用户名: 密码: 验证码:
水稻土细菌和氨氧化细菌的RFLP分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌在生态系统的能量转化和食物链中既是初级生产者又是分解者,细菌的多样性在农业生态系统中又具有各种不同的功能。氮是植物生长所必需的营养元素,是土壤生产力的重要限制性因素。硝化作用中第一步反应NH_4~+一NO_2~-由氨氧化细菌(AOB)完成,是硝化过程的限速步骤。
     水稻是人类赖以生存的粮食作物,水稻根际是一个特殊的生态环境,水稻根际微生物对于水稻的生产、土壤结构与肥力维持,以及在营养元素的流动过程中起着重要的作用。通过对水稻根际土细菌和氨氧化细菌多样性的研究,阐明根际土壤环境与细菌及氨氧化细菌群落结构之间的相互关系,可以加深人们对植物-土壤-微生物相互关系的理解和认识,对提高作物产量、保护环境等方面具有重要的意义。
     本试验以陕西省武功县大田苗期水稻鲜土为研究对象,通过直接法提取根际水稻土和非根际水稻土微生物总DNA。采用细菌16S rDNA通用引物对(63F/1387R)和氨氧化细菌16S rDNA特异性引物(Eub338和Nso1225)分别对细菌及氨氧化细菌16S rDNA进行PCR扩增,将扩增片段与pMD19-T载体连接后转入大肠杆菌JM109中,通过蓝白斑筛选挑取阳性克隆子,分别建立水稻根际土和非根际土细菌、水稻根际土和非根际土氨氧化细菌等4个16S rDNA克隆文库。通过菌落PCR方法,从4个文库中分别随机挑取约150个阳性克隆,以pMD19-T载体通用引物M13重新扩增插入的16S rDNA片段,进行克隆文库的菌落PCR,将纯化后的菌落PCR产物分别用Hha I和Rsa I两种限制性内切酶水解,进行RFLP分型分析。
     利用α多样性的测度分析RFLP的结果,聚类分析以细菌分布之间的Bray-Curtis相异性测度系数为距离指标,用非加权平均配对法(UPGA)在NTsys 2.10统计软件上进行数据处理。选取水稻根际土氨氧化细菌的优势克隆进行测序,所得的部分16S rDNA序列在NCBI上BLASTN比较,确定优势氨氧化细菌的种属;综合测序所得序列及NCBI上的相关序列,通过Cluster X及MEGA4.0构建进化树。
     获得的主要试验结果如下:
     (1)从水稻根际土中获得124个细菌的酶切类型,库容值为21.28%;从水稻非根际土中获得116个细菌的酶切类型,库容值为27.86%;从水稻根际土中获得110个氨氧化细菌的酶切类型,库容值为51.70%;从水稻非根际土中获得105个氨氧化细菌的酶切类型,库容值为52.26%。
     (2)采用α多样性的测度对所得的细菌的RFLP分型数据进行分析,Shannon-Wiener(H′)多样性指数:水稻根际土为4.764,水稻非根际土为4.658;Margalef丰富度指数(d_(Ma)):水稻根际土为24.855,水稻非根际土为23.272;Pielou均匀度指数(J_(gi)):水稻根际土为0.988,水稻非根际土为0.980。其结果由大至小均为根际水稻土大于非根际水稻土。结果表明,水稻根际土中微生物物种丰富度较高,种类分布较均匀,构成功能体系较完善的微生物群落。
     (3)采用α多样性的测度对所得的氨氧化细菌的RFLP分型数据进行分析,Gini(D_g)多样性指数:水稻根际土为0.984,水稻非根际土为0.986;均匀度指数(J_(gi)):水稻根际土为0.952,水稻非根际土为0.966;物种丰富度指数(d_(Ma)):水稻根际土为21.297,水稻非根际土为20.621;最大物种多样性指数(H_(max)):水稻根际土为4.701,水稻非根际土为4.654。
     (4)根际水稻土优势氨氧化细菌G5、G13、G14、G26、G33、G42和G111的16S rDNA序列比对表明:G14和G111与亚硝化螺菌属(Nitrosospira sp.)同源性分别达到97%和93%; G33和G13与未培养亚硝化单胞菌属(Uncultured Nitrosomonadaceae bacterium)同源性分别达到98%和92%;G26和G42与未培养β-变形菌亚门(Uncultured Beta- proteobacterium)同源性分别达到99%和99%。G5与未培养碱菌属(Uncultured Alcaligenaceae bacterium)同源性达到97%。
Bacteria are both the producer and the decomposer in energy conversion and food chain of ecosystem; its diversity also has a variety of functions. Nitrogen is essential nutrients for plants, and is also an important limiting factor in soil productivity. The first step which is the rate-limiting step in nitrification, making NH4+ into NO2-, is completed by the ammonia-oxidizing bacteria (AOB).
