127]Repaske R., Mayer R.. Dense autotrophic cultures of Alcaligenes eutrophus [J]. Applied and Environmental Microbiology,1976,32:592-597
    [128]付博,王卫卫,唐明,等.一株产1-氨基环丙烷-1-羧酸脱氨酶的氢氧化细菌的分离鉴定及酶活力测定[J].微生物学报,2009,49(3):395-399
    [129]Klee H.J., Hayford M.B., Kretzmer K.A., et al. Control of ethylene synthesis by expression of bacterial enzyme in transgenic tomato plants [J]. Plant Cell,1991,3:1187-1193
    [130]Jia Y.J., Ito H., Matsui H., et al.1-Aminocyclopropane-l-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated in Penicillium citrinum intracellular spaces[J]. Bioscience, Biotechnology, and Biochemistry,2000,64(2):299-305
    [131]陈兴都,王卫卫,付博,等.大豆根际土壤中氢氧化细菌促生效应研究[J].西北植物学报,2008.28(1):136-140
    [132]李志真.福建省放线菌结瘤植物共生菌Frankia遗传多样性研究[J].微生物学报.,2008,48(11):1432-1438
    [133]唐明,薛萐,杨慧平.甘肃几种旱生植物VA菌根真菌研究[J].云南农业大学学报,2004,12(6):638-642
    [134]林清洪,曾新萍,章宁.福建省主要非豆科固氮树木VA菌根真菌鉴定福建林学院学报[J]. 2003,23(3):270-273
    [135]冀春花,张淑彬,盖京苹,等.西北干旱区AM真菌多样性研究[J].生物多样性,2007,15(1):77-83
    [136]孙芬.鄂尔多斯地区丛枝菌根植物与菌根真菌多样性研究[D].呼和浩特:内蒙古大学,2006
    [137]张万红,唐明.中国北方VA菌根真菌资源[J].西北林学院学报,2006,21(2):121-125
    [138]蒋敏,闫伟,白淑兰.内蒙古西部区3种乡土荒漠植物VA菌根真菌资源初探[J].微生物学杂志,2009,29(4):99-102
    [139]吴清风,田春杰,何兴元.非豆科固氮树种-沙棘与微生物联合共生体的纯培养研究[J].生态学杂志,2002,21(2):22-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700