用户名: 密码: 验证码:
好氧颗粒污泥脱氮特性及其过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧颗粒污泥是上世纪末研究发现的一种用于废水处理的新型微生物聚集体,它是微生物在特定环境下自发凝聚、增殖而形成的结构紧密、沉降性能良好、生物协作性强的生物颗粒。由于其结构复杂,能够在同一个颗粒内同时保存多种氧环境与营养环境,为各种微生物提供良好的生长环境,因而具有多种代谢活性,是实现废水一体化处理的理想主体。本文是在前期成功培养出好氧异养颗粒污泥的基础上,通过提高氮负荷、控制水力停留时间及曝气强度促进硝化反硝化微生物在颗粒内的积累,培养出了具有良好脱氮活性的颗粒污泥,并对其脱氮特性及机理做了初步探讨。重点研究了脱氮颗粒污泥的培养、特性以及脱氮反应模式、传质特性、反应动力学、颗粒污泥内微生物组成及分布,其主要研究内容如下:
     依据前期好氧异养颗粒污泥的培养策略,分别以活性污泥(AS)、硝化污泥(NS)、好氧异养颗粒污泥(GS)为接种体通过提高氨氮负荷、优化曝气流量促进硝化反硝化微生物在颗粒污泥内的积累。经过120天的培养,三种系统内均成功培养出了具有较高脱氮活性的颗粒污泥,在反应运行周期为4h,有机负荷为1.6g/L·d,氨氮负荷为0.53g/L·d的条件下,各系统的COD去除率分别达95.70、96.04和96.55%,氨氮去除率分别达90.67、94.51和97.29%。
     IA分析表明,三种成熟颗粒污泥的平均粒径分别达到了1.88、2.37、2.26mm,相应的湿污泥密度达到了1.0156、1.0187和1.0262g/cm~3,从而使各系统内的污泥浓度达到了7.25、9.81和12.32g/L,SVI下降到了51.67、42.11和40.03ml/g,最大沉降速率分别达到了104.22、120.89和135m/h。此外,成熟颗粒污泥内的EPS含量明显提高,分别达到了55.31、47.34和53.95mg/L,而颗粒的比表面积达到了837.76、740.74和892.03m~2/m~3。对颗粒污泥反应器内基质降解的过程分析表明,循环周期内的氨氮去除可分为两个阶段,即富营养(COD去除)阶段的高速除碳脱氮和贫营养(硝化)阶段的慢速脱氮。在不同运行条件下,颗粒污泥表现出不同的脱氮特性,这表明颗粒污泥反应器运行中可能存在多种脱氮机制,实际运行时的表观脱氮速率是多种途径共同作用的结果。
     通过对脱氮颗粒污泥反应器的曝气强度、进水基质及水力停留时间的优化,得出三种颗粒污泥系统的最优曝气流量分别为0.75、1.25、1.0L/min;进水COD浓度在短期内可在800~2000mg/L随意变化,而进水氨氮浓度则在经
Aerobic granulation was a process in which suspended biomass aggregate and form discrete well-defined granules spontaneously in aerobic systems. Aerobic granular sludge has been investigated since last century. As self-aggregated bio-particles by microorganisms under certain conditions, it has compact structure and good settling ability. Because of the mass transfer limit, there could be different kinds of oxygen and substrate conditions in the granules, which could be propitious to the proliferation of various microorganisms. Based on the successful cultivation of aerobic heterotrophic granular sludge, granules with well nitrogen removal were cultivated by adjusting the ammonium loading rate, aeration rate and hydraulic retention time, and the properties and mechanisms of nitrogen removal were investigated in this work. The main projects were focused on the cultivation of nitrogen removal granules, nitrogen removal process, optimization of the reaction process, mass transfer characteristics, reaction kinetics and microbiological components and structure.