     Rhizosphere paddy soil is a special ecological environment and the microorganisms living there play an important role in the paddy production, soil structure and fertility maintenance, as well as the flow of nutrients. Study on these microorganisms and diversity of AOB may help us clarifying the interrelationship between soil environment, bacteria and AOB community structure; and it also could help us understanding the relationship among plants, soil and microorganisms. The research has significance in yields improving and environmental protection.
     The fresh paddy soil in Wugong, Shaanxi province was sampling as test materials in this study. Total DNA of microorganism in rhizosphere paddy soil and non-rhizosphere paddy soil were extracted directly. Using universal primer pair 63F/1387R for bacteria and specific primers of ammonia-oxidizing bacteria Eub338/Nso1225, the partial gene fragments of 16S rDNA of bacteria and ammonia-oxidizing bacteria (AOB) were amplified by PCR, respectively, from the total DNA of rhizosphere paddy soil and non-rhizosphere paddy soil. The PCR fragments were connected with pMD19-T vector. After transforming these recombined plasmids into E coli JM109, the four clone libraries were set up. From each clone library about 150 inserted fragments of bacterial and AOB’s 16S rDNA were then amplified by PCR using universal primer M13 of pMD19-T vector and digested by restriction endonuclease Hha I and Rsa I, respectively.
     The data got by PCR-RFLP was analyzed byα-measurement to figure out their bio-diversity characteristic; the clustering analysis was determined by software NTsys 2.10 with Bray-Curtis similarity as distance index which based on the distribution of bacteria and AOB. The preponderant clone of AOB in rhizosphere soil were selected for sequencing and BLASTN comparison on NCBI was used to get the high homology sequence and related information of strains. The phylogenetic trees of sequenced preponderant AOB were built by Cluster X and MEGA4.0.
     Results showed that:
     (1) Restriction endonuclease types of bacteria of rhizosphere paddy soil and non-rhizosphere soil were 124/141 and 116/140; the coverage (C value) of the clone libraries were 21.28% and 27.86%. Enzyme types of AOB in rhizosphere paddy soil and in non-rhizosphere soil were 110/167 and 105/155; the C value of the clone libraries were 51.70% and 52.26%.
     (2) All the diversity data for bacteria was analyzed byα-measurement index, which showed that: Shannon-Wiener index (H′) were 4.764 and 4.658; Margalef richness index (d_(Ma)) were 24.855 and 23.272; Pielou evenness index (J_(gi)) were 0.988 and 0.980, for rhizosphere paddy soil and non-rhizosphere paddy soil. The results showed that in rhizosphere paddy soil the index value was larger than those in non-rhizosphere paddy soil; rhizosphere paddy soil has the bigger species abundance, the more equally distributing and microbial community with the better functional system.
     (3) All the diversity data for AOB was analyzed byα-measurement index, which show that: Diversity index of rhizosphere paddy soil and non-rhizosphere paddy soil were got as 0.984 and 0.986 for Gini index (D_g), 0.952 and 0.966 for Evenness index (J_(gi)), 21.297 and 20.621 for Species richness index (d_(Ma)), and 4.701 and 4.654 for the largest species diversity index (H_(max)).