     The main experimental results were listed as follows: According to the prophase work on the heterotrophic aerobic granules, activated sludge (AS), nitrified sludge (NS) and aerobic heterotrophic granular sludge (GS) were used as the inoculum respectively, and the adjustment of ammonium loading rate, aeration rate and hydraulic retention time were used to promote the accumulation of nitrifier-denitrifier bacteria. After 120 days operation, granules with well COD and nitrogen removal activity were successfully cultivated in all the three types of systems. The COD removal efficiencies of the three systems were 95.70、96.04、96.55% and the ammonium nitrogen removal efficiencies were 90.67、94.51、97.29% respectively, under the operation conditions of cycle period being 4h, organic loading rate being 1.6g/L·d and ammonium-nitrogen loading rate being 0.53g/L·d.
     IA results showed that mature granules in three systems had mean diameter being 1.88, 2.37 and 2.26mm respectively, and the maximum settling velocity of which were 104.22, 120.89 and 135.00m/h. The corresponding wet sludge density was 1.0156, 1.0187 and 1.0262g/cm~3, and the MLSS were 7.25, 9.81 and
引文
1 Ye RW, Thomas SM. Microbial nitrogen cycles: physiology, genomics and applications. Ecology and industrial microbiology 2001, 4:307-312.
    2 van Loosdrecht MCM, Jeten MSM. Microbiological conversions in nitrogen removal. Wat. Sci. Technol. 1998, 38: 1-7.
    3 Hagopian DS, Riley JG. A closer look at the bacteriology of nitrification. Aquacultural Engineering 1998, 18: 223-244.
    4 Burrell PC, Keller J, Blackall LL. Microbiology of a nitrite-oxidizing bioreactor. Appl. Environ Microbial 1998, 64(5): 1878-1883.
    5 钱易,米祥友主编.现代废水处理新技术.中国科学技术出版社,1993.
    6 沈耀良等编著.废水生物处理新技术.中国环境科学出版社,1999.
    7 郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.科学出版社,2004.
    8 Abeliovich A. Transformations of ammonia and the environmental impact of nitrifying bacteria. Biodegradation 1992, 3: 255-264.
    9 Hunik JH, Tramper J, Wijffels RH. A strategy to scale up nitrification processes with immobilized cells of Nitrosomonas europaea and Nitrobacter agilis. Bioprocess Engineering 1994, 11: 73-82.
    10 Holt JG, Krieg NR, Sneath PHA, et al. Bergey's manual of determinative bacteriology (9th edition).Williams&Wilkins, 1994:427-455.
    11 Tiedje JM. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Biology of Anaerobic Microorganisms, Zehnder AJB (ed), John Wiley&Sons, New York, 1988.
    12 Bruce ER. Simultaneous denitrification with nitrification in single-channel oxidation ditches. J WPCF, 1985,57(4):300-303.
    13 Laanbroek HJ, Bodelier PLE, Gerards S. Oxgen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at diferent oxygen concentrations. Arch Microbiol, 1994,
    161:156-162.
    14 Hunik JH, Tramper J, Wijffels RH. A strategy to scale up nitrification processes with immobilized cells of Nitrosomonas europaea and Nitrobacter agilis. Bioprocess Engineering, 1994, 11: 73-82.
    15 Bertanza G. Simultaneous nitrification-denitrification process in extended aeration plants: pilot and real scale experiences. Wat Sci Tech, 1997,35(6):53-61.
    16 Yon H, Ann K, Lee H, et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermitently aerated reactor. Water Research, 1999, 33(1): 146-154.
    17 Klangduen P. Study of factors affecting simultaneous nitrification and denitrification. Wat. Sci. Technol. 1999,39(6):45-49.
    18 Hao X, Hans DJ, van Johan GW. Conditions and mechanisms affecting simultaneous nitrification and denitrification in a Pasveer oxidation ditch. Bioresource Technology. 1997, 59(2-3):207-215.