     (4) By sequencing of the special bacteria G5, G13, G14, G26, G33, G42 and G111 in rhizosphere paddy soil, results showed that: G14 and G111 had a higher homology with Nitrosospira sp. which was up to 97% and 93%; G33 and G13 had a higher homology with Uncultured Nitrosomonadaceae bacterium which was up to 98% and 92%; G26 and G42 had a higher homology with Uncultured Beta proteobacterium which was up to 99% and 99%. G5 had a higher homology with Uncultured Alcaligenaceae bacterium which was up to 97%
引文
[1]刘峰,温学森.根系分泌物与根际微生物关系的研究进展[J].食品与药品, 2006, 8(09A): 37-40.
    [2]赵艳,张晓波.影响植物根际微生物区系之因素研究进展[J].中国农学通报, 2007, 23(8):425-430.
    [3]方昉,吴承祯,洪伟,等.植物根际、非根际土壤酶与微生物相关性研究进展[J].热带农业研究, 2007, 3(3): 209-215.
    [4]陆雅海,张福锁.根际微生物研究进展[J].土壤, 2006, 38(2): 113-121.
    [5] Riley D, Barber S A.Salt accumulation at the soybean root soil interface [J]. Soil Sci Soc Am Proc, 1970, 34: 154-155.
    [6]张学利,杨树军,张百习.我国林木根际土壤研究进展[J].沈阳农业大学学报(自然科学版), 2002, 33(6): 461-465.
    [7]熊明彪,何建平,宋光煜.根分泌物对根际微生物生态分布的影响[J].土壤通报, 2002, 33 (2): 145-148.
    [8]陈文新.土壤和环境微生物学[M].北京:北京农业大学出版社, 1989.
    [9]胡小加.根际微生物与植物营养[J].中国油料作物学报, 1999, 21 (3):77-79.
    [10]刘芷宇,施卫明.根际研究方法[M].南京:江苏科学技术出版社, 1996: 308-327.
    [11]徐秋芳,姜培坤.毛竹根区土壤微生物数量与酶活性研究[J].林业科学研究, 2001, 14 (6): 648-652.
    [12]徐秋芳,钱新标.毛竹根际土壤的化学性质[J].浙江林学院学报, 1998, 15(3), 240-243.
    [13]张学利,杨树军,刘亚萍.章古台固沙林主要树种根际土壤性质研究[J].中国沙漠, 2004, 24(1): 72-76.
    [14]侯杰,功富裕.林木根际土壤研究进展[J].防护林科技, 2006, 1:30-33.
    [15]杨承栋,焦如珍.杉木人工林根际土壤性质恶化的研究[J].林业科学, 1999, 35(6): 2-9.
    [16]马克平.试论生物多样性的概念[J].生物多样性, 1993, 1(1): 20-22.
    [17]骆世明.农业生态学[M].北京:中国农业出版社, 2001, 72-96.
    [18]钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性影响研究进展[J].生物多样性, 2004, 12(4): 56-465.
    [19] Ramirez I, Steyer J P. Modeling microbial diversity in anaerobic digestion [J]. Water Sci Technol, 2008, 57(2): 265-70.
    [20] Pringault O, Duran R. Temporal variations of microbial activity and diversity in marine tropical sediments ( new caledonia lagoon ) [J]. Microb Ecol, 2008, 55(2): 247-58.
    [21]乐毅全,郑师章,周纪纶.凤眼莲根际细菌的趋化性研究[J].复旦学报, 1990, 29(3): 314-319.
    [22]赵大君,郑师章.凤眼莲根分泌物氨基酸对根际肠杆菌属F2细菌降酶的影响[J].应用生态学报, 1996, 7(4): 435-438.
    [23] Prosser J. Molecular and functional diversity in soil micro-organisms [J]. Plant Soil, 2002, 24(4): 9-17.