    19 Furukawa S, Tokimori K, Hirotsuji J, et al. New operational support system for high nitrogen removal in oxidation ditch process. Wat Sci Technol. 1998,37(12): 63-68.
    20 Garrido JM, Campos JL, Mendez R, et al. Nitrous oxide production by nitrifying biofilms in a biofilm airlift suspension reactor. Wat. Sci. Technol., 1997, 36(1): 157-163.
    21 Tijhgis L, Hijman B. Influence of detachment, substrate loading and reactor scale on formation of biofilms in airlift reactors. Appl Microbiol Biotechnol, 2000, 45: 7-17.
    22 Bernet N, Peng DC, Delgenes JP, et al. Nitrification at low oxygen concentration in biofilm reactor. Journal of Environment and Engineering, 2001, 127(3): 266-271
    23 Van Benthum WAJ, Derissen BP. Nitrogen removal using nitrifying biofilm growth and denitrifying suspended growth in a biofilm airlift suspension reactor coupled with a chemostat. Wat Res, 1998, 32(7): 2009-2018.
    24 Elisabeth V. Simultaneous Nitrification and Denitrification in Bench-scale Sequencing Batch Reactors. Wat Res, 1996,20(2):277-284.
    25 Third KA, Burnett N, Cord-Ruwisch R. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR. Biotech. Bioeng. 2003, 83(6):706-720.
    26 陈际达,陈际胜,张光辉等.含氮废水亚硝化型硝化的研究.重庆大学学报. 2000, 23(3): 74-76.
    27 袁林江 ,彭党冲 ,王志盈 .短程硝化 -反硝化生物脱氮 .中国给水排水 . 2000,16(2):29-31.
    28 Garrido JM, van Benthum WAJ, van Loosdrecht MCM, et al. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotech Bioengin, 1997, 53(2):168-178.
    29 Hellinga C, Schellen A A J C, Mulder J W, et al. The SHARON process: an innovative method for nitrogen removal from ammonium-rich wastewater. Wat. Sci. Technol., 1998,37(9): 135-142.
    30 van Kempen R, Mulder J W, Uijterlinde C A, et al. Overview: full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering. Wat. Sci. Technol., 2001, 44(1): 145-152.
    31 Alheri P, Valter T, Carmela L. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Research, 2002, 36: 2541-2546.
    32 孙英杰 , 张隽超 , 胡跃城 . 亚硝酸型硝化的控制途径 . 中国给水排水 . 2002,18(6): 29-31.
    33 Helmer C, Kunst S, Juretschko S, et al. Nitrogen loss in a nitrifying biofilm system. Wat. Sci. Technol., 1999,39(7): 13-21.
    34 Verstraete W, Philips S. Nitrification-denitrification processes and technologies in new contexts. Environmental Pollution, 1998, 102(31): 717-726.
    35 van Niel EWJ. A mathematical description of the behavior of mixed chemostat cultures of an autotrophic nitrifier and a heterotrophic nitrifier/aerobic denitrifier, a comparison with experimental data. FEMS Microbiol Ecol, 1991, 102: 99-108.
    36 Robertson LA and Kuenen JG. Aerobic denitrification-old wine in new botles? Antonie van Leeuwenhoek, 1984,50: 525-544.
    37 Siegrist H, Reithaar S, Koch G, et al. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon. Water Science and Technology, 1998, 38(8-9): 241-248.
    38 吕锡武,李峰,稻森悠平等.氨氮废水处理过程中的好氧反硝化研究.给水排水.2000,26(4):17-21.
    39 Mulder A, van Graaf AA, Robertson LA, et al. Anaerobic ammoniumoxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol, 1995, 16: 177-184.
    40 Strous M, van Gerven E, Zheng P, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Research, 1997, 31 (8): 1955-1962.
    41 Strous M, Kunen JG, Jeten MSM. Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol, 1999,65: 3248-3250.
    42 Egli K, Fanger U, Alvarez PJJ, et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Nlicrobiol, 2001, 175: 198-207.
    43 Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol, 2002.68(3):1312-1318.