    [24]刘子雄,朱天辉,张建.林木根系分泌物与根际微生物研究进展[J].世界林业研究, 2005, 18(6): 25-31.
    [25]朱丽霞,章家恩,刘文高,等.根系分泌物与根际微生物相互作用研究综述[J].生态环境, 2003,129(1): 102-105.
    [26] Lemanceau P, Corberand T, Gardan L, et al. Effect of two plantspecies, flax (Linum usitatissim um L.) and tomato (Lycopersicon esculentum Mill), on the diversity of soilboren populations of fluoredcent pseudomonads [J]. Appl Environ Microbiol, 1995, 61: 1004-1012.
    [27] Wiehe W, Hoflich G. Survival of plant growth promoting rhizospherebacteria in the rhizosphere of different crops and migration to non-inoculated plants under field conditions in north-east Germany [J]. Microbiol Res, 1995, 150(2): 201-206.
    [28] Eric Smit, Paula Leeflang, Boet Glandorf,et al. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Applied and Environmental Microbiology, 1999, 65(6): 2614-2621.
    [29]贾志红,孙敏,杨珍平.施肥对作物根际微生物的影响[J].作物学报, 2004, 30(5): 491-496.
    [30] Saxenu D,Flores S, Stotzky G.Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events[J]. Soil boils & Biochem, 2002, 34(1): 133-137.
    [31]刘训理,王超,吴凡,等.烟草根际微生物研究[J].生态学报, 2006, 2(26): 552-558.
    [32]王超,吴凡,刘兵.不同肥力条件下烟草根际微生物的初步研究[J].中国烟草科学, 2005, 26(2): 12-14.
    [33]邹莉,袁晓颖,李玲,等.连作对大豆根部土壤微生物的影响研究[J].微生物学杂志, 2005, 25(2): 27-30.
    [34]马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报, 2004, 15(6): 1005-1008.
    [35]杨建霞,范小峰,刘建新.温室黄瓜连作对根际微生物区系的影响[J].浙江农业科学, 2005, (6): 21-23.
    [36]王茹华,周宝利,张启发,等.嫁接对茄子根际微生物种群数量的影响[J].园艺学报, 2005, 32(1): 124-126.
    [37]李琼芳.不同连作年限麦冬根际微生物区系动态研究[J].土壤通报, 2006, 37(3): 563-567.
    [38] Wang J L, Xn R, Chen C L. General review in the study of barrier mechanism caused by continuous soybean cropping [J]. Soybean Science, 2000, 19(4): 367-371.
    [39]张淑香,高于勤.连作障碍与根际微生态研究[J].应用生态学报, 2000, 11(1): 152-154.
    [40] Olsson S, Alstrom S. Characterisation of bacteria in soils under barley monoculture and crop rotation [J]. Soil Biology and Biochemistry, 2000, 32(10):1443-1451.
    [41] Alvey S, Yang C H, Buerkert A. Cereal/ legume rotation effects on rhizosphere bacterial community structure in west African Soils [J]. Biol Fertil Soils, 2003, 37: 73-82.
    [42] Bünemann E K, Smithson P C, Jama B. Maize productivity and nutrient dynamics in maize–fallow rotations in western Kenya[J]. Plant and Soil, 2004, 264 (1-2): 195-208.
    [43]胡江春,薛德林,马成新,等.植物根际促生菌( PGPR)的研究与应用前景[J].应用生态学报, 2004, 15(10): 1963-1966.
    [44]王学翠,童晓茹,温学森,等.植物与根际微生物关系的研究进展[J].山东科学, 2007, 20(6): 40-44,50.
    [45] Tieying S, Lotta M, Torsten E, Weiwen Z and ULla R.Biodiversity and seasonal variation of the cyanobacterial assemblage in a paddy paddy field in Fujian [J]. FEMS Microbiology Ecology, 2005, 54(1): 131-140.
    [46] Lotta M. Biodiversity and nifH gene expression of diazotrophs in paddy paddy fields. PhD thesis, Department of botany, Stockholm University, Sweden, 2005.
    [47]余贵芬,青长乐等.腐殖酸结合汞的研究现状[J].农业环境保护, 2000,19(4): 13-16.
    [48] Hartmann A, Schmid M, Wenzel W, Hinsinger Ph. Rhizosphere 2004─Perspectives and Challenges─A Tribute to Lorenz Hiltner. Munich, Germany: GSF- National Research Center for Environment and Health, 2005.
    [49] Leigh MB, Fletcher JS, Fu XO, Schmitz FJ. Root turnover: An important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ Sci Technol, 2002, 36(7): 1579-1583.
    [50] Clark R B. Arbuscular mycorrhizal adaptation, spore ermination, root colonization, and host plant growth and ineral acquisition at low pH. Plant Soil, 1997, 192(1): 15-22.
    [51]李社增,鹿秀云,刘杏忠,等.防治棉花黄萎病的生防细菌NCD22的田间效果评价及其鉴定[J].植物病理学报, 2005, 35(5): 451-455.
    [52] Zhang Shouan , REDDYM S, KLOEPPER J W. Tobacco Growth Enhancement and Blue Mold Disease Protection by Rhizobacteria : Relationship between Plant Growth Promotion and Systemic Disease Protection by PGPR Strain 90 2166[J] . Plant and Soil, 2004, 262: 277-288.
    [53] Ibekwe A M, Kennedy A C. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions [J].FEMS Microbiol Ecol, 1998, 26(2): 151-163.
    [54] Tabacchioni S, Chiarini L, Bevivino A. Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population[J]. Microb Ecol, 2000, 40(3): 169-176.
    [55] Classen A T, Boyle S I, Haskins K E. Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils [J]. FEMS Microbiol Ecol, 2003, 44(3): 319-328.
    [56] Nannipieri P, Ascher J, Ceccherini M T. Microbial diversity and soil functions [J]. European Journal of Soil Science, 2003, 54(4): 655-670.
    [57] Ovreas L. Population and community level approaches for analysing microbial diversity in natural environments [J]. Ecol Lett, 2000,3: 236-251.
    [58]李阜棣,胡正嘉.微生物学[M].北京:中国农业出版社, 2000.
    [59]蔡燕飞,廖宗文.土壤微生物生态学研究方法进展[J].土壤与环境, 2002, ll(2): 167-171.
    [60]张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法[J].生态学报, 2003, 22(5): 988-995.
    [61]滕应,黄昌勇,骆永明.铅锌银尾矿区土壤微生物活性及其群落功能多样性研究[J].土壤学报, 2004, 4l(1): 113-119.
    [62] Winding A, Hendriksen N J. Biolog substrate utilization assay for metabolic fingerprint of soil bacteria:incubation effects. Microbial communities: Functional versus structural approaches[M]. Heidelberg: Springer-Verlag, 1997, 192-205.
    [63] Smalla K, Wachtendorf U, Heuer H, et al. Analysis of BIOLOG GN substrate utilization patterns by microbial communities [J]. Appl. Environ Microbiol, 1998, 64(4): 1220-1225.
    [64] Petersen S O, Debosz K, Schjonning P. Phospholipid fatty acid profiles and C availability in wet-stable macro-aggregates from conventionally and organically farmed soils [J]. Geoderma, 1997, 78(3-4): 181-196.
    [65] John W D, Alice J J. Methods for assessing soil quality [M]. Madison, US: SSSA. Special Publication; no. 49, 1996: 203-207.
    [66] Griffiths B S, Ritz K, Ebblewhite N. Soil microbial community structure: effects of substrate loading rates[J]. Soil Biol. Biochem, 1998, 31(1): 145-153.
    [67] Theron J, Cloete T E. Molecular techniques for determining microbial diversity and community structure in natural environments [J]. Crit Rev Microbiol, 2000, 26(1): 37-57.