    44 Jeten MSM, Strous M, van Pas-Schoonen KT, et al. The anaerobic oxidation of ammonium. FEMS Microbiol., 1999,22:421-437.
    45 郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究.生物工程学报.2001,17(2):92-97.
    46 Zheng P, Lin F-M, Hu B-L, et al. Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge. Journal of Environmental Science, 2004, 16(1): 13-16.
    47 Khin T and Annachhatre AP. Novel microbial nitrogen removal processes. Biotechnology Advances. 2004,22(7):519-532.
    48 Bock E, Schmidt I and Stuven R. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch Microbiol, 1995, 163:16-20.
    49 Kuai LP, Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification- denitrification system. Appl Environ Microbiol, 1998, 64: 4500-4506.
    50 Olav SA, Third KA, Abma W, et al. CANON and Anammox in a gas-lift reactor. FEMS Microbiology Letters. 2003,218(2):339-344.
    51 竺建荣 ,刘纯新 . 好氧颗粒活性污泥的培养及理化特性研究 . 环境科学.1999,2(3):38-41.
    52 Beun JJ, Hendriks A, van Loosdrecht MCM, et al. Aerobic granulation in a sequencing batch reactor. Water Research.1999,33(10): 2283-2290.
    53 Tay JH, Yang SF, Liu Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Applied Microbiology Biotechnology 2002,59:332-337.
    54 Yang S-F, Tay J-H, Liu Y. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. Journal of Biotechnology 2003,106:77-86.
    55 Mishima K, Markamura M. Self-immovilization of aerobic activated sludge-a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment. Water Science and Technology.1991,23:981-990.
    56 Shin H-S, Lim K-H, Park H-S. Effect of shear stress on granulation in oxygen aerobic upflow sludge bed reactors. Water Science and Technology.1992,26 (3-4):60l-605.
    57 Tijhuis L, van Loosdrecht MCM, Heijnen JJ. Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotechnology and Bioengineering.1994,44(5):595-608.
    58 van Loosdrecht MCM, Eikelboom D, Gjaltema A, et al. Biofilm structures. Water Science and Technology.1995,32(8): 35-43.
    59 Morgenroth E, Sherden T, van Loosdrecht MCM, et al. Aerobic granule sludge in a sequencing batch reactor. Water Research. 1997,12: 3191-3194.
    60 Peng DC, Bernet N, Delgenes JP, et al. Aerobic granular sludge—a case report. Water Research 1999,33:890-893.
    61 Jiang HL, Tay JH, Tay STL. Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Letters in Applied Microbiology 2002,35:439-445.
    62 Moy BYP, Tay JH, Toh SK, et al. High organic loading influences the physical characteristics of aerobic sludge granules. Letters in Applied Microbiology 2002,34:407-412.
    63 Liu QS, Tay JH, Liu Y. Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor. Environmental Technology 2003,24:1235-1243.
    64 Tay JH, Tay STL, Ivanov V, et al. Biomass and porosity profile in microbialgranules sued for aerobic wastewater treatment. Letters in Applied Microbiology 2003,36:297–301.
    65 Qin L, Tay JH, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochemistry 2004,39:579-584.
    66 Tay JH, Yang SF, Liu Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Applied Microbiology Biotechnology 2002,59:332-337.
    67 Liu Y, Tay JH. State of the art of biogranulation technology for wastewater treatment. Biotechnology Advances, 2004,22(7):533-563.
    68 McSwain BS, Irvine RL, Wilderal PA. The effect of intermittent feeding on aerobic granule structure. 5th International Conference on Biofilm Systems by International Water Association. South Africa: Cape Town, 2003.
    69 Hu LL, Wang JL, Wen XH, et al. The formation and characteristics of aerobic granules in sequencing batch reactors (SBR) by seeding anaerobic granules. Process Biochemistry 2005, 40, 5-11.
    70 Tay JH, Liu QS, Liu Y. The role of cellular polysaccharides in the formation and stability of aerobic granules. Letters in Applied Microbiology 2001,33:222-226.
    71 Liu Y, Yang SF, Liu QS, et al. The role of cell hydrophobicity in the formation of aerobic granules. Current Microbiology 2003,46:270-274.
    72 Yang S-F, Tay J-H, Liu Y. Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules. Journal of Environmental Engineering. 2005,131(1):86-92.
    73 谢珊,李小明,曾光明等.SBR 系统中好氧颗粒污泥脱氮特性研究.中国环境科学.2004,24(3):355-359.
    74 Mosquera-Corral A, de Kreuk MK, Heijnen JJ, et al. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Research 2005,39:2676-2686.
    75 Peng DC, Nicolas B, Jean-Phillipe D, et al. Simultaneous organic carbon and nitrogen removal in an SBR controlled at low dissolved oxygen concentration. Journal of Chemical Technology and Biotechnology 2001,76:553-558.
    76 Beun JJ, Heijnen JJ, van Loosdrecht MCM. N-removal in a granular sludgesequencing batch airlift reactor. Biotechnology and Bioengineering 2001,75(1): 82-92.
    77 de Kreuk MK, Heijnen JJ, van Loosdrecht MCM. Simultaneous COD, nitrogen and phosphate removal by aerobic granular sludge. Biotechnol. Bioeng., 2005, 90(6): 761-769.
    78 杨麒,李小明,曾光明等. SBR 系统中同步硝化反硝化好氧颗粒污泥的培养. 环境科学. 2003,24(4):94-98.
    79 刘其杰,胡翔,王建龙.好氧颗粒污泥脱氮性能研究.化工环保. 2005,25(2): 79-83.
    80 McSwain BS, Irvine RL and Wilderer PA. The influence of settling time on the formation of aerobic granules. Water Sci Technol. 2004,50(10):195-202.
    81 Cassidy DPand Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Research. 2005,39(19): 4817-4823.
    82 阮文权,陈坚.同步硝化反硝化(SND)好氧颗粒污泥脱氮过程初步研究. 安全与环境学报.2003,3(5):3-7.
    83 Kennedy AC. Bacteria diversity in agroecosystems. Agric. Ecosyst. Environ 1999,74:65-76.
    84 Amann RI, Ludwig W and Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology Reviews 1995,59:143-169.
    85 Tsai YL and Olson BH. Rapid method for direct extraction of DNA from soil and sediments. Applied and Environmental Microbiology 1991,57:1070-1074.
    86 Zhou J, Bruns MA and Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol 1996,62:316-322.
    87 Roose-Amsaleg CL, Garnier-sillam E and Harry M. Extraction and purification of microbial DNA from soil and sediment samples. Applied soil Ecology 2001,18:47-60.
    88 Tebbe CC and Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 1993,59:2657-2665.
    89 Tsai YL and Olson BH. Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl Environ Microbiol1992,58:754-757.
    90 Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985,230(4732):1350-1354.
    91 Lerman LS, Fischer SG, Hurley I, et al. Sequence-determined DNA separations. Annual Review Biophysi Bioengineering 1984,13:399-423.
    92 Muyzer G, de Waal EC and Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 1993,59:695-700.
    93 Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 1999,2:317-322.
    94 Sanguinetti CJ, Dias Neto E and Simpson AJ. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 1994,17: 914-921.
    95 Muyzer G and Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 1998,73:127-141.
    96 Sekiguchi H, Tomioka N, Nakahara T, et al. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnology Letters 2001,23:1205-1208.