    [68] Tiedje J M, Asuming-Brempong S, Nusslein K. Opening the black box of soil microbial diversity[J]. Appl Soil Ecol, 1999, 13(2): 109-122.
    [69] Fisher M M, Triplett E W. Automated approach for ribosomal intergenic spcer analysis of microbial diversity and its application to freshwater bacterial communities [J]. Appl Environ Microbiol, 1999, 65(10): 4630-4636.
    [70]周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性, 2007, 15(3): 306-311.
    [71] Hubert C, Shen Y, Voordouw G. Composition of toluene-degrading microbial communities from soil at different concentrations of toluene [J]. Appl Environ Microbiol, 1999, 65(7):3064-3070.
    [72] Nusslein K, Tiedje J M. Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil [J]. Appl Environ Microbiol, 1999, 65(8):3622-3626.
    [73]王晓丹,李艳红.分子生物学方法在水体微生物生态研究中的应用[J].微生物学通报, 2007, 34(4): 777-781.
    [74] Trevors J T. Molecular evolution in bacteria: cell division [J]. Rev Microbiol, 1998, 29:237-245.
    [75] Wintzingerode F V, Gobel U B, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis [J]. FEMS Microbiol Rev, 1997, 21(3): 213-229.
    [76] Prosser J I. Molecular and functional diversity in soil microorganisms [J]. Plant Soil, 2002, 244(1-2): 9-17.
    [77]秦玉洁,周少奇.厌氧氨氧化细菌的研究进展[J].生态学杂志, 2007, 26(11): 1867-1872.
    [78]郝永俊,吴松维,吴伟祥,等.好氧氨氧化细菌的种群生态学研究进展[J].生态学报,2007, 27(4): 1573-1582.
    [79] Aakra A, Utaker J B, et al. RFLP of rRNA genes and sequencing of the 16S - 23S rDNA intergenic spacer region of ammoniaoxidizing bacteria: a phylogenetic app roach[J]. Int J. Syst Bacteriol, 1999, 49(1): 123-130.
    [80]丁洪,王跃思,项虹艳,等.福建省几种主要红壤性水稻土的硝化与反硝化活性[J].农业环境科学学报, 2003, 22(6): 715-719.
    [81]李奕林,张亚丽,张耀鸿,等.施N对不同水稻品种N肥利用率及根际硝化作用和硝化微生物的影响[J].生态学报, 2007, 27(6): 2507-2515.
    [82]袁飞,冉炜,胡江,等.变性梯度凝胶电泳法研究我国不同土壤氨氧化细菌群落组成及活性[J].生态学报, 2005, 25(6): 1318-1324.
    [83]杜晓光.淮南地区土壤氨氧化细菌属的组成研究[J].安徽农学通报, 2007, 13(5): 27-28.
    [84]钟文辉,蔡祖聪,尹力初,等.种植水稻和长期施用无机肥对红壤氨氧化细菌多样性和硝化作用的影响[J].土壤学报, 2008, 45(1): 105-111.
    [85]张丽娜,曹慧,崔中利,等.红壤荒草地氨氧化细菌富集液16S rDNA文库的RFLP分析[J].土壤学报, 2006, 43(4): 635-641.
    [86]宋亚娜,李隆,包兴国,等.应用DGGE技术研究间、轮作对根际氨氧化细菌和固氮菌群落结构的影响[J].江西农业大学学报, 2006, 28(4): 506-511.
    [87]林先贵,胡君利,褚海燕,等.土壤氨氧化细菌对大气CO2浓度增高的响应[J].农村生态环境, 2005, 21(1): 44-46.
    [88]黄立南,周惠,陈月琴,等.垃圾填埋场渗滤液中古细菌群落16S rRNA基因的ARDRA分析[J].生态学报, 2002, 22(7): 1085-1090.
    [89] Sliekers A O, Derwort N, Gomez J L C, et al. Complete autrophic nitrogen removal over nitrite in one single reactor [J]. Wat Res, 2002, 36(10): 2475-2482.