    97 Smalla K, Wieland G, Buchner A, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 2001,67:4742-4751.
    98 Gomes NC, Fagbola O, Costa R, et al. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 2003,69:3758-3766.
    99 Eichner CA, Erb RW, Timmis KN, et al. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol 1999,65:102-109.
    100 Simpson JM, McCracken VJ, White BA, et al. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinalmicrobiota. J Microbiol Methods 1999,36:167-179.
    101 Porteous LA, Serdler RJ and Wtrud LS. An improved method for purifying DNA from soil for polymerase chain reaction amplification and molecular ecology applications. Mol. Ecol. 1997,6:787-791.
    102 Teske A, Wawer C, Muyzer G, et al. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol 1996,62:1405-1415.
    103 Sekiguchi H, Watanabe M, Nakahara T, et al. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol 2002,68:5142-5150.
    104 Watanabe K, Kodama Y, Syutsubo K, et al. Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Appl Environ Microbiol 2000,66:4803-4809.
    105 Nicolaisen MH and Ramsing NB. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods 2002,50:189-203.
    106 Wawer C and Muyzer G. Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl Environ Microbiol 1995,61: 2203- 2210.
    107 Zhang X, Gao P, Chao C, Wang L, et al. Microdiversity of Phenol Hydroxylase Genes among Phenol-Degrading Isolates of Alcaligenes sp. from an Activated Sludge System. FEMS Microbiol Letters. 2004.
    108 Tay ST-L, Jiang H-L and Tay J-H. Functional analysis of microbial community in phenol-degrading aerobic granules cultivated in SBR. Water Sci Technol. 2004,50(10): 229-234.
    109 Tay ST-L, Moy BY-P, Maszenan AM and Tay J-H. Comparing activated sludge and aerobic granules as microbial inocula for phenol biodegradation. Appl. Microbiol. Biotech. 2005,67(5):708-713.
    110 APHA. Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association, New York: 1995.
    111 Awong J, Bitton G, Koopman B. ATP, oxygen uptake rate and INT-dehydrogenase activity of actinomycete foams. Water Research, 1984, 7 (19): 917-921.
    112 Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F. Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry 1956,28: 350-356.
    113 Fr?lund B, Palmgren R, Keiding K, Nielsen PH. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research 1996,30, 1749-1758.
    114 宁正祥.食品成分分析手册.北京: 中国轻工业出版社, 1997, 26-27.
    115 Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons: A simple method for measuring cellsurface hydrophobicity. FEMS Microbiology Letters 1980,9:29-33.
    116 Morgan JW, Forster CF, Evison L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludge. Water Research 1990, 24:743-750.
    117 Cai CG, Xu F, Liu JS, et al. Cultivation of aerobic granules in a sequential batch shaking reactor. Environmental Technology, 2004,25(8):937-944
    118 Liu LL, Wang ZP, Yao J, et al. Investigation on the properties and kinetics of glucose-fed aerobic granular sludge. Enzyme and Microbial Technology. 2005, 36(2-3): 307-313.
    119 Zhang LL, Huang YF, Cai WM. Application of aerobic granular sludge in polishing the UASB effluent. Environmental Technology. 2005,26(12): 1327-1334.
    120 Liu LL, Wang ZP, Yao J, et al. Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere. 2006,63(10):1728-1735.
    121 Kim SM, Kim SH, Choi HC, et al. Enhanced aerobic floc-like granulation and nitrogen removal in a sequencing batch reactor by selection of settling velocity. Water Sci Technol. 2004;50(6):157-162
    122 Munch EV, Lant P, Keller J. Simultaneous nitrification and denitrification inbench-scale sequencing batch reactors. Water Research 1996,30(2):227-284.
    123 白 晓 慧 . 利 用 好 氧 颗 粒 污 泥 实 现 同 步 硝 化 反 硝 化 . 中 国 给 水 排 水 . 2002,18(2):26-28.
    124 史云祥,阮文权,顾强.同步硝化反硝化好氧颗粒污泥脱氮过程条件研究.江苏环境科技.2004,17(2):18-20.
    125 高大文,彭永臻,郑庆柱. SBR 工艺中短程硝化反硝化的过程控制. 中国给水排水.2002,18(11):13-18.
    126 高大文,彭永臻,王淑莹.不同方式实现短程硝化反硝化生物脱氮工艺的比较.中国环境科学.2004,24(5):618-622.
    127 Rees M and Nason A. Incorporation of atmospheric oxygen into nitrite formed during ammonia oxidation by Nitrosomonas europaea. Biochem. Biophys. Acta 1966,113:398-401.
    128 Drozd JW. Energy coupling and respiration in Nitrosomonas europaea. Arch. Microbiol. 1976,110:257-262.
    129 Dua RD, Bhandari B and Nicholas DJD. Stable isotope studies on the oxidation of ammonia to hydroxylamine by Nitrosomonas europaea. FEMS Lett. 1979,106: 401-404.
    130 Schmidt I and Bock E. Anaerobic ammonia oxidation by cell-free extracts of Nitrosomonas eutropha. Antonie van Leeuwenhoek 1998,73: 271-278.
    131 Anke Hippen, Karl-Heinz Rosenwinkel, Goetz Baumgarten, et al. Aerobic deammonification: a new experience in the treatment of wastwaters. Wat. Sci. Tech., 1977, 35(10):111-120
    132 Geraats SGM, Hooijmans CM, van Niel EWJ, et al. The use of a metabolically structured model in the study of growth Nitrification and denitrification by Thiosphaera pantotropha. Biotechnol. Bioeng. 1990,36:921-930.
    133 Brierley EDR, Wood M. Heterotrophic nitrification in an acid forest soil: isolation and characterization of a nitrifying bacterium. Soil Biol. Biochem. 2001,33:1403-1409.
    134 温东辉,唐孝炎.异养硝化及其在污水脱氮种的作用.环境污染与防治.2003, 25(5): 283-285.
    135 阮文权,卞庆荣,陈坚. COD 与 DO 对好氧颗粒污泥同步硝化反硝化脱氮的影响.应用与环境生物学报. 2004,10(3):366-369.
    136 Jones PH, Sabra HM. Effecet of systems solids retention time (SSRT or sludge age) on nitrogen removal from activated-sludge systems. Wat. Pollut. Control. 1980,79(1):106-116.
    137 Hanaki K, Wantawin C. Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Wat Res,1990,24(3):289-296.
    138 Okabe S, Ozawa Y, Hirata R, et al. Relationship between population dynamics of nitrifiers in biofilm and reactor performance at various C:N ratios. Water Res,1996,30:1563-1572
    139 Hanaki K, Wantawin C. Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Wat Res,1990,24(3):297-302.
    140 Boncher B, Koops HP. Growth of lithotrophic ammonia-oxidizing bacteria on hydroxylamine. FEMS Microbiol Lett., 1994,122:263-266.
    141 van de Graaf AA, Mulder A, Bruijn PD, et al. Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol, 1995, 61(4): 1246-1251.
    142 Broda E. Two kinds of lithotrophics missing in nature. Z Allg. Microbiol. 1977,17:491-493.
    143 Matcalf and Eddy Inc., Wastewater Engineering: Treatment, Disposal, Reuse,
    3rd revised, Revised by Tchobanoglous G., Burton FL. New York, McGraw-Hill, 1991,371.
    144 Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology 1999,39(6):61-68.
    145 顾夏声编著.废水生物处理数学模式.清华大学出版社,1982:45-82.
    146 Guiot SR, Pauss A, Costerton JW. A structured model of the anaerobic granule consortium. Water Sci Technol 1991;21:1-10.
    147 Sponza DT. Enhancement of granule formation and sludge retainment for tetrachloroethylene (TCE) removal in an upflow anaerobic sludge blanket (UASB) reactor. Advances in Environmental Research. 2003, 7: 453-462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700