    [90] Zhang Dai-jun. The integration of methanogenesis with denitrification and anaerobic ammonium oxidation in an expanded granular sludge bed reactor[J].Journal of Environmental Sciences, 2003, 15(3): 423-432.
    [91]李君文,周娟,王新为,等.亚硝酸细菌amoA基因的克隆、测序与表达[J].应用与环境生物学报, 2004, 10(3): 345-348.
    [92]汪华,杨京平,徐伟,等.分次施氮对水稻根际土壤微生物生态效应的影响[J].水土保持学报, 2006, 20(4): 123-126.
    [93]陈彬,郑斯平,周莉娟,等.水稻根际土壤及根组织内外固氮微生物的遗传多样性分析[J].农业生物技术学报, 2007, 15(5): 841-846.
    [94] Piutti S, Hallet S, Rousseaux S, Philippot L, Soulas G, Martin-Laurent F. Accelerated mineralisation of atrazine in maize rhizosphere soil[J]. Biol Fertil Soils, 2002, 36(6): 434-441.
    [95] Van Breemen N.Natural organic tendency[J]. Nature, 2002, 415(6870): 381-382.
    [96]吕耀.农业生态系统中氮素造成的非点源污染[J].农业环境保护, 1998, 17(1): 35-39.
    [97] Milling A, Smalla K, FranzXM, et al. Effects of transgenic potatoes withan altered starch composition on the diversity of soil and rhizospherebacteria and fungi[J]. plants on soil, 2005, 266(12): 23- 39.
    [98]吴凡李传荣,崔萍,等.不同肥力条件下的桑树根际微生物种群分析[J].生态学报, 2008, 28(6): 2674-2681.
    [99] Zhou J Z, Bruns M A, Tiedjie J M. DNA recovery from soil of diverse composition[J]. Appl Environ Microbial, 1996, 62(2): 316-32.
    [100]李杨.不同施肥水平下旱地土壤细菌群落多样性的RFLP分析[D].硕士学位论文, 2008.
    [101] Zhang W, Ki JS, Qian PY. Microbial diversity in polluted harbor sediments: I: Bacterial community assessment based on four clone libraries of 16s rDNA[J]. Estuary, Coastal and Shelf Science, 2008, 76(3): 668-681.
    [102]马克平,倩影前.生物多样性研究的原理与方法[M].北京:中国科技出版社,1994. 141-165.
    [103]田育红,刘鸿雁.草地景观生态研究的几个热点问题及其进展[J].应用生态学报, 2003, 14(3): 427-433.
    [104]章家恩,蔡燕飞,高爱霞.土壤微生物多样性实验研究方法概述[J].土壤, 2004, 36(4): 346-350.
    [105]滕齐辉,曹慧,崔中利,等.太湖地区典型菜地土壤微生物16S rDNA的PCR-RFLP分析[J].生物多样性, 2006, 14(4):345-351.
    [106] Kennedy A C. Bacterial diversity in agroecosystems[J]. Agric Ecosyst Environ, 1999, 74 (1-3):65-76.
    [107] Amann R I,Ludwig W ,Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews,1995,59(1): 143-169.
    [108]王官林,方宏筠,王火旭,等.抗菌肽基因转化大白菜获得抗病转基因植株及稳定遗传[J].植物学报, 2002, 44(8): 951-955.
    [109]张瑞福,曹慧,崔中利,等.土壤微生物总DNA的提取和纯化[J].微生物学报, 2003,43(2): 276-282.
    [110]王啸波,唐玉秋,王金华,等.环境样品中DNA的分离纯化和文库构建[J].微生物学报, 2001, 41(2) : 133-140.
    [111]陈灏,唐小树,林洁,等.不经培养的农田土壤微生物种群构成及系统分类的初步研究[J].微生物学报, 2002, 4(4): 478-483.
    [112]张秀敏,徐金娥,王海祥.从土壤样品中提取和纯化微生物DNA方法研究进展[J].保定师范专科学校学报, 2005, 18(2): 34-39.
    [113] Tebbe C C, Vahjen W. Interference of humic acids and DNA extracted directly from soil in transformation of recombinant DNA from bacteria and a yeast [J]. Appl Environ Microbiol, 1993, 2(59): 2657-2665.
    [114] Jia X,Han S J,Zhao Y H,et al. Comparisons of extraction and purification methods of soil microorganism DNA from rhizosphere soil[J]. Journal of Forestry Research, 2006, 17(1): 31-34.
    [115] Harry M,Gmbier b,Bourezgui Y,et al. Evaluation of purification procedures for DNA extract from organic rich samples:interference with substance[J].Analysis, 1999, 27(5): 439-442.
    [116] Qiu X,Wu L,Huang H,et al.Evaluation of PCR-generated chimeras,mutations,and heteroduplexes with 16S rDNA gene-based cloning[J]. Appl Environ Microbiol, 2001, 67(2): 880-887.
    [117] Kowalchuk G A.,Jong S D,Kline E,et al.Microvariation artifacts introduced by PCR and cloning of closely related 16s rRNA gene sequences[J]. Appl Environ Microbiol, 2001, 67(1): 469-472.
    [118] Thompson J R.,Marcelino L A.,Polz M F.Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by reconditioning PCR[J]. Nucleic Acids Res, 2002, 30(9): 2083-2088.
    [119]王英,腾齐辉,曹慧,等.免耕水稻土壤中细菌多样性及其空间分布的研究[J].土壤学报, 2007,44(1): 138-143.
    [120]戴欣,王保军,黄燕等.普通和稀释培养基研究太湖沉积物可培养细菌的多样性[J].微生物学报, 2005, 45(2): 161-165.
    [121]夏北成, Zhou J, Tiedje JM.土壤细菌类克隆群落及其结构的生态学特征[J].生态学报, 2001, 21(4): 574-577.
    [122] Hill T C J, Walsh K A, Harris J A, Moffett B F, et al. Using ecological diversity measures with bacterial communities[J]. FEMS Microbiology Ecology, 2006, 43(1): 1-11.
    [123] Wilson J B. Methods for fitting dominance diversity curves. Journal of Vegetation Science, 1991, 29(1): 35-46.
    [124]吴展才,余旭胜,徐源泰.采用分子生物学技术分析不同施肥土壤中细菌多样性[J].中国农业科学, 2005, 38(12): 2474-2480.
    [125]李友发,宋兵,宋亚娜,郑斯平,翟焕趁,郑伟文.福建省稻田土壤细菌群落的16S rDNA-PCR-DGGE分析[J].微生物学通报, 2008, 35(11): 1715-1720.
    [126] Phillips D A, FOX T C, KI NGM D, et al. Microbial products trigger amino acid exudation from plant roots[J]. Plant Physiol, 2004, 136(1): 2887-2894.
    [127] Den IS T, Freder I C L, Francism. The ect omycorrhizal symbi osis : genetics and devel opment[J].Plant and Soil, 2002, 244(35): 1-2.
    [128] Hans Peter H , Adrian B, Christopher B , et al. Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci, 2004 , 101(15): 136-141.
    [129]刘志培,刘双江.硝化作用微生物的分子生物学研究进展[J].应用与环境生物学报, 2004, 10(4): 521-525.
    [130]董莲华,杨金水,袁红莉.氨氧化细菌的分子生态学研究进展[J].应用生态学报, 2008, 19(6) : 1381-1388.
    [131] Enwall K, Nyberg K, Bertilsson S, et al . Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil[J] . Soil Biology and Biochemistry, 2007, 39(1): 106-115.
    [132]李奕林,张亚丽,胡江,沈其荣.淹水条件下籼稻与粳稻苗期根际土壤[J].硝化作用的时空变异.生态学报, 2006, 26(5): 1461-1467.
    [133] Koops HP, Pommerening. RêserA. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species . FEMS Microbiology Ecology, 2001, 37(1): 1-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